1
|
Santabarbara S, Casazza AP. Thermodynamic Factors Controlling Electron Transfer among the Terminal Electron Acceptors of Photosystem I: Insights from Kinetic Modelling. Int J Mol Sci 2024; 25:9795. [PMID: 39337283 PMCID: PMC11432928 DOI: 10.3390/ijms25189795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Photosystem I is a key component of primary energy conversion in oxygenic photosynthesis. Electron transfer reactions in Photosystem I take place across two parallel electron transfer chains that converge after a few electron transfer steps, sharing both the terminal electron acceptors, which are a series of three iron-sulphur (Fe-S) clusters known as FX, FA, and FB, and the terminal donor, P700. The two electron transfer chains show kinetic differences which are, due to their close geometrical symmetry, mainly attributable to the tuning of the physicochemical reactivity of the bound cofactors, exerted by the protein surroundings. The factors controlling the rate of electron transfer between the terminal Fe-S clusters are still not fully understood due to the difficulties of monitoring these events directly. Here we present a discussion concerning the driving forces associated with electron transfer between FX and FA as well as between FA and FB, employing a tunnelling-based description of the reaction rates coupled with the kinetic modelling of forward and recombination reactions. It is concluded that the reorganisation energy for FX- oxidation shall be lower than 1 eV. Moreover, it is suggested that the analysis of mutants with altered FA redox properties can also provide useful information concerning the upstream phylloquinone cofactor energetics.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy;
| | | |
Collapse
|
2
|
Vershubskii AV, Tikhonov AN. Structural and Functional Aspects of Electron Transport Thermoregulation and ATP Synthesis in Chloroplasts. BIOCHEMISTRY (MOSCOW) 2021; 86:92-104. [PMID: 33705285 DOI: 10.1134/s0006297921010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is focused on analysis of the mechanisms of temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts of higher plants. Importance of photosynthesis thermoregulation is determined by the fact that plants are ectothermic organisms, whose own temperature depends on the ambient temperature. The review discusses the effects of temperature on the following processes in thylakoid membranes: (i) photosystem 2 activity and plastoquinone reduction; (ii) electron transfer from plastoquinol (via the cytochrome b6f complex and plastocyanin) to photosystem 1; (iii) transmembrane proton transfer; and (iv) ATP synthesis. The data on the relationship between the functional properties of chloroplasts (photosynthetic transfer of electrons and protons, functioning of ATP synthase) and structural characteristics of membrane lipids (fluidity) obtained by electron paramagnetic resonance studies are presented.
Collapse
|
3
|
Tikhonov AN, Vershubskii AV. Temperature-dependent regulation of electron transport and ATP synthesis in chloroplasts in vitro and in silico. PHOTOSYNTHESIS RESEARCH 2020; 146:299-329. [PMID: 32780309 DOI: 10.1007/s11120-020-00777-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The significance of temperature-dependent regulation of photosynthetic apparatus (PSA) is determined by the fact that plant temperature changes with environmental temperature. In this work, we present a brief overview of temperature-dependent regulation of photosynthetic processes in class B chloroplasts (thylakoids) and analyze these processes using a computer model that takes into account the key stages of electron and proton transport coupled to ATP synthesis. The rate constants of partial reactions were parametrized on the basis of experimental temperature dependences of partial photosynthetic processes: (1) photosystem II (PSII) turnover and plastoquinone (PQ) reduction, (2) the plastoquinol (PQH2) oxidation by the cytochrome (Cyt) b6f complex, (3) the ATP synthase activity, and (4) the proton leak from the thylakoid lumen. We consider that PQH2 oxidation is the rate-limiting step in the intersystem electron transport. The parametrization of the rate constants of these processes is based on earlier experimental data demonstrating strong correlations between the functional and structural properties of thylakoid membranes that were probed with the lipid-soluble spin labels embedded into the membranes. Within the framework of our model, we could adequately describe a number of experimental temperature dependences of photosynthetic reactions in thylakoids. Computer modeling of electron and proton transport coupled to ATP synthesis supports the notion that PQH2 oxidation by the Cyt b6f complex and proton pumping into the lumen are the basic temperature-dependent processes that determine the overall electron flux from PSII to molecular oxygen and the net ATP synthesis upon variations of temperature. The model describes two branches of the temperature dependence of the post-illumination reduction of [Formula: see text] characterized by different activation energies (about 60 and ≤ 3.5 kJ mol-1). The model predicts the bell-like temperature dependence of ATP formation, which arises from the balance of several factors: (1) the thermo-induced acceleration of electron transport through the Cyt b6f complex, (2) deactivation of PSII photochemistry at sufficiently high temperatures, and (3) acceleration of the passive proton outflow from the thylakoid lumen bypassing the ATP synthase complex. The model describes the temperature dependence of experimentally measured parameter P/2e, determined as the ratio between the rates of ATP synthesis and pseudocyclic electron transport (H2O → PSII → PSI → O2).
