1
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018; 57:3402-3415. [PMID: 29630358 DOI: 10.1021/acs.biochem.8b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O•/OH) ( E°' = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the Δ E°' between NH2Y32(O•/OH) and Y32(O•/OH) when measured under reversible conditions is ∼300-400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of ribonucleotide reductase (RNR), which when incubated with β2/CDP/ATP generates the D6-NH2Y731•-α2/β2 complex. By multifrequency electron paramagnetic resonance (35, 94, and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establish RNH2• planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNRs.
Collapse
Affiliation(s)
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Michael Huynh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | | | - Cyrille Costentin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States.,Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591 , Université Paris Diderot, Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean de Baïf , 75205 Paris Cedex 13 , France
| | - Isabel Bejenke
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
3
|
Greene BL, Taguchi AT, Stubbe J, Nocera DG. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. J Am Chem Soc 2017; 139:16657-16665. [PMID: 29037038 DOI: 10.1021/jacs.7b08192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNR) catalyze the reduction of nucleotides to deoxynucleotides through a mechanism involving an essential cysteine based thiyl radical. In the E. coli class 1a RNR the thiyl radical (C439•) is a transient species generated by radical transfer (RT) from a stable diferric-tyrosyl radical cofactor located >35 Å away across the α2:β2 subunit interface. RT is facilitated by sequential proton-coupled electron transfer (PCET) steps along a pathway of redox active amino acids (Y122β ↔ [W48β?] ↔ Y356β ↔ Y731α ↔ Y730α ↔ C439α). The mutant R411A(α) disrupts the H-bonding environment and conformation of Y731, ostensibly breaking the RT pathway in α2. However, the R411A protein retains significant enzymatic activity, suggesting Y731 is conformationally dynamic on the time scale of turnover. Installation of the radical trap 3-amino tyrosine (NH2Y) by amber codon suppression at positions Y731 or Y730 and investigation of the NH2Y• trapped state in the active α2:β2 complex by HYSCORE spectroscopy validate that the perturbed conformation of Y731 in R411A-α2 is dynamic, reforming the H-bond between Y731 and Y730 to allow RT to propagate to Y730. Kinetic studies facilitated by photochemical radical generation reveal that Y731 changes conformation on the ns-μs time scale, significantly faster than the enzymatic kcat. Furthermore, the kinetics of RT across the subunit interface were directly assessed for the first time, demonstrating conformationally dependent RT rates that increase from 0.6 to 1.6 × 104 s-1 when comparing wild type to R411A-α2, respectively. These results illustrate the role of conformational flexibility in modulating RT kinetics by targeting the PCET pathway of radical transport.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alexander T Taguchi
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase. Essays Biochem 2017; 61:281-292. [PMID: 28487404 DOI: 10.1042/ebc20160072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Escherichia coli class Ia ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'-deoxynucleotides using a radical mechanism. Each turnover requires radical transfer from an assembled diferric tyrosyl radical (Y•) cofactor to the enzyme active site over 35 Å away. This unprecedented reaction occurs via an amino acid radical hopping pathway spanning two protein subunits. To study the mechanism of radical transport in RNR, a suite of biochemical approaches have been developed, such as site-directed incorporation of unnatural amino acids with altered electronic properties and photochemical generation of radical intermediates. The resulting variant RNRs have been investigated using a variety of time-resolved physical techniques, including transient absorption and stopped-flow UV-Vis spectroscopy, as well as rapid freeze-quench EPR, ENDOR, and PELDOR spectroscopic methods. The data suggest that radical transport occurs via proton-coupled electron transfer (PCET) and that the protein structure has evolved to manage the proton and electron transfer co-ordinates in order to prevent 'off-pathway' reactivity and build-up of oxidised intermediates. Thus, precise design and control over the factors that govern PCET is key to enabling reversible and long-range charge transport by amino acid radicals in RNR.
Collapse
|
5
|
Manbeck GF, Fujita E, Concepcion JJ. Proton-Coupled Electron Transfer in a Strongly Coupled Photosystem II-Inspired Chromophore–Imidazole–Phenol Complex: Stepwise Oxidation and Concerted Reduction. J Am Chem Soc 2016; 138:11536-49. [DOI: 10.1021/jacs.6b03506] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Javier J. Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
6
|
Williamson HR, Dow BA, Davidson VL. Mechanisms for control of biological electron transfer reactions. Bioorg Chem 2014; 57:213-221. [PMID: 25085775 PMCID: PMC4285783 DOI: 10.1016/j.bioorg.2014.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions.
