1
|
Li X, Sun X. 1,3-Proton Transfer of Pyridoxal 5'-Phosphate Schiff Base in the Branched-Chain Aminotransferase: Concerted or Stepwise Mechanism? J Phys Chem B 2024; 128:77-85. [PMID: 38131279 DOI: 10.1021/acs.jpcb.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) is a pyridoxal 5'-phosphate (PLP) dependent enzyme, and it is essential for the synthesis of the branched-chain amino acids. Ketimine is an important intermediate in the catalytic process. We have investigated the mechanism of ketimine formation and the energy landscape using the multiple computational methods. It is found that the 1,3-proton transfer involved in ketimine formation occurs through a stepwise process rather than a one-step process. Lys204 is identified as a key residue for ligand binding and as a base that abstracts the Cα proton from the PLP-Glu Schiff base, yielding a carbanionic intermediate. The first proton transfer is the rate-limiting step with an energy barrier of 17.8 kcal mol-1. Our study disclosed the detailed pathway of the proton transfer from external aldimine to ketimine, providing novel insights into the catalytic mechanism of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Changchun Normal University, Changchun 130023, People's Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
2
|
Rastogi S, Chandra A. Free Energy Landscapes of the Tautomeric Interconversion of Pyridoxal 5'-Phosphate Aldimines at the Active Site of Ornithine Decarboxylase in Aqueous Media. J Phys Chem B 2023; 127:8139-8149. [PMID: 37721415 DOI: 10.1021/acs.jpcb.3c04142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The pyridoxal 5'-phosphate (PLP) acts as a coenzyme for a large number of biochemical reactions. It exists in mainly two bound forms at the active site of the concerned enzyme: the internal aldimine, in which the PLP is bound with the ϵ-amino group of lysine at the active site, and the external aldimine, where the PLP is bound to the substrate amino acid. Both the internal and external aldimines have Schiff base linkage (N-H-O) and can exist in two tautomeric structures of ketoenamine and enolimine forms. In this work, we have investigated the free energy landscape for the tautomeric proton transfer in the internal and external aldimines at the active site of the ornithine decarboxylase enzyme in an aqueous medium. We performed hybrid quantum-classical metadynamics and force field-based molecular dynamics simulations, which revealed that the ketoenamine tautomer is more stable than the enolimine form. The QM/MM metadynamics calculations show that the free energy difference between the ketoenamine and enolimine forms for the internal aldimine is 3.9 kcal/mol, and it is found to be 5.8 kcal/mol for the external aldimine, with the ketoenamine form being more stable in both cases. The results are further supported by calculations of the binding free energies from classical simulations and static quantum chemical calculations in different environments. We have also analyzed the configurational structure of the microenvironment at the active site in order to have better insights into the interactions of the active site residues with the PLP in its two tautomeric forms.
Collapse
Affiliation(s)
- Shreya Rastogi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Chen X, Ferchaud N, Briozzo P, Machover D, Simonson T. PLP-Dependent Enzyme Methionine γ-Lyase: Insights into the Michaelis Complex from Molecular Dynamics and Free Energy Simulations. Biochemistry 2023; 62:2791-2801. [PMID: 37668546 DOI: 10.1021/acs.biochem.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Methionine γ-lyase (MGL) breaks down methionine, with the help of its cofactor pyridoxal-5'-phosphate (PLP), or vitamin B6. Methionine depletion is damaging for cancer cells but not normal cells, so MGL is of interest as a therapeutic protein. To increase our understanding and help engineer improved activity, we focused on the reactive, Michaelis complex M between MGL, covalently bound PLP, and substrate Met. M is not amenable to crystallography, as it proceeds to products. Experimental activity measurements helped exclude a mechanism that would bypass M . We then used molecular dynamics and alchemical free energy simulations to elucidate its structure and dynamics. We showed that the PLP phosphate has a pKa strongly downshifted by the protein, whether Met is present or not. Met binding affects the structure surrounding the reactive atoms. With Met, the Schiff base linkage between PLP and a nearby lysine shifts from a zwitterionic, keto form to a neutral, enol form that makes it easier for Met to approach its labile, target atom. The Met ligand also stabilizes the correct orientation of the Schiff base, more strongly than in simulations without Met, and in agreement with structures in the Protein Data Bank, where the Schiff base orientation correlates with the presence or absence of a co-bound anion or substrate analogue in the active site. Overall, the Met ligand helps organize the active site for the enzyme reaction by reducing fluctuations and shifting protonation states and conformational populations.
Collapse
Affiliation(s)
- Xingyu Chen
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau 91128, France
| | - Nathan Ferchaud
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Versailles 78026, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Versailles 78026, France
| | - David Machover
- INSERM U935-UA09, University Paris-Saclay, Hôpital Paul-Brousse, 12, Avenue Paul Vaillant-Couturier, 94800 Villejuif, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau 91128, France
| |
Collapse
|
4
|
Han SW, Shin JS. Aromatic L-amino acid decarboxylases: mechanistic features and microbial applications. Appl Microbiol Biotechnol 2022; 106:4445-4458. [DOI: 10.1007/s00253-022-12028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
|
5
|
Chen X, Briozzo P, Machover D, Simonson T. A Computational Model for the PLP-Dependent Enzyme Methionine γ-Lyase. Front Mol Biosci 2022; 9:886358. [PMID: 35558556 PMCID: PMC9087591 DOI: 10.3389/fmolb.2022.886358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal-5′-phosphate (PLP) is a cofactor in the reactions of over 160 enzymes, several of which are implicated in diseases. Methionine γ-lyase (MGL) is of interest as a therapeutic protein for cancer treatment. It binds PLP covalently through a Schiff base linkage and digests methionine, whose depletion is damaging for cancer cells but not normal cells. To improve MGL activity, it is important to understand and engineer its PLP binding. We develop a simulation model for MGL, starting with force field parameters for PLP in four main states: two phosphate protonation states and two tautomeric states, keto or enol for the Schiff base moiety. We used the force field to simulate MGL complexes with each form, and showed that those with a fully-deprotonated PLP phosphate, especially keto, led to the best agreement with MGL structures in the PDB. We then confirmed this result through alchemical free energy simulations that compared the keto and enol forms, confirming a moderate keto preference, and the fully-deprotonated and singly-protonated phosphate forms. Extensive simulations were needed to adequately sample conformational space, and care was needed to extrapolate the protonation free energy to the thermodynamic limit of a macroscopic, dilute protein solution. The computed phosphate pKa was 5.7, confirming that the deprotonated, −2 form is predominant. The PLP force field and the simulation methods can be applied to all PLP enzymes and used, as here, to reveal fine details of structure and dynamics in the active site.
Collapse
Affiliation(s)
- Xingyu Chen
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Pierre Briozzo
- Institut Jean-Pierre Bourgin, INRAE-AgroParisTech, University Paris-Saclay, Paris, France
| | - David Machover
- INSERM U935-UA09, University Paris-Saclay, Hôpital Paul-Brousse, Paris, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
- *Correspondence: Thomas Simonson,
| |
Collapse
|
6
|
Nakamura R, Ogawa S, Takahashi Y, Fujishiro T. Cycloserine enantiomers inhibit PLP‐dependent cysteine desulfurase SufS via distinct mechanisms. FEBS J 2022; 289:5947-5970. [DOI: 10.1111/febs.16455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Ryosuke Nakamura
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Yasuhiro Takahashi
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology Graduate School of Science and Engineering Saitama University Japan
| |
Collapse
|
7
|
Shi Y, Xing J, Li J, Zhu F, Fan X, Zhang Y. The alcohol catalytic mechanism for Schiff base 1,3-proton transfer. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Characterization of a Novel Shewanella algae Arginine Decarboxylase Expressed in Escherichia coli. Mol Biotechnol 2021; 64:57-65. [PMID: 34532832 DOI: 10.1007/s12033-021-00397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Arginine decarboxylase (ADC) catalyzes the decarboxylation of arginine to form agmatine, an important physiological and pharmacological amine, and attracts attention to the enzymatic production of agmatine. In this study, we for the first time overexpressed and characterized the marine Shewanella algae ADC (SaADC) in Escherichia coli. The recombinant SaADC showed the maximum activity at pH 7.5 and 40 °C. The SaADC displayed previously unreported substrate inhibition when the substrate concentration was higher than 50 mM, which was the upper limit of testing condition in other reports. In the range of 1-80 mM L-arginine, the SaADC showed the Km, kcat, Ki, and kcat/Km values of 72.99 ± 6.45 mM, 42.88 ± 2.63 s-1, 20.56 ± 2.18 mM, and 0.59 s/mM, respectively, which were much higher than the Km (14.55 ± 1.45 mM) and kcat (12.62 ± 0.68 s-1) value obtained by assaying at 1-50 mM L-arginine without considering substrate inhibition. Both the kcat values of SaADC with and without substrate inhibition are the highest ones to the best of our knowledge. This provides a reference for the study of substrate inhibition of ADCs.
Collapse
|
9
|
Saha M, Hossain MS, Bandyopadhyay S. A Photoregulated Racemase Mimic. Angew Chem Int Ed Engl 2021; 60:5220-5224. [PMID: 33180335 DOI: 10.1002/anie.202012124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The racemase enzymes convert L-amino acids to their D-isomer. The reaction proceeds through a stepwise deprotonation-reprotonation mechanism that is assisted by a pyridoxal phosphate (PLP) coenzyme. This work reports a PLP-photoswitch-imidazole triad where the racemization reaction can be controlled by light by tweaking the distance between the basic residue and the reaction centre.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
10
|
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
11
|
Dutta Banik S, Bankura A, Chandra A. A QM/MM simulation study of transamination reaction at the active site of aspartate aminotransferase: Free energy landscape and proton transfer pathways. J Comput Chem 2020; 41:2684-2694. [PMID: 32932551 DOI: 10.1002/jcc.26422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 11/10/2022]
Abstract
Transaminase is a key enzyme for amino acid metabolism, which reversibly catalyzes the transamination reaction with the help of PLP (pyridoxal 5' -phosphate) as its cofactor. Here we have investigated the mechanism and free energy landscape of the transamination reaction involving the aspartate transaminase (AspTase) enzyme and aspartate-PLP (Asp-PLP) complex using QM/MM simulation and metadynamics methods. The reaction is found to follow a stepwise mechanism where the active site residue Lys258 acts as a base to shuttle a proton from α-carbon (CA) to imine carbon (C4A) of the PLP-Asp Schiff base. In the first step, the Lys258 abstracts the CA proton of the substrate leading to the formation of a carbanionic intermediate which is followed by the reprotonation of the Asp-PLP Schiff base at C4A atom by Lys258. It is found that the free energy barrier for the proton abstraction by Lys258 and that for the reprotonation are 17.85 and 3.57 kcal/mol, respectively. The carbanionic intermediate is 7.14 kcal/mol higher in energy than the reactant. Hence, the first step acts as the rate limiting step. The present calculations also show that the Lys258 residue undergoes a conformational change after the first step of transamination reaction and becomes proximal to C4A atom of the Asp-PLP Schiff base to favor the second step. The active site residues Tyr70* and Gly38 anchor the Lys258 in proper position and orientation during the first step of the reaction and stabilize the positive charge over Lys258 generated at the intermediate step.
Collapse
Affiliation(s)
- Sindrila Dutta Banik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Arindam Bankura
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
12
|
Boodram S, Roy S, Singh N, Fairman RA, Peter SC, Rambaran VH. Investigations into an Intramolecular Proton Transfer and Solvent Dependent Acid‐Base Equilibria in 2,6‐Pyridine Diacetic Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201900331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shivani Boodram
- Department of Biomedical EngineeringThe University of Trinidad and Tobago, Lots 74–98 O'Meara Industrial Estate, Arima Trinidad and Tobago
| | - Soumyabrata Roy
- New Chemistry UnitJawaharlal Nehru Center for Advanced Scientific Research, Jakkur Bangalore, India
| | - Nadia Singh
- Department of ChemistryThe University of The West Indies, St. Augustine Campus, St. Augustine Trinidad and Tobago
| | - Richard A. Fairman
- Department of ChemistryThe University of The West Indies, St. Augustine Campus, St. Augustine Trinidad and Tobago
| | - Sebastian C. Peter
- New Chemistry UnitJawaharlal Nehru Center for Advanced Scientific Research, Jakkur Bangalore, India
| | - Varma H. Rambaran
- Department of Biomedical EngineeringThe University of Trinidad and Tobago, Lots 74–98 O'Meara Industrial Estate, Arima Trinidad and Tobago
| |
Collapse
|
13
|
Santatiwongchai J, Gleeson D, Gleeson MP. Theoretical Evaluation of the Reaction Mechanism of Serine Hydroxymethyltransferase. J Phys Chem B 2019; 123:407-418. [PMID: 30522268 DOI: 10.1021/acs.jpcb.8b10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cβ bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.
Collapse
Affiliation(s)
- Jirapat Santatiwongchai
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
| | - Duangkamol Gleeson
- Department of Chemistry, Faculty of Science , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand.,Department of Biomedical Engineering, Faculty of Engineering , King Mongkut's Institute of Technology Ladkrabang , Bangkok 10520 , Thailand
| |
Collapse
|
14
|
Soniya K, Chandra A. Free energy landscapes of prototropic tautomerism in pyridoxal 5′-phosphate schiff bases at the active site of an enzyme in aqueous medium. J Comput Chem 2018; 39:1629-1638. [DOI: 10.1002/jcc.25338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Kumari Soniya
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| | - Amalendu Chandra
- Department of Chemistry; Indian Institute of Technology; Kanpur 208016 India
| |
Collapse
|
15
|
Makins C, Whitelaw DA, McGregor M, Petit A, Mothersole RG, Prosser KE, Wolthers KR. Optimal electrostatic interactions between substrate and protein are essential for radical chemistry in ornithine 4,5-aminomutase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1077-1084. [DOI: 10.1016/j.bbapap.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022]
|
16
|
Beyramabadi SA, Morsali A, Pordel M, Chegini H, Khashi M, Ahmadi I, Poorzaki M. Tautomerization of pyrido[2′,1′:2,3]imidazo[4,5-B]quinoline-12-ylcyanide: A DFT study. J STRUCT CHEM+ 2015. [DOI: 10.1134/s0022476615070045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Asatkar AK, Panda S, Zade SS. Thiophene-based salen-type new ligands, their structural aspects and a dimeric Cu(II) complex. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Cristóvão B, Miroslaw B. Tautomerism of a compartmental Schiff base ligand and characterization of a new heterometallic CuII–DyIII complex — Synthesis, structure and magnetic properties. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Pierdominici-Sottile G, Cossio Pérez R, Galindo JF, Palma J. QM/MM molecular dynamics study of the galactopyranose → galactofuranose reaction catalysed by Trypanosoma cruzi UDP-galactopyranose mutase. PLoS One 2014; 9:e109559. [PMID: 25299056 PMCID: PMC4192007 DOI: 10.1371/journal.pone.0109559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/25/2014] [Indexed: 12/18/2022] Open
Abstract
The enzyme UDP-Galactopyranose Mutase (UGM) catalyses the conversion of galactopyranose into galactofuranose. It is known to be critical for the survival and proliferation of several pathogenic agents, both prokaryotic and eukaryotic. Among them is Trypanosoma cruzi, the parasite responsible for Chagas' disease. Since the enzyme is not present in mammals, it appears as a promising target for the design of drugs to treat this illness. A precise knowledge of the mechanism of the catalysed reaction would be crucial to assist in such design. In this article we present a detailed study of all the putative steps of the mechanism. The study is based on QM/MM free energy calculations along properly selected reaction coordinates, and on the analysis of the main structural changes and interactions taking place at every step. The results are discussed in connection with the experimental evidence and previous theoretical studies.
Collapse
Affiliation(s)
| | - Rodrigo Cossio Pérez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Johan F. Galindo
- Quantum and Computational Chemistry Group, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
20
|
Dutta Banik S, Chandra A. A Hybrid QM/MM Simulation Study of Intramolecular Proton Transfer in the Pyridoxal 5′-Phosphate in the Active Site of Transaminase: Influence of Active Site Interaction on Proton Transfer. J Phys Chem B 2014; 118:11077-89. [DOI: 10.1021/jp506196m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology, Kanpur, India 208016
| |
Collapse
|
21
|
Pang J, Scrutton NS, Sutcliffe MJ. Quantum Mechanics/Molecular Mechanics Studies on the Mechanism of Action of Cofactor Pyridoxal 5′-Phosphate in Ornithine 4,5-Aminomutase. Chemistry 2014; 20:11390-401. [DOI: 10.1002/chem.201402759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Indexed: 02/02/2023]
|
22
|
Ortegón-Reyna D, Garcías-Morales C, Padilla-Martínez I, García-Báez E, Aríza-Castolo A, Peraza-Campos A, Martínez-Martínez F. NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds. Molecules 2013; 19:459-81. [PMID: 24384925 PMCID: PMC6271073 DOI: 10.3390/molecules19010459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 11/16/2022] Open
Abstract
An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.
Collapse
Affiliation(s)
- David Ortegón-Reyna
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Cesar Garcías-Morales
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Itzia Padilla-Martínez
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Efren García-Báez
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Armando Aríza-Castolo
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Ana Peraza-Campos
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| | - Francisco Martínez-Martínez
- Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico.
| |
Collapse
|
23
|
Chan-Huot M, Dos A, Zander R, Sharif S, Tolstoy PM, Compton S, Fogle E, Toney MD, Shenderovich I, Denisov GS, Limbach HH. NMR Studies of Protonation and Hydrogen Bond States of Internal Aldimines of Pyridoxal 5′-Phosphate Acid–Base in Alanine Racemase, Aspartate Aminotransferase, and Poly-l-lysine. J Am Chem Soc 2013; 135:18160-75. [DOI: 10.1021/ja408988z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Monique Chan-Huot
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Ecole Normale Supérieure, Laboratoire des BioMolécules, 24 rue Lhomond, 75231 Cedex 05, Paris, France
| | - Alexandra Dos
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Reinhard Zander
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Shasad Sharif
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Peter M. Tolstoy
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Department
of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russian Federation
| | - Shara Compton
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Chemistry, Widener University, One University Place, Chester, Pennsylvania 19013, United States
| | - Emily Fogle
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Chemistry & Biochemistry, CalPoly, San Luis Obispo, California 93407, United States
| | - Michael D. Toney
- Department
of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Ilya Shenderovich
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- University of Regensburg, Universitätsstr.
31, 93040 Regensburg, Germany
| | - Gleb S. Denisov
- Institute
of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Hans-Heinrich Limbach
- Institut
für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
24
|
Pierdominici-Sottile G, Palma J, Roitberg AE. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins 2013; 82:424-35. [PMID: 23999862 DOI: 10.1002/prot.24408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Abstract
Trypanosoma rangeli's sialidase (TrSA) and Trypanosoma cruzi's trans-sialidase (TcTS) are members of the glycoside hydrolase family 33 (GH-33). They share 70% of sequence identity and their crystallographic Cα RMSD is 0.59 Å. Despite these similarities they catalyze different reactions. TcTS transfers sialic acid between glycoconjugates while TrSA can only cleave sialic acid from sialyl-glyconjugates. Significant effort has been invested into unraveling the differences between TrSA and TcTS, and into conferring TrSA with trans-sialidase activity through appropriate point mutations. Recently, we calculated the free-energy change for the formation of the covalent intermediate (CI) in TcTS and performed an energy decomposition analysis of that process. In this article we present a similar study for the formation of the CI in TrSA, as well as in a quintuple mutant (TrSA5mut), which has faint trans-sialidase activity. The comparison of these new results with those previously obtained for TcTS allowed identifying five extra mutations to be introduced in TrSA5mut that should create a mutant (TrSA10mut ) with high trans-sialidase activity.
Collapse
Affiliation(s)
- Gustavo Pierdominici-Sottile
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Saenz Peña 352, Bernal, B1876BXD, Argentina
| | | | | |
Collapse
|
25
|
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One 2013; 8:e71741. [PMID: 23940784 PMCID: PMC3734303 DOI: 10.1371/journal.pone.0071741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.
Collapse
|
26
|
Singla N, Chowdhury P. Density functional investigation of photo induced Intramolecular Proton Transfer (IPT) in Indole-7-carboxaldehyde and its experimental verification. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
De Biase D, Pennacchietti E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 2012; 86:770-86. [PMID: 22995042 DOI: 10.1111/mmi.12020] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
For successful colonization of the mammalian host, orally acquired bacteria must overcome the extreme acidic stress (pH < 2.5) encountered during transit through the host stomach. The glutamate-dependent acid resistance (GDAR) system is by far the most potent acid resistance system in commensal and pathogenic Escherichia coli, Shigella flexneri, Listeria monocytogenes and Lactococcus lactis. GDAR requires the activity of glutamate decarboxylase (GadB), an intracellular PLP-dependent enzyme which performs a proton-consuming decarboxylation reaction, and of the cognate antiporter (GadC), which performs the glutamatein /γ-aminobutyrateout (GABA) electrogenic antiport. Herein we review recent findings on the structural determinants responsible for pH-dependent intracellular activation of E. coli GadB and GadC. A survey of genomes of bacteria (pathogenic and non-pathogenic), having in common the ability to colonize or to transit through the host gut, shows that the gadB and gadC genes frequently lie next or near each other. This gene arrangement is likely to be important to ensure timely co-regulation of the decarboxylase and the antiporter. Besides the involvement in acid resistance, GABA production and release were found to occur at very high levels in lactic acid bacteria originally isolated from traditionally fermented foods, supporting the evidence that GABA-enriched foods possess health-promoting properties.
Collapse
Affiliation(s)
- Daniela De Biase
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, 04100, Latina, Italy.
| | | |
Collapse
|
28
|
Martyniak A, Panek J, Jezierska-Mazzarello A, Filarowski A. Triple hydrogen bonding in a circular arrangement: ab initio, DFT and first-principles MD studies of tris-hydroxyaryl enamines. J Comput Aided Mol Des 2012; 26:1045-53. [PMID: 22955961 PMCID: PMC3474916 DOI: 10.1007/s10822-012-9597-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/29/2012] [Indexed: 11/17/2022]
Abstract
First-principles Car-Parrinello molecular dynamics, ab initio (MP2) and density functional schemes have been used to explore the tautomeric equilibrium in three tris(amino(R)methylidene)cyclohexane-1,3,5-triones (R = hydrogen, methyl or phenyl group). The dynamic nature of the cyclic hydrogen bonding has been studied by the first-principles MD method. The comparison of the results obtained by aforesaid methods has been accomplished on the basis of calculations of structural and spectroscopic characteristics of the compounds. The conformational analysis of the studied compounds has been carried out at the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) levels of theory. The influence of steric and electronic effects on the cyclic hydrogen bonding has been analysed. The extent of the proton delocalization has been modified by the substituents according to the sequence: hydrogen < phenyl < methyl. This fact is verified by the spectroscopic and structural data as well as the energy potential curve. A prevalence of the keto-enamine tautomeric form has been observed in the static ab initio and DFT models, and confirmed by the first-principles MD.
Collapse
Affiliation(s)
- Agata Martyniak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| | - Jarosław Panek
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| | | | - Aleksander Filarowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland
| |
Collapse
|
29
|
Rubčić M, Užarević K, Halasz I, Bregović N, Mališ M, Dilović I, Kokan Z, Stein RS, Dinnebier RE, Tomišić V. Desmotropy, polymorphism, and solid-state proton transfer: four solid forms of an aromatic o-hydroxy Schiff base. Chemistry 2012; 18:5620-31. [PMID: 22447516 DOI: 10.1002/chem.201103508] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Indexed: 11/06/2022]
Abstract
The Schiff base derived from salicylaldehyde and 2-amino-3-hydroxypyridine affords a diversity of solid forms, two polymorphic pairs of the enol-imino (D1 a and D1 b) and keto-amino (D2 a and D2 b) desmotropes. The isolated phases, identified by IR spectroscopy, X-ray crystallography, and (13)C cross-polarization/magnetic angle spinning (CP/MAS) NMR spectroscopy, display essentially planar molecular conformations characterized by strong intramolecular hydrogen bonds of the O-H⋅⋅⋅N (D1) or N-H⋅⋅⋅O (D2) type. A change in the position of the proton within this O⋅⋅⋅H⋅⋅⋅N system is accompanied by substantially different molecular conformations and, subsequently, by divergent supramolecular architectures. The appearance and interconversion conditions for each of the four phases have been established on the basis of a number of solution and solvent-free experiments, and evaluated against the results of computational studies. Solid phases readily convert into the most stable form (D1 a) upon exposure to methanol vapor, heating, or by mechanical treatment, and these transformations are accompanied by a change in the color of the sample. The course of thermally induced transformations has been monitored in detail by means of temperature-resolved powder X-ray diffraction and infrared spectroscopy. Upon dissolution, all forms equilibrate immediately, as confirmed by NMR and UV/Vis spectroscopy in several solvents, with the equilibrium shifted far towards the enol tautomer. This study reveals the significance of peripheral groups in the stabilization of metastable tautomers in the solid state.
Collapse
Affiliation(s)
- Mirta Rubčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Makins C, Miros FN, Scrutton NS, Wolthers KR. Role of histidine 225 in adenosylcobalamin-dependent ornithine 4,5-aminomutase. Bioorg Chem 2012; 40:39-47. [DOI: 10.1016/j.bioorg.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/01/2022]
|
31
|
Abstract
We describe a computational approach, incorporating quantum mechanics into enzyme kinetics modeling with a special emphasis on computation of kinetic isotope effects. Two aspects are highlighted: (1) the potential energy surface is represented by a combined quantum mechanical and molecular mechanical (QM/MM) potential in which the bond forming and breaking processes are modeled by electronic structure theory, and (2) a free energy perturbation method in path integral simulation is used to determine both kinetic isotope effects (KIEs). In this approach, which is called the PI-FEP/UM method, a light (heavy) isotope is mutated into a heavy (light) counterpart in centroid path integral simulations. The method is illustrated in the study of primary and secondary KIEs in two enzyme systems. In the case of nitroalkane oxidase, the enzymatic reaction exhibits enhanced quantum tunneling over that of the uncatalyzed process in water. In the dopa delarboxylase reaction, there appears to be distinguishable primary carbon-13 and secondary deuterium KIEs when the internal proton tautomerism is in the N-protonated or in the O-protonated positions. These examples show that the incorporation of quantum mechanical effects in enzyme kinetics modeling offers an opportunity to accurately and reliably model the mechanisms and free energies of enzymatic reactions.
Collapse
|
32
|
Limbach HH, Chan-Huot M, Sharif S, Tolstoy PM, Shenderovich IG, Denisov GS, Toney MD. Critical hydrogen bonds and protonation states of pyridoxal 5'-phosphate revealed by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1426-37. [PMID: 21703367 DOI: 10.1016/j.bbapap.2011.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 12/01/2022]
Abstract
In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Hans-Heinrich Limbach
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraβe 3, D-14195, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lin YL, Gao J, Rubinstein A, Major DT. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5'-phosphate dependent enzymes L-dopa decarboxylase and alanine racemase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1438-46. [PMID: 21600315 DOI: 10.1016/j.bbapap.2011.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Molecular dynamics simulations using a combined quantum mechanical and molecular mechanical (QM/MM) potential have been carried out to investigate the internal proton transfer equilibrium of the external aldimine species in l-dopa decarboxylase, and carbanion stabilization by the enzyme cofactor in the active site of alanine racemase. Solvent effects lower the free energy of the O-protonated PLP tautomer both in aqueous solution and in the active site, resulting a free energy difference of about -1 kcal/mol relative to the N-protonated Schiff base in the enzyme. The external aldimine provides the dominant contribution to lowering the free energy barrier for the spontaneous decarboxylation of l-dopa in water, by a remarkable 16 kcal/mol, while the enzyme l-dopa decarboxylase further lowers the barrier by 8 kcal/mol. Kinetic isotope effects were also determined using a path integral free energy perturbation theory on the primary (13)C and the secondary (2)H substitutions. In the case of alanine racemase, if the pyridine ring is unprotonated as that in the active site, there is destabilizing contribution to the formation of the α-carbanion in the gas phase, although when the pyridine ring is protonated the contribution is stabilizing. In aqueous solution and in alanine racemase, the α-carbanion is stabilized both when the pyridine ring is protonated and unprotonated. The computational studies illustrated in this article show that combined QM/MM simulations can help provide a deeper understanding of the mechanisms of PLP-dependent enzymes. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Yen-Lin Lin
- Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
34
|
Abstract
A mixed centroid path integral and free energy perturbation method (PI-FEP/UM) has been used to investigate the primary carbon and secondary hydrogen kinetic isotope effects (KIEs) in the amino acid decarboxylation of L-Dopa catalyzed by the enzyme L-Dopa decarboxylase (DDC) along with the corresponding uncatalyzed reaction in water. DDC is a pyridoxal 5'-phosphate (PLP) dependent enzyme. The cofactor undergoes an internal proton transfer between the zwitterionic protonated Schiff base configuration and the neutral hydroxyimine tautomer. It was found that the cofactor PLP makes significant contributions to lowering the decarboxylation barrier, while the enzyme active site provides further stabilization of the transition state. Interestingly, the O-protonated configuration is preferred both in the Michaelis complex and at the decarboxylation transition state. The computed kinetic isotope effects (KIE) on the carboxylate C-13 are consistent with that observed on decarboxylation reactions of other PLP-dependent enzymes, whereas the KIEs on the α carbon and secondary proton, which can easily be validated experimentally, may be used as a possible identification for the active form of the PLP tautomer in the active site of DDC.
Collapse
Affiliation(s)
- Yen-lin Lin
- Department of Chemistry, Digital Technology Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
35
|
Crugeiras J, Rios A, Riveiros E, Richard JP. Substituent effects on electrophilic catalysis by the carbonyl group: anatomy of the rate acceleration for PLP-catalyzed deprotonation of glycine. J Am Chem Soc 2011; 133:3173-83. [PMID: 21323335 DOI: 10.1021/ja110795m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
First-order rate constants, determined by (1)H NMR, are reported for deuterium exchange between solvent D(2)O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde, and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with (1)H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants k(DO) for deprotonation of α-imino carbon by DO(-). The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log k(OL) and pK(a) was made in estimating the following pK(a)'s for deprotonation of α-imino carbon: pK(a) = 22, glycine-acetone iminium ion; pK(a) = 27, glycine-benzaldehyde imine; pK(a) ≈ 23, glycine-benzaldehyde iminium ion; and, pK(a) = 25, glycine-salicylaldehyde iminium ion. The much lower pK(a) of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] for carbon deprotonation of the adduct between 5'-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α-pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O(-) ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analogue. The extraordinary activity of DPL in catalysis of deprotonation of α-amino carbon results from the summation of these three smaller effects.
Collapse
Affiliation(s)
- Juan Crugeiras
- Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
36
|
Pierdominici-Sottile G, Roitberg AE. Proton transfer facilitated by ligand binding. An energetic analysis of the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Biochemistry 2011; 50:836-42. [PMID: 21162542 PMCID: PMC3033446 DOI: 10.1021/bi101648z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trans-sialidase is a crucial enzyme for the infection of Trypanosoma cruzi, the protozoa responsible for Chagas' disease in humans. This enzyme catalyzes the transfer of sialic acids from mammalian host cells to parasitic cell surfaces in order to mask the infection from the host's immune system. It represents a promising target for the development of therapeutics to treat the disease and has been subject of extensive structural studies. Elaborate experiments suggested formation of a long-lived covalent intermediate in the catalytic mechanism and identified a Tyr/Glu pair as an unusual catalytic couple. This requires that the tyrosine hydroxyl proton is transferred to the carboxylate group of glutamate before the nucleophilic attack. Since the solution pK(a)s of tyrosine and glutamate are very different, this transfer can only be accomplished if the reaction environment selectively stabilizes the product state. We compute the free energy profile for the proton transfer in different environments, and our results indicate that it can take place in the active site of trans-sialidase, but only after substrate binding. By means of the energy decomposition method, we explain the influence that the active site residues exert on the reaction and how the pattern is changed when the substrate is present. This study represents an initial step that can shed light on our understanding of the catalytic mechanism of this reaction.
Collapse
Affiliation(s)
- Gustavo Pierdominici-Sottile
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-8435, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611-8435, USA
| | - Adrian E. Roitberg
- To whom correspondence should be addressed. Phone: (352) 392-6972 Fax (352) 392-8722
| |
Collapse
|