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
4
|
Santabarbara S, Casazza AP. Kinetics and Energetics of Phylloquinone Reduction in Photosystem I: Insight From Modeling of the Site Directed Mutants. FRONTIERS IN PLANT SCIENCE 2019; 10:852. [PMID: 31312208 PMCID: PMC6614487 DOI: 10.3389/fpls.2019.00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Two phylloquinone molecules (A 1), one being predominantly coordinated by PsaA subunit residues (A 1A) the other by those of PsaB (A 1B), act as intermediates in the two parallel electron transfer chains of Photosystem I. The oxidation kinetics of the two phyllosemiquinones by the iron-sulfur cluster FX differ by approximately one order of magnitude, with A 1 A - being oxidized in about 200 ns and A 1 B - in about 20 ns. These differences are generally explained in terms of asymmetries in the driving force for FX reduction on the two electron transfer chains. Site directed mutations of conserved amino acids composing the A 1 binding site have been engineered on both reaction center subunits, and proved to affect selectively the oxidation lifetime of either A 1 A - , for PsaA mutants, or A 1 B - , for PsaB mutants. The mutation effects are here critically reviewed, also by novel modeling simulations employing the tunneling formalism to estimate the electron transfer rates. Three main classes of mutation effects are in particular addressed: (i) those leading to an acceleration, (ii) those leading to a moderated slowing (~5-folds), and (iii) those leading to a severe slowing (>20-folds) of the kinetics. The effect of specific amino acid perturbations contributing to the poising of the phylloquinones redox potential and, in turn, to PSI functionality, is discussed.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Centre for Fundamental Research in Photosynthesis, Vergiate, Italy
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Milan, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
5
|
Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW. Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science 2018; 360:1210-1213. [PMID: 29903971 DOI: 10.1126/science.aar8313] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/18/2018] [Indexed: 11/02/2022]
Abstract
Photosystems I and II convert solar energy into the chemical energy that powers life. Chlorophyll a photochemistry, using red light (680 to 700 nm), is near universal and is considered to define the energy "red limit" of oxygenic photosynthesis. We present biophysical studies on the photosystems from a cyanobacterium grown in far-red light (750 nm). The few long-wavelength chlorophylls present are well resolved from each other and from the majority pigment, chlorophyll a. Charge separation in photosystem I and II uses chlorophyll f at 745 nm and chlorophyll f (or d) at 727 nm, respectively. Each photosystem has a few even longer-wavelength chlorophylls f that collect light and pass excitation energy uphill to the photochemically active pigments. These photosystems function beyond the red limit using far-red pigments in only a few key positions.
Collapse
Affiliation(s)
| | | | - Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alison Telfer
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Pierre Joliot
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Laura A Antonaru
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tanai Cardona
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Elmars Krausz
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy
| | - Alain Boussac
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Andrea Fantuzzi
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
6
|
Santabarbara S, Bullock B, Rappaport F, Redding KE. Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components. Biophys J 2016; 108:1537-1547. [PMID: 25809266 DOI: 10.1016/j.bpj.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 10/23/2022] Open
Abstract
Two functional electron transfer (ET) chains, related by a pseudo-C2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an ∼100-fold decrease in the observed rate of PhQA(-) oxidation. This is the largest change of PhQA(-) oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P700(+). This situation allows a second photochemical charge separation event to be initiated before PhQA(-) has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQA(-) does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona; Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris, France; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Bradford Bullock
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris, France.
| | - Kevin E Redding
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, Arizona.
| |
Collapse
|
7
|
Santabarbara S, Zucchelli G. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I. Phys Chem Chem Phys 2016; 18:9687-701. [PMID: 26998536 DOI: 10.1039/c5cp06590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).
Collapse
Affiliation(s)
- Stefano Santabarbara
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy.
| | | |
Collapse
|
8
|
Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 2015; 524:366-9. [PMID: 26168400 DOI: 10.1038/nature14599] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/28/2015] [Indexed: 01/04/2023]
Abstract
Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.
Collapse
|
9
|
Rappaport F. A method aimed at assessing the functional consequences of the supramolecular organization of the respiratory electron transfer chain by time-resolved studies. Methods Mol Biol 2015; 1241:95-109. [PMID: 25308491 DOI: 10.1007/978-1-4939-1875-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A steadily increasing number of physiological, biochemical, and structural studies have provided a growing support to the notion that the respiratory electron transfer chain may contain supra-molecular edifices made of the assembly of some, if not all, of its individual links. This structure, usually referred to as the solid state model-in comparison to the liquid state model in which the electron transfer reactions between the membrane bound enzymes are diffusion controlled-is seen as conferring specific kinetic properties to the chain and thus as being highly relevant from a functional point of view. Although the assumption that structural changes are mirrored by functional adjustment is undoubtedly legitimate, experimental evidences supporting it remain scarce. Here we review a recent methodological development aimed at tackling the functional relevance of the supramolecular organization of the respiratory electron transfer chain in intact cells.