Collapse
Affiliation(s)
- Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
7
|
Chen X, Ma G, Sun W, Dai H, Xiao D, Zhang Y, Qin X, Liu Y, Bu Y. Water Promoting Electron Hole Transport between Tyrosine and Cysteine in Proteins via a Special Mechanism: Double Proton Coupled Electron Transfer. J Am Chem Soc 2014; 136:4515-24. [DOI: 10.1021/ja406340z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaohua Chen
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Guangcai Ma
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Weichao Sun
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Hongjing Dai
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Dong Xiao
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Yanfang Zhang
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Xin Qin
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Yongjun Liu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuxiang Bu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Minnihan EC, Nocera DG, Stubbe J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013; 46:2524-35. [PMID: 23730940 DOI: 10.1021/ar4000407] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversionof nucleotides to 2'-deoxynucleotides and are classified on the basis of the metallo-cofactor used to conduct this chemistry. The class Ia RNRs initiate nucleotide reduction when a stable diferric-tyrosyl radical (Y•, t1/2 of 4 days at 4 °C) cofactor in the β2 subunit transiently oxidizes a cysteine to a thiyl radical (S•) in the active site of the α2 subunit. In the active α2β2 complex of the class Ia RNR from E. coli , researchers have proposed that radical hopping occurs reversibly over 35 Å along a specific pathway comprised of redox-active aromatic amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. Each step necessitates a proton-coupled electron transfer (PCET). Protein conformational changes constitute the rate-limiting step in the overall catalytic scheme and kinetically mask the detailed chemistry of the PCET steps. Technology has evolved to allow the site-selective replacement of the four pathway tyrosines with unnatural tyrosine analogues. Rapid kinetic techniques combined with multifrequency electron paramagnetic resonance, pulsed electron-electron double resonance, and electron nuclear double resonance spectroscopies have facilitated the analysis of stable and transient radical intermediates in these mutants. These studies are beginning to reveal the mechanistic underpinnings of the radical transfer (RT) process. This Account summarizes recent mechanistic studies on mutant E. coli RNRs containing the following tyrosine analogues: 3,4-dihydroxyphenylalanine (DOPA) or 3-aminotyrosine (NH2Y), both thermodynamic radical traps; 3-nitrotyrosine (NO2Y), a thermodynamic barrier and probe of local environmental perturbations to the phenolic pKa; and fluorotyrosines (FnYs, n = 2 or 3), dual reporters on local pKas and reduction potentials. These studies have established the existence of a specific pathway spanning 35 Å within a globular α2β2 complex that involves one stable (position 122) and three transient (positions 356, 730, and 731) Y•s. Our results also support that RT occurs by an orthogonal PCET mechanism within β2, with Y122• reduction accompanied by proton transfer from an Fe1-bound water in the diferric cluster and Y356 oxidation coupled to an off-pathway proton transfer likely involving E350. In α2, RT likely occurs by a co-linear PCET mechanism, based on studies of light-initiated radical propagation from photopeptides that mimic the β2 subunit to the intact α2 subunit and on [(2)H]-ENDOR spectroscopic analysis of the hydrogen-bonding environment surrounding a stabilized NH2Y• formed at position 730. Additionally, studies on the thermodynamics of the RT pathway reveal that the relative reduction potentials decrease according to Y122 < Y356 < Y731 ≈ Y730 ≤ C439, and that the pathway in the forward direction is thermodynamically unfavorable. C439 oxidation is likely driven by rapid, irreversible loss of water during the nucleotide reduction process. Kinetic studies of radical intermediates reveal that RT is gated by conformational changes that occur on the order of >100 s(-1) in addition to the changes that are rate-limiting in the wild-type enzyme (∼10 s(-1)). The rate constant of one of the PCET steps is ∼10(5) s(-1), as measured in photoinitiated experiments.
