1
|
Rodnin MV, Vasques-Montes V, Kyrychenko A, Oliveira NFB, Kashipathy MM, Battaile KP, Douglas J, Lovell S, Machuqueiro M, Ladokhin AS. Histidine Protonation and Conformational Switching in Diphtheria Toxin Translocation Domain. Toxins (Basel) 2023; 15:410. [PMID: 37505680 PMCID: PMC10467104 DOI: 10.3390/toxins15070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Protonation of key histidine residues has been long implicated in the acid-mediated cellular action of the diphtheria toxin translocation (T-) domain, responsible for the delivery of the catalytic domain into the cell. Here, we use a combination of computational (constant-pH Molecular Dynamics simulations) and experimental (NMR, circular dichroism, and fluorescence spectroscopy along with the X-ray crystallography) approaches to characterize the initial stages of conformational change happening in solution in the wild-type T-domain and in the H223Q/H257Q double mutant. This replacement suppresses the acid-induced transition, resulting in the retention of a more stable protein structure in solutions at pH 5.5 and, consequently, in reduced membrane-disrupting activity. Here, for the first time, we report the pKa values of the histidine residues of the T-domain, measured by NMR-monitored pH titrations. Most peaks in the histidine side chain spectral region are titrated with pKas ranging from 6.2 to 6.8. However, the two most up-field peaks display little change down to pH 6, which is a limiting pH for this protein in solution at concentrations required for NMR. These peaks are absent in the double mutant, suggesting they belong to H223 and H257. The constant-pH simulations indicate that for the T-domain in solution, the pKa values for histidine residues range from 3.0 to 6.5, with those most difficult to protonate being H251 and H257. Taken together, our experimental and computational data demonstrate that previously suggested cooperative protonation of all six histidines in the T-domain does not occur.
Collapse
Affiliation(s)
- Mykola V. Rodnin
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA (A.K.)
| | - Victor Vasques-Montes
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA (A.K.)
| | - Alexander Kyrychenko
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA (A.K.)
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Nuno F. B. Oliveira
- Institute of Biosystems and Integrative Sciences, University of Lisbon, 1749-016 Lisbon, Portugal (M.M.)
| | - Maithri M. Kashipathy
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS 66047, USA (S.L.)
| | | | - Justin Douglas
- COBRE Bio-NMR Laboratory, University of Kansas, Lawrence, KS 66045, USA;
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS 66047, USA (S.L.)
| | - Miguel Machuqueiro
- Institute of Biosystems and Integrative Sciences, University of Lisbon, 1749-016 Lisbon, Portugal (M.M.)
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA (A.K.)
| |
Collapse
|
2
|
Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Commun Biol 2022; 5:375. [PMID: 35440624 PMCID: PMC9018708 DOI: 10.1038/s42003-022-03333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/30/2022] [Indexed: 01/29/2023] Open
Abstract
Diphtheria toxin (DT) is the archetype for bacterial exotoxins implicated in human diseases and has played a central role in defining the field of toxinology since its discovery in 1888. Despite being one of the most extensively characterized bacterial toxins, the origins and evolutionary adaptation of DT to human hosts remain unknown. Here, we determined the first high-resolution structures of DT homologs outside of the Corynebacterium genus. DT homologs from Streptomyces albireticuli (17% identity to DT) and Seinonella peptonophila (20% identity to DT), despite showing no toxicity toward human cells, display significant structural similarities to DT sharing both the overall Y-shaped architecture of DT as well as the individual folds of each domain. Through a systematic investigation of individual domains, we show that the functional determinants of host range extend beyond an inability to bind cellular receptors; major differences in pH-induced pore-formation and cytosolic release further dictate the delivery of toxic catalytic moieties into cells, thus providing multiple mechanisms for a conserved structural fold to adapt to different hosts. Our work provides structural insights into the expanding DT family of toxins, and highlights key transitions required for host adaptation. Toxic proteins are responsible for the disease symptoms accompanying bacterial infections. Sugiman-Marangos et al. report crystal structures of two diphtheria toxin homologs, therefore providing structural insights into this family of toxins and the evolutionary adaptation of these toxins to human hosts.
