1
|
M M, Patidar RK, Tiwari R, Srivastava N, Ranjan N. Nile Blue: A Red-Emissive Fluorescent Dye That Displays Differential Self-Assembly and Binding to G-Quadruplexes. J Phys Chem B 2023; 127:9915-9925. [PMID: 37956021 DOI: 10.1021/acs.jpcb.3c05084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Nile Blue (NB) is a red-emissive dye that is well-known for imaging and staining applications. In this work, we describe the interaction of NB with various types of G-quadruplexes belonging to different topologies, molecularities, and conformations. Using spectroscopic techniques, we have determined the preferential binding of NB to c-Myc G-quadruplex and the other aspects of its binding. Concentration- and temperature-dependent studies showed that NB exists in a dynamic equilibrium between monomeric and H-aggregated states, which could be modulated by the addition of external agents such as anionic surfactants. NB displayed differential self-assembly with different types of G-quadruplex and duplex DNAs modulating its dynamic equilibrium between the monomeric and H-aggregated states. Fluorescence-based displacement studies revealed a 1:1 binding stoichiometry upon interaction with c-Myc G-quadruplex and an association constant of Kapp = 6.7 × 106 M-1. Circular dichroism studies indicated that NB does not cause changes in the overall conformation of either G-quadruplexes or duplexes; however, it does indicate nucleic acid-dependent self-assembly at higher concentrations. Heat capacity measurement showed a more negative change when compared to that in DNA duplex, indicating more burial of the polar surface area by NB to the G-quadruplex host.
Collapse
Affiliation(s)
- Midhun M
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
2
|
Gil-Martínez A, Hernández A, Galiana-Roselló C, López-Molina S, Ortiz J, Sastre-Santos Á, García-España E, González-García J. Development and application of metallo-phthalocyanines as potent G-quadruplex DNA binders and photosensitizers. J Biol Inorg Chem 2023:10.1007/s00775-023-02003-3. [PMID: 37452218 PMCID: PMC10368564 DOI: 10.1007/s00775-023-02003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Metallo-phthalocyanines (MPc) are common photosensitizers with ideal photophysical and photochemical properties. Also, these molecules have shown to interact with non-canonical nucleic acid structures, such as G-quadruplexes, and modulate oncogenic expression in cancer cells. Herein, we report the synthesis and characterisation of two metallo-phthalocyanines containing either zinc (ZnPc) or nickel (NiPc) in the central aromatic core and four alkyl ammonium lateral chains. The interaction of both molecules with G-quadruplex DNA was assessed by UV-Vis, fluorescence and FRET melting experiments. Both molecules bind strongly to G-quadruplexes and stabilise these structures, being NiPc the most notable G-quadruplex stabiliser. In addition, the photosensitizing ability of both metal complexes was explored by the evaluation of the singlet oxygen generation and their photoactivation in cells. Only ZnPc showed a high singlet oxygen generation either by direct observation or by indirect evaluation using a DPBF dye. The cellular evaluation showed mainly cytoplasmic localization of ZnPc and a decrease of the IC50 values of the cell viability of ZnPc upon light activation of two orders of magnitude. Two metallo-phthalocyanines containing zinc and nickel within the aromatic core have been investigated as G-quadruplex stabilizers and photosensitizers. NiPc shows a high G4 binding but negligible photosensitizing ability while ZnPc exhibits a moderate binding to G-quadruplex together with a high potency to generate singlet oxygen and photocytotoxicity. The interaction with G4s and capacity to be photosensitized is associated with the geometry adopted by the central metal core of the phthalocyanine scaffold.
Collapse
Affiliation(s)
- Ariadna Gil-Martínez
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Adrián Hernández
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Cristina Galiana-Roselló
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Sònia López-Molina
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Javier Ortiz
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | - Enrique García-España
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain
| | - Jorge González-García
- Institute of Molecular Science (ICMol) and Department of Inorganic