Collapse
Affiliation(s)
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
9
|
Minnihan EC, Ando N, Brignole EJ, Olshansky L, Chittuluru J, Asturias FJ, Drennan CL, Nocera DG, Stubbe J. Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc Natl Acad Sci U S A 2013; 110:3835-40. [PMID: 23431160 PMCID: PMC3593893 DOI: 10.1073/pnas.1220691110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wild-type (wt)-β2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-β2 is 25-fold tighter (Kd = 7 nM) than for wt-α2
Collapse
Affiliation(s)
| | - Nozomi Ando
- Departments of Chemistry and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Edward J. Brignole
- Departments of Chemistry and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | | | | | | | - Catherine L. Drennan
- Departments of Chemistry and
- Biology, and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | | | | |
Collapse
|
10
|
Dassama LMK, Jiang W, Varano PT, Pandelia ME, Conner DA, Xie J, Bollinger JM, Krebs C. Radical-translocation intermediates and hurdling of pathway defects in "super-oxidized" (Mn(IV)/Fe(IV)) Chlamydia trachomatis ribonucleotide reductase. J Am Chem Soc 2012; 134:20498-506. [PMID: 23157728 PMCID: PMC3931446 DOI: 10.1021/ja309468s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A class I ribonucleotide reductase (RNR) uses either a tyrosyl radical (Y(•)) or a Mn(IV)/Fe(III) cluster in its β subunit to oxidize a cysteine residue ∼35 Å away in its α subunit, generating a thiyl radical that abstracts hydrogen (H(•)) from the substrate. With either oxidant, the inter-subunit "hole-transfer" or "radical-translocation" (RT) process is thought to occur by a "hopping" mechanism involving multiple tyrosyl (and perhaps one tryptophanyl) radical intermediates along a specific pathway. The hopping intermediates have never been directly detected in a Mn/Fe-dependent (class Ic) RNR nor in any wild-type (wt) RNR. The Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis RNR assembles via a Mn(IV)/Fe(IV) intermediate. Here we show that this cofactor-assembly intermediate can propagate a hole into the RT pathway when α is present, accumulating radicals with EPR spectra characteristic of Y(•)'s. The dependence of Y(•) accumulation on the presence of substrate suggests that RT within this "super-oxidized" enzyme form is gated by the protein, and the failure of a β variant having the subunit-interfacial pathway Y substituted by phenylalanine to support radical accumulation implies that the Y(•)(s) in the wt enzyme reside(s) within the RT pathway. Remarkably, two variant β proteins having pathway substitutions rendering them inactive in their Mn(IV)/Fe(III) states can generate the pathway Y(•)'s in their Mn(IV)/Fe(IV) states and also effect nucleotide reduction. Thus, the use of the more oxidized cofactor permits the accumulation of hopping intermediates and the "hurdling" of engineered defects in the RT pathway.
Collapse
Affiliation(s)
- Laura M. K. Dassama
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Wei Jiang
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Paul T. Varano
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Maria-Eirini Pandelia
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Denise A. Conner
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Jiajia Xie
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - J. Martin Bollinger
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
11
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
12
|
Biochemical analysis with the expanded genetic lexicon. Anal Bioanal Chem 2012; 403:2089-102. [PMID: 22322380 DOI: 10.1007/s00216-012-5784-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 02/02/2023]
Abstract
The information used to build proteins is stored in the genetic material of every organism. In nature, ribosomes use 20 native amino acids to synthesize proteins in most circumstances. However, laboratory efforts to expand the genetic repertoire of living cells and organisms have successfully encoded more than 80 nonnative amino acids in E. coli, yeast, and other eukaryotic systems. The selectivity, fidelity, and site-specificity provided by the technology have enabled unprecedented flexibility in manipulating protein sequences and functions in cells. Various biophysical probes can be chemically conjugated or directly incorporated at specific residues in proteins, and corresponding analytical techniques can then be used to answer diverse biological questions. This review summarizes the methodology of genetic code expansion and its recent progress, and discusses the applications of commonly used analytical methods.