Collapse
Affiliation(s)
- Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P et M Curie, 75005, Paris, France,
| |
Collapse
|
10
|
Giera W, Szewczyk S, McConnell MD, Snellenburg J, Redding KE, van Grondelle R, Gibasiewicz K. Excitation dynamics in Photosystem I from Chlamydomonas reinhardtii. Comparative studies of isolated complexes and whole cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1756-68. [PMID: 24973599 DOI: 10.1016/j.bbabio.2014.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/15/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022]
Abstract
Identical time-resolved fluorescence measurements with ~3.5-ps resolution were performed for three types of PSI preparations from the green alga, Chlamydomonas reinhardtii: isolated PSI cores, isolated PSI-LHCI complexes and PSI-LHCI complexes in whole living cells. Fluorescence decay in these types of PSI preparations has been previously investigated but never under the same experimental conditions. As a result we present consistent picture of excitation dynamics in algal PSI. Temporal evolution of fluorescence spectra can be generally described by three decay components with similar lifetimes in all samples (6-8ps, 25-30ps, 166-314ps). In the PSI cores, the fluorescence decay is dominated by the two fastest components (~90%), which can be assigned to excitation energy trapping in the reaction center by reversible primary charge separation. Excitation dynamics in the PSI-LHCI preparations is more complex because of the energy transfer between the LHCI antenna system and the core. The average trapping time of excitations created in the well coupled LHCI antenna system is about 12-15ps longer than excitations formed in the PSI core antenna. Excitation dynamics in PSI-LHCI complexes in whole living cells is very similar to that observed in isolated complexes. Our data support the view that chlorophylls responsible for the long-wavelength emission are located mostly in LHCI. We also compared in detail our results with the literature data obtained for plant PSI.
Collapse
Affiliation(s)
- Wojciech Giera
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland.
| | - Sebastian Szewczyk
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| | - Michael D McConnell
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ 85287-1604, USA
| | - Joris Snellenburg
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd, Box 871604, Tempe, AZ 85287-1604, USA
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Krzysztof Gibasiewicz
- Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
11
|
Bernal-Bayard P, Molina-Heredia FP, Hervás M, Navarro JA. Photosystem I Reduction in Diatoms: As Complex as the Green Lineage Systems but Less Efficient. Biochemistry 2013; 52:8687-95. [DOI: 10.1021/bi401344f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P. Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - José A. Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
12
|
Santabarbara S, Casazza AP, Ali K, Economou CK, Wannathong T, Zito F, Redding KE, Rappaport F, Purton S. The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2013; 161:535-46. [PMID: 23161889 PMCID: PMC3532283 DOI: 10.1104/pp.112.205260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have investigated the importance of carotenoids on the accumulation and function of the photosynthetic apparatus using a mutant of the green alga Chlamydomonas reinhardtii lacking carotenoids. The FN68 mutant is deficient in phytoene synthase, the first enzyme of the carotenoid biosynthesis pathway, and therefore is unable to synthesize any carotenes and xanthophylls. We find that FN68 is unable to accumulate the light-harvesting complexes associated with both photosystems as well as the RC subunits of photosystem II. The accumulation of the cytochrome b₆f complex is also strongly reduced to a level approximately 10% that of the wild type. However, the residual fraction of assembled cytochrome b₆f complexes exhibits single-turnover electron transfer kinetics comparable to those observed in the wild-type strain. Surprisingly, photosystem I is assembled to significant levels in the absence of carotenoids in FN68 and possesses functional properties that are very similar to those of the wild-type complex.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Santabarbara S, Bailleul B, Redding K, Barber J, Rappaport F, Telfer A. Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:328-35. [DOI: 10.1016/j.bbabio.2011.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
|
14
|