Collapse
|
3
|
Aminzadeh A, Larsen CE, Boesen T, Jørgensen R. High-resolution structure of native toxin A from Clostridioides difficile. EMBO Rep 2022; 23:e53597. [PMID: 34817920 PMCID: PMC8728606 DOI: 10.15252/embr.202153597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Clostridioides difficile infections have emerged as the leading cause of healthcare-associated infectious diarrhea. Disease symptoms are mainly caused by the virulence factors, TcdA and TcdB, which are large homologous multidomain proteins. Here, we report a 2.8 Å resolution cryo-EM structure of native TcdA, unveiling its conformation at neutral pH. The structure uncovers the dynamic movement of the CROPs domain which is induced in response to environmental acidification. Furthermore, the structure reveals detailed information about the interaction area between the CROPs domain and the tip of the delivery and receptor-binding domain, which likely serves to shield the C-terminal part of the hydrophobic pore-forming region from solvent exposure. Similarly, extensive interactions between the globular subdomain and the N-terminal part of the pore-forming region suggest that the globular subdomain shields the upper part of the pore-forming region from exposure to the surrounding solvent. Hence, the TcdA structure provides insights into the mechanism of preventing premature unfolding of the pore-forming region at neutral pH, as well as the pH-induced inter-domain dynamics.
Collapse
Affiliation(s)
- Aria Aminzadeh
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
| | - Christian Engelbrecht Larsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhusDenmark
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - René Jørgensen
- Department of Bacteria, Parasites and FungiStatens Serum InstitutCopenhagenDenmark
- Department of Science and EnvironmentUniversity of RoskildeRoskildeDenmark
| |
Collapse
|
4
|
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: review and update. J Drug Target 2021; 29:848-862. [PMID: 33615933 DOI: 10.1080/1061186x.2021.1894435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Collapse
Affiliation(s)
- Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Schaub C, Verdi J, Lee P, Terra N, Limon G, Raper J, Thomson R. Cation channel conductance and pH gating of the innate immunity factor APOL1 are governed by pore-lining residues within the C-terminal domain. J Biol Chem 2020; 295:13138-13149. [PMID: 32727852 DOI: 10.1074/jbc.ra120.014201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
The human innate immunity factor apolipoprotein L-I (APOL1) protects against infection by several protozoan parasites, including Trypanosoma brucei brucei Endocytosis and acidification of high-density lipoprotein-associated APOL1 in trypanosome endosomes leads to eventual lysis of the parasite due to increased plasma membrane cation permeability, followed by colloid-osmotic swelling. It was previously shown that recombinant APOL1 inserts into planar lipid bilayers at acidic pH to form pH-gated nonselective cation channels that are opened upon pH neutralization. This corresponds to the pH changes encountered during endocytic recycling, suggesting APOL1 forms a cytotoxic cation channel in the parasite plasma membrane. Currently, the mechanism and domains required for channel formation have yet to be elucidated, although a predicted helix-loop-helix (H-L-H) was suggested to form pores by virtue of its similarity to bacterial pore-forming colicins. Here, we compare recombinant human and baboon APOL1 orthologs, along with interspecies chimeras and individual amino acid substitutions, to identify regions required for channel formation and pH gating in planar lipid bilayers. We found that whereas neutralization of glutamates within the H-L-H may be important for pH-dependent channel formation, there was no evidence of H-L-H involvement in either pH gating or ion selectivity. In contrast, we found two residues in the C-terminal domain, tyrosine 351 and glutamate 355, that influence pH gating properties, as well as a single residue, aspartate 348, that determines both cation selectivity and pH gating. These data point to the predicted transmembrane region closest to the APOL1 C terminus as the pore-lining segment of this novel channel-forming protein.
Collapse
Affiliation(s)
- Charles Schaub
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biochemistry, The Graduate Center, CUNY, New York, USA
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; Program in Biology, The Graduate Center, CUNY, New York, USA; German Cancer Research Center, Heidelberg, Germany
| | - Penny Lee
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Nada Terra
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Gina Limon
- Department of Biological Sciences, Hunter College, CUNY, New York, USA; NYU School of Medicine, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, CUNY, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, CUNY, New York, USA.
| |
Collapse
|
6
|
Pitard I, Malliavin TE. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins (Basel) 2019; 11:toxins11060369. [PMID: 31238550 PMCID: PMC6628625 DOI: 10.3390/toxins11060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the functions and mechanisms of biological systems is an outstanding challenge. One way to overcome it is to combine together several approaches such as molecular modeling and experimental structural biology techniques. Indeed, the interplay between structural and dynamical properties of the system is crucial to unravel the function of molecular machinery’s. In this review, we focus on how molecular simulations along with structural information can aid in interpreting biological data. Here, we examine two different cases: (i) the endosomal translocation toxins (diphtheria, tetanus, botulinum toxins) and (ii) the activation of adenylyl cyclase inside the cytoplasm (edema factor, CyA, ExoY).