Collapse
|
13
|
Holder PG, Pizano AA, Anderson BL, Stubbe J, Nocera DG. Deciphering radical transport in the large subunit of class I ribonucleotide reductase. J Am Chem Soc 2012; 134:1172-80. [PMID: 22121977 DOI: 10.1021/ja209016j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incorporation of 2,3,6-trifluorotyrosine (F(3)Y) and a rhenium bipyridine ([Re]) photooxidant into a peptide corresponding to the C-terminus of the β protein (βC19) of Escherichia coli ribonucleotide reductase (RNR) allows for the temporal monitoring of radical transport into the α2 subunit of RNR. Injection of the photogenerated F(3)Y radical from the [Re]-F(3)Y-βC19 peptide into the surface accessible Y731 of the α2 subunit is only possible when the second Y730 is present. With the Y-Y established, radical transport occurs with a rate constant of 3 × 10(5) s(-1). Point mutations that disrupt the Y-Y dyad shut down radical transport. The ability to obviate radical transport by disrupting the hydrogen bonding network of the amino acids composing the colinear proton-coupled electron transfer pathway in α2 suggests a finely tuned evolutionary adaptation of RNR to control the transport of radicals in this enzyme.
Collapse
Affiliation(s)
- Patrick G Holder
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
14
|
Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. Proc Natl Acad Sci U S A 2011; 108:16956-61. [PMID: 21969534 DOI: 10.1073/pnas.1109423108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diheme enzyme MauG catalyzes the posttranslational modification of the precursor protein of methylamine dehydrogenase (preMADH) to complete biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Catalysis proceeds through a high valent bis-Fe(IV) redox state and requires long-range electron transfer (ET), as the distance between the modified residues of preMADH and the nearest heme iron of MauG is 19.4 Å. Trp199 of MauG resides at the MauG-preMADH interface, positioned midway between the residues that are modified and the nearest heme. W199F and W199K mutations did not affect the spectroscopic and redox properties of MauG, or its ability to stabilize the bis-Fe(IV) state. Crystal structures of complexes of W199F/K MauG with preMADH showed no significant perturbation of the MauG-preMADH structure or protein interface. However, neither MauG variant was able to synthesize TTQ from preMADH. In contrast, an ET reaction from diferrous MauG to quinone MADH, which does not require the bis-Fe(IV) intermediate, was minimally affected by the W199F/K mutations. W199F/K MauGs were able to oxidize quinol MADH to form TTQ, the putative final two-electron oxidation of the biosynthetic process, but with k(cat)/K(m) values approximately 10% that of wild-type MauG. The differential effects of the W199F/K mutations on these three different reactions are explained by a critical role for Trp199 in mediating multistep hopping from preMADH to bis-Fe(IV) MauG during the long-range ET that is required for TTQ biosynthesis.
Collapse
|
15
|
Martins BM, Blaser M, Feliks M, Ullmann GM, Buckel W, Selmer T. Structural Basis for a Kolbe-Type Decarboxylation Catalyzed by a Glycyl Radical Enzyme. J Am Chem Soc 2011; 133:14666-74. [DOI: 10.1021/ja203344x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta M. Martins
- Institute für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | - Martin Blaser
- Laboratorium für Mikrobiologie, FB Biologie, Philipps-Universität, D-35032 Marburg, Germany
- Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Mikolaj Feliks
- Structural Biology/Bioinformatics, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - G. Matthias Ullmann
- Structural Biology/Bioinformatics, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, FB Biologie, Philipps-Universität, D-35032 Marburg, Germany
- Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Thorsten Selmer
- Laboratorium für Mikrobiologie, FB Biologie, Philipps-Universität, D-35032 Marburg, Germany
- AG Biotechnologie/Enzymtechnologie, Fachhochschule Aachen-Jülich, D-52428 Jülich, Germany
| |
Collapse
|
16
|
Minnihan EC, Seyedsayamdost MR, Uhlin U, Stubbe J. Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. J Am Chem Soc 2011; 133:9430-40. [PMID: 21612216 PMCID: PMC3125130 DOI: 10.1021/ja201640n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y(122)•→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y• formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y• formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.
