1
|
Meesapyodsuk D, Sun K, Qiu X. Structural and functional analysis of plant ELO-like elongase for fatty acid elongation. PLANT MOLECULAR BIOLOGY 2024; 114:90. [PMID: 39172265 DOI: 10.1007/s11103-024-01490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
ELO-like elongase is a condensing enzyme elongating long chain fatty acids in eukaryotes. Eranthis hyemalis ELO-like elongase (EhELO1) is the first higher plant ELO-type elongase that is highly active in elongating a wide range of polyunsaturated fatty acids (PUFAs) and some monounsaturated fatty acids (MUFAs). This study attempted using domain swapping and site-directed mutagenesis of EhELO1 and EhELO2, a close homologue of EhELO1 but with no apparent elongase activity, to elucidate the structural determinants critical for catalytic activity and substrate specificity. Domain swapping analysis of the two showed that subdomain B in the C-terminal half of EhELO1 is essential for MUFA elongation while subdomain C in the C-terminal half of EhELO1 is essential for both PUFA and MUFA elongations, implying these regions are critical in defining the architecture of the substrate tunnel for substrate specificity. Site-directed mutagenesis showed that the glycine at position 220 in the subdomain C plays a key role in differentiating the function of the two elongases. In addition, valine at 161 and cysteine at 165 in subdomain A also play critical roles in defining the architecture of the deep substrate tunnel, thereby contributing significantly to the acceptance of, and interaction with primer substrates.
Collapse
Affiliation(s)
| | - Kaiwen Sun
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Xiao Qiu
- National Research Council Canada, Saskatoon, Canada.
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
2
|
Yang H, Gao J, Peng X, Han Y. Application of synthetic biology strategies to promote biosynthesis of fatty acids and their derivatives. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:83-104. [PMID: 39059844 DOI: 10.1016/bs.aambs.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Fatty acids and their derivatives are indispensable biomolecules in all organisms, and can be used as intermediates in the synthesis of pharmaceuticals, biofuels and pesticides, and thus their demand has increased dramatically in recent years. In addition to serving as structural components of cell membranes and metabolic energy, fatty acids and their derivatives can also be used as signal transduction and regulatory bioactive molecules to regulate cell functions. Biosynthesis of fatty acids and their derivatives through microbial catalysis provides green and alternative options to meet the goal. However, the low biosynthetic titer of fatty acids and their derivatives limits their industrial production and application. In this review, we first summarize the metabolic pathways and related enzymes of fatty acids and their derivatives biosynthesis. Then, the strategies and research progress of biosynthesis of fatty acids and derivatives through metabolic and enzyme engineering were reviewed. The biosynthesis of saturated fatty acids (medium chain fatty acids and long chain fatty acids), bioactive fatty acids (PUFAs, oxylipins, ether lipids), and their derivatives with microbial and enzymatic catalysis were respectively summarized. Finally, synthetic biology strategies to improve fatty acids and their derivatives production through enzyme rational design, carbon metabolism flux, cofactors balance, and metabolic pathways design were discussed. The review provides references and prospects for fatty acids and their derivatives biosynthesis and industrial production.
Collapse
Affiliation(s)
- Haiqian Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jie Gao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
3
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to Produce Tailored Chain-Length Fatty Acids and Their Derivatives. ACS Synth Biol 2022; 11:2564-2577. [DOI: 10.1021/acssynbio.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kindom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
4
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
5
|
Tinti E, Geay F, Lopes Rodrigues M, Kestemont P, Perpète EA, Michaux C. Molecular cloning and 3D model of a fatty-acid elongase in a carnivorous freshwater teleost, the European perch ( Perca fluviatilis). 3 Biotech 2019; 9:242. [PMID: 31168435 PMCID: PMC6542919 DOI: 10.1007/s13205-019-1773-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
The European perch (Perca fluviatilis) is a carnivorous freshwater fish able to metabolise polyunsaturated fatty acids (PUFA) into highly unsaturated fatty acids (HUFA). This makes it a potential candidate for sustainable aquaculture development. In this study, special attention is given to the fatty-acid elongase (ELOVL) family, one of the two enzymatic systems implied in the HUFA biosynthesis. Structural information on European perch enzyme converting PUFA into HUFA is obtained by both molecular cloning and in silico characterization of an ELOVL5-like elongase from P. fluviatilis (pfELOVL). The full-length cDNA sequence consists of a 885-base pair Open Reading Frame coding for a 294-amino acid protein. Phylogenetic analysis and sequence alignment with fish elongases predict the pfELOVL clusters within the ELOVL5 sub-group. The amino-acid sequence displays the typical ELOVL features: several transmembrane α helices (TMH), an endoplasmic reticulum (ER) retention signal, and four "conserved boxes" involved in the catalytic site. In addition, the topology analysis predicts a 7-TMH structure addressed in the ER membrane. A 3D model of the protein embedded in an ER-like membrane environment is also provided using de novo modelling and molecular dynamics. From docking studies, two putative enzyme-substrate-binding modes, including H bonds and CH-π interactions, emphasize the role of specific residues in the "conserved boxes".