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005 Paris, France.
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
| |
Collapse
|
7
|
Chumbler NM, Rutherford SA, Zhang Z, Farrow MA, Lisher JP, Farquhar E, Giedroc DP, Spiller BW, Melnyk RA, Lacy DB. Crystal structure of Clostridium difficile toxin A. Nat Microbiol 2016; 1:15002. [PMID: 27571750 PMCID: PMC4976693 DOI: 10.1038/nmicrobiol.2015.2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Nicole M. Chumbler
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Stacey A. Rutherford
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Zhifen Zhang
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - Melissa A. Farrow
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - John P. Lisher
- Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Erik Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Building 725, Brookhaven National Laboratory, New York 11973, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Benjamin W. Spiller
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Roman A. Melnyk
- Department of Biochemistry, University of Toronto and the Molecular Structure & Function Research Institute at The Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | - D. Borden Lacy
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37205, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| |
Collapse
|
8
|
Topography of the TH5 Segment in the Diphtheria Toxin T-Domain Channel. J Membr Biol 2015; 249:181-96. [PMID: 26645703 DOI: 10.1007/s00232-015-9859-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
The translocation domain (T-domain) of diphtheria toxin contains 10 α helices in the aqueous crystal structure. Upon exposure to a planar lipid bilayer under acidic conditions, it inserts to form a channel and transport the attached amino-terminal catalytic domain across the membrane. The TH5, TH8, and TH9 helices form transmembrane segments in the open-channel state, with TH1-TH4 translocated across the membrane. The TH6-TH7 segment also inserts to form a constriction that occupies only a small portion of the total channel length. Here, we have examined the TH5 segment in more detail, using the substituted-cysteine accessibility method. We constructed a series of 23 mutant T-domains with single cysteine residues at positions in and near TH5, monitored their channel formation in planar lipid bilayers, and probed for an effect of thiol-specific reagents added to the solutions on either side of the membrane. For 15 of the mutants, the reagent caused a decrease in single-channel conductance, indicating that the introduced cysteine residue was exposed within the channel lumen. We also found that reaction caused large changes in ionic selectivity for some mutant channels. We determined whether reaction occurred in the open state or in the brief flicker-closed state of the channel. Finally, we compared the reaction rates from either side of the membrane. Our experiments are consistent with the hypotheses that the TH5 helix has a transmembrane orientation and remains helical in the open-channel state; they also indicate that the middle of the helix is aligned with the constriction in the channel.
Collapse
|
9
|
Lin Q, Wang T, Li H, London E. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size. J Membr Biol 2015; 248:517-27. [PMID: 25850715 DOI: 10.1007/s00232-015-9798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
Abstract
Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30-50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.
Collapse
Affiliation(s)
- Qingqing Lin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | | | | | |
Collapse
|
10
|
Kienker PK, Wu Z, Finkelstein A. Mapping the membrane topography of the TH6-TH7 segment of the diphtheria toxin T-domain channel. ACTA ACUST UNITED AC 2015; 145:107-25. [PMID: 25582482 PMCID: PMC4306713 DOI: 10.1085/jgp.201411326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine substitution accessibility analysis suggests that the TH6–TH7 segment forms a constriction in the diphtheria toxin T-domain channel. Low pH triggers the translocation domain of diphtheria toxin (T-domain), which contains 10 α helices, to insert into a planar lipid bilayer membrane, form a transmembrane channel, and translocate the attached catalytic domain across the membrane. Three T-domain helices, corresponding to TH5, TH8, and TH9 in the aqueous crystal structure, form transmembrane segments in the open-channel state; the amino-terminal region, TH1–TH4, translocates across the membrane to the trans side. Residues near either end of the TH6–TH7 segment are not translocated, remaining on the cis side of the membrane; because the intervening 25-residue sequence is too short to form a transmembrane α-helical hairpin, it was concluded that the TH6–TH7 segment resides at the cis interface. Now we have examined this segment further, using the substituted-cysteine accessibility method. We constructed a series of 18 mutant T-domains with single cysteine residues at positions in TH6–TH7, monitored their channel formation in planar lipid bilayers, and probed for an effect of thiol-specific reagents on the channel conductance. For 10 of the mutants, the reagent caused a change in the single-channel conductance, indicating that the introduced cysteine residue was exposed within the channel lumen. For several of these mutants, we verified that the reactions occurred primarily in the open state, rather than in the flicker-closed state. We also established that blocking of the channel by an amino-terminal hexahistidine tag could protect mutants from reaction. Finally, we compared the reaction rates of reagent added to the cis and trans sides to quantify the residue’s accessibility from either side. This analysis revealed abrupt changes in cis- versus trans-side accessibility, suggesting that the TH6–TH7 segment forms a constriction that occupies a small portion of the total channel length. We also determined that this constriction is located near the middle of the TH8 helix.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Zhengyan Wu
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alan Finkelstein
- Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461 Department of Physiology and Biophysics, and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
11
|
Vargas-Uribe M, Rodnin MV, Öjemalm K, Holgado A, Kyrychenko A, Nilsson I, Posokhov YO, Makhatadze G, von Heijne G, Ladokhin AS. Thermodynamics of Membrane Insertion and Refolding of the Diphtheria Toxin T-Domain. J Membr Biol 2014; 248:383-94. [PMID: 25281329 DOI: 10.1007/s00232-014-9734-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
Abstract
The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism, and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3-5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately -8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between -9.5 and -12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain.