Collapse
Affiliation(s)
- Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ulla Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
17
|
Seyedsayamdost MR, Yee CS, Stubbe J. Use of 2,3,5-F(3)Y-β2 and 3-NH(2)Y-α2 to study proton-coupled electron transfer in Escherichia coli ribonucleotide reductase. Biochemistry 2011; 50:1403-11. [PMID: 21182280 PMCID: PMC3076197 DOI: 10.1021/bi101319v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to deoxynucleotides (dNDPs). The active site for NDP reduction resides in α2, and the essential diferric-tyrosyl radical (Y(122)(•)) cofactor that initiates transfer of the radical to the active site cysteine in α2 (C(439)), 35 Å removed, is in β2. The oxidation is proposed to involve a hopping mechanism through aromatic amino acids (Y(122) → W(48) → Y(356) in β2 to Y(731) → Y(730) → C(439) in α2) and reversible proton-coupled electron transfer (PCET). Recently, 2,3,5-F(3)Y (F(3)Y) was site-specifically incorporated in place of Y(356) in β2 and 3-NH(2)Y (NH(2)Y) in place of Y(731) and Y(730) in α2. A pH-rate profile with F(3)Y(356)-β2 suggested that as the pH is elevated, the rate-determining step of RNR can be altered from a conformational change to PCET and that the altered driving force for F(3)Y oxidation, by residues adjacent to it in the pathway, is responsible for this change. Studies with NH(2)Y(731(730))-α2, β2, CDP, and ATP resulted in detection of NH(2)Y radical (NH(2)Y(•)) intermediates capable of dNDP formation. In this study, the reaction of F(3)Y(356)-β2, α2, CDP, and ATP has been examined by stopped-flow (SF) absorption and rapid freeze quench electron paramagnetic resonance spectroscopy and has failed to reveal any radical intermediates. The reaction of F(3)Y(356)-β2, CDP, and ATP has also been examined with NH(2)Y(731)-α2 (or NH(2)Y(730)-α2) by SF kinetics from pH 6.5 to 9.2 and exhibited rate constants for NH(2)Y(•) formation that support a change in the rate-limiting step at elevated pH. The results together with kinetic simulations provide a guide for future studies to detect radical intermediates in the pathway.
Collapse
Affiliation(s)
- Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Cyril S. Yee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|
18
|
Patterson LK, Mazière JC, Bartels DM, Hug GL, Santus R, Morlière P. Evidence for a slow and oxygen-insensitive intra-molecular long range electron transfer from tyrosine residues to the semi-oxidized tryptophan 214 in human serum albumin: its inhibition by bound copper (II). Amino Acids 2010; 42:1269-75. [DOI: 10.1007/s00726-010-0819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/22/2010] [Indexed: 11/29/2022]
|
19
|
Yokoyama K, Uhlin U, Stubbe J. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. J Am Chem Soc 2010; 132:8385-97. [PMID: 20518462 DOI: 10.1021/ja101097p] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E. coli ribonucleotide reductase catalyzes the reduction of nucleoside 5'-diphosphates into 2'-deoxynucleotides and is composed of two subunits: alpha2 and beta2. During turnover, a stable tyrosyl radical (Y*) at Y(122)-beta2 reversibly oxidizes C(439) in the active site of alpha2. This radical propagation step is proposed to occur over 35 A, to use specific redox-active tyrosines (Y(122) and Y(356) in beta2, Y(731) and Y(730) in alpha2), and to involve proton-coupled electron transfer (PCET). 3-Nitrotyrosine (NO(2)Y, pK(a) 7.1) has been incorporated in place of Y(122), Y(731), and Y(730) to probe how the protein environment perturbs each pK(a) in the presence of the second subunit, substrate (S), and allosteric effector (E). The activity of each mutant is <4 x 10(-3) that of the wild-type (wt) subunit. The [NO(2)Y(730)]-alpha2 and [NO(2)Y(731)]-alpha2 each exhibit a pK(a) of 7.8-8.0 with E and E/beta2. The pK(a) of [NO(2)Y(730)]-alpha2 is elevated to 8.2-8.3 in the S/E/beta2 complex, whereas no further perturbation is observed for [NO(2)Y(731)]-alpha2. Mutations in pathway residues adjacent to the NO(2)Y that disrupt H-bonding minimally perturb its pK(a). The pK(a) of NO(2)Y(122)-beta2 alone or with alpha2/S/E is >9.6. X-ray crystal structures have been obtained for all [NO(2)Y]-alpha2 mutants (2.1-3.1 A resolution), which show minimal structural perturbation compared to wt-alpha2. Together with the pK(a) of the previously reported NO(2)Y(356)-beta2 (7.5 in the alpha2/S/E complex; Yee, C. et al. Biochemistry 2003, 42, 14541-14552), these studies provide a picture of the protein environment of the ground state at each Y in the PCET pathway, and are the starting point for understanding differences in PCET mechanisms at each residue in the pathway.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
20
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|