Xu W, Wang Y, Taylor E, Laujac A, Gao L, Savikhin S, Chitnis PR. Mutational analysis of photosystem I of Synechocystis sp. PCC 6803: the role of four conserved aromatic residues in the j-helix of PsaB. PLoS One 2011; 6:e24625. [PMID: 21931782 PMCID: PMC3171458 DOI: 10.1371/journal.pone.0024625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Photosystem I is the light-driven plastocyanin-ferredoxin oxidoreductase in the photosynthetic electron transfer of cyanobacteria and plants. Two histidyl residues in the symmetric transmembrane helices A-j and B-j provide ligands for the P700 chlorophyll molecules of the reaction center of photosystem I. To determine the role of conserved aromatic residues adjacent to the histidyl molecule in the helix of B-j, we generated six site-directed mutants of the psaB gene in Synechocystis sp. PCC 6803. Three mutant strains with W645C, W643C/A644I and S641C/V642I substitutions could grow photoautotrophically and showed no obvious reduction in the photosystem I activity. Kinetics of P700 re-reduction by plastocyanin remained unaltered in these mutants. In contrast, the strains with H651C/L652M, F649C/G650I and F647C substitutions could not grow under photoautotrophic conditions because those mutants had low photosystem I activity, possibly due to low levels of proteins. A procedure to select spontaneous revertants from the mutants that are incapable to photoautotrophic growth resulted in three revertants that were used in this study. The molecular analysis of the spontaneous revertants suggested that an aromatic residue at F647 and a small residue at G650 may be necessary for maintaining the structural integrity of photosystem I. The (P700⁺-P700) steady-state absorption difference spectrum of the revertant F647Y has a ∼5 nm narrower peak than the recovered wild-type, suggesting that additional hydroxyl group of this revertant may participate in the interaction with the special pair while the photosystem I complexes of the F649C/G650T and H651Q mutants closely resemble the wild-type spectrum. The results presented here demonstrate that the highly conserved residues W645, W643 and F649 are not critical for maintaining the integrity and in mediating electron transport from plastocyanin to photosystem I. Our data suggest that an aromatic residue is required at position of 647 for structural integrity and/or function of photosystem I.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Yingchun Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Eric Taylor
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Amelie Laujac
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Liyan Gao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Parag R. Chitnis
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
15
|
Santabarbara S, Reifschneider K, Jasaitis A, Gu F, Agostini G, Carbonera D, Rappaport F, Redding KE. Interquinone electron transfer in photosystem I as evidenced by altering the hydrogen bond strength to the phylloquinone(s). J Phys Chem B 2010; 114:9300-12. [PMID: 20583790 DOI: 10.1021/jp1038656] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of electron transfer from phyllosemiquinone (PhQ(*-)) to the iron sulfur cluster F(X) in Photosystem I (PS I) are described by lifetimes of approximately 20 and approximately 250 ns. These two rates are attributed to reactions involving the quinones bound primarily by the PsaB (PhQ(B)) and PsaA (PhQ(A)) subunits, respectively. The factors leading to a approximately 10-fold difference between the observed lifetimes are not yet clear. The peptide nitrogen of conserved residues PsaA-Leu722 and PsaB-Leu706 is involved in asymmetric hydrogen-bonding to PhQ(A) and PhQ(B), respectively. Upon mutation of these residues in PS I of the green alga, Chlamydomonas reinhardtii , we observe an acceleration of the oxidation kinetics of the PhQ(*-) interacting with the targeted residue: from approximately 255 to approximately 180 ns in PsaA-L722Y/T and from approximately 24 to approximately 10 ns in PsaB-L706Y. The acceleration of the kinetics in the mutants is consistent with a perturbation of the H-bond, destabilizing the PhQ(*-) state, and increasing the driving force of its oxidation. Surprisingly, the relative amplitudes of the phases reflecting PhQ(A)(*-) and PhQ(B)(*-) oxidation were also affected by these mutations: the apparent PhQ(A)(*-)/PhQ(B)(*-) ratio is shifted from 0.65:0.35 in wild-type reaction centers to 0.5:0.5 in PsaA-L722Y/T and to 0.8:0.2 in PsaB-L706Y. The most consistent account for all these observations involves considering reversibility of oxidation of PhQ(A)(*-) and PhQ(B)(*-) by F(X), and asymmetry in the driving forces for these electron transfer reactions, which in turn leads to F(x)-mediated interquinone electron transfer.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Santabarbara S, Galuppini L, Casazza AP. Bidirectional electron transfer in the reaction centre of photosystem I. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:735-749. [PMID: 20666929 DOI: 10.1111/j.1744-7909.2010.00977.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the past decade light-induced electron transfer reactions in photosystem I have been the subject of intensive investigations that have led to the elucidation of some unique characteristics, the most striking of which is the existence of two parallel, functional, redox active cofactors chains. This process is generally referred to as bidirectional electron transfer. Here we present a review of the principal evidences that have led to the uncovering of bidirectionality in the reaction centre of photosystem I. A special focus is dedicated to the results obtained combining time-resolved spectroscopic techniques, either difference absorption or electron paramagnetic resonance, with molecular genetics, which allows, through modification of the binding of redox active cofactors with the reaction centre subunits, an effect on their physical-chemical properties.
Collapse
|