Collapse
Affiliation(s)
- Mauricio Vargas-Uribe
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Leka O, Vallese F, Pirazzini M, Berto P, Montecucco C, Zanotti G. Diphtheria toxin conformational switching at acidic pH. FEBS J 2014; 281:2115-22. [DOI: 10.1111/febs.12783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Oneda Leka
- Department of Biomedical Sciences; University of Padua; Italy
| | | | - Marco Pirazzini
- Department of Biomedical Sciences; University of Padua; Italy
| | - Paola Berto
- Department of Biomedical Sciences; University of Padua; Italy
| | | | | |
Collapse
|
14
|
Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore. Proc Natl Acad Sci U S A 2014; 111:3721-6. [PMID: 24567384 DOI: 10.1073/pnas.1400680111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease associated with Clostridium difficile infection is caused by the actions of the homologous toxins TcdA and TcdB on colonic epithelial cells. Binding to target cells triggers toxin internalization into acidified vesicles, whereupon cryptic segments from within the 1,050-aa translocation domain unfurl and insert into the bounding membrane, creating a transmembrane passageway to the cytosol. Our current understanding of the mechanisms underlying pore formation and the subsequent translocation of the upstream cytotoxic domain to the cytosol is limited by the lack of information available regarding the identity and architecture of the transmembrane pore. Here, through systematic perturbation of conserved sites within predicted membrane-insertion elements of the translocation domain, we uncovered highly sensitive residues--clustered between amino acids 1,035 and 1,107--that when individually mutated, reduced cellular toxicity by as much as >1,000-fold. We demonstrate that defective variants are defined by impaired pore formation in planar lipid bilayers and biological membranes, resulting in an inability to intoxicate cells through either apoptotic or necrotic pathways. These findings along with the unexpected similarities uncovered between the pore-forming "hotspots" of TcdB and the well-characterized α-helical diphtheria toxin translocation domain provide insights into the structure and mechanism of formation of the translocation pore for this important class of pathogenic toxins.
Collapse
|
15
|
Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2013; 21:196-205. [PMID: 24162660 DOI: 10.1038/cdd.2013.139] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different 'modes' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.
Collapse
|
16
|
Dias AADSDO, Santos LS, Sabbadini PS, Santos CS, Silva Junior FC, Napoleão F, Nagao PE, Villas-Bôas MHS, Hirata Junior R, Guaraldi ALM. Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publica 2012; 45:1176-91. [PMID: 22124745 DOI: 10.1590/s0034-89102011000600021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/27/2011] [Indexed: 11/21/2022] Open
Abstract
The article is a literature review on the emergence of human infections caused by Corynebacterium ulcerans in many countries including Brazil. Articles in Medline/PubMed and SciELO databases published between 1926 and 2011 were reviewed, as well as articles and reports of the Brazilian Ministry of Health. It is presented a fast, cost-effective and easy to perform screening test for the presumptive diagnosis of C. ulcerans and C. diphtheriae infections in most Brazilian public and private laboratories. C. ulcerans spread in many countries and recent isolation of this pathogen in Rio de Janeiro, southeastern Brazil, is a warning to clinicians, veterinarians, and microbiologists on the occurrence of zoonotic diphtheria and C. ulcerans dissemination in urban and rural areas of Brazil and/or Latin America.
Collapse
|