Collapse
Affiliation(s)
- Emmanuel Tinti
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
| | | | - Maximilien Lopes Rodrigues
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Research Unit in Environmental and Evolutionary Biology, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Institute of Life-Earth-Environment, University of Namur, Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
- Namur Institute of Structures Matter, University of Namur, Namur, Belgium
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Novel elongase of Pythium sp. with high specificity on Δ6-18C desaturated fatty acids. Biochem Biophys Res Commun 2014; 450:507-12. [DOI: 10.1016/j.bbrc.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 11/18/2022]
|
7
|
Site-directed mutagenesis of a fatty acid elongase ELO-like condensing enzyme. FEBS Lett 2013; 587:3837-42. [PMID: 24157363 DOI: 10.1016/j.febslet.2013.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 11/22/2022]
Abstract
The condensation step of fatty acid elongation is the addition of a C2 unit from malonyl-CoA to an acyl primer catalyzed by one of two families of enzymes, the 3-ketoacyl-CoA synthases and the ELO-like condensing enzymes. 3-Ketoacyl-CoA synthases use a Claisen-like reaction mechanism while the mechanism of the ELO-catalyzed condensation reaction is unknown. We have used site-directed mutagenesis of Dictyostelium discoideum EloA to identify residues important to catalytic activity and/or structure. Mutation of highly conserved polar residues to alanine resulted in an inactive enzyme strongly suggesting that these residues play a role in the condensation reaction.
Collapse
|
8
|
Gregory MK, Cleland LG, James MJ. Molecular basis for differential elongation of omega-3 docosapentaenoic acid by the rat Elovl5 and Elovl2. J Lipid Res 2013; 54:2851-7. [PMID: 23873268 DOI: 10.1194/jlr.m041368] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional characterization of the rat elongases, Elovl5 and Elovl2, has identified that Elovl2 is crucial for omega-3 docosahexaenoic acid (DHA) (22:6n-3) synthesis. While the substrate specificities of the rat elongases had some overlap, only Elovl2 can convert the C22 omega-3 PUFA docosapentaenoic acid (DPA) (22:5n-3) to 24:5n-3, which is the penultimate precursor of DHA. In order to better understand the potential for these elongases to be involved in DHA synthesis, we have examined the molecular reasons for the differences between Elovl5 and Elovl2 in their ability to elongate DPA to 24:5n-3. We identified a region of heterogeneity between Elovl5 and Elovl2 spanning transmembrane domains 6 and 7. Using a yeast expression system, we examined a series of Elovl2/Elovl5 chimeras and point mutations to identify Elovl2 residues within this region which are responsible for DPA substrate specificity. The results indicate that the cysteine at position 217 in Elovl2 and a tryptophan at the equivalent position in Elovl5 explain their differing abilities to elongate DPA to 24:5n-3. Further studies confirmed that Elovl2 C217 is a critical residue for elongation of DPA at the level observed in the native protein. Understanding the ability of elongases to synthesize 24:5n-3 may provide a basis for using sequence data to predict their ability to ultimately support DHA synthesis.
Collapse
|
9
|
Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Appl Microbiol Biotechnol 2012; 97:3485-97. [DOI: 10.1007/s00253-012-4556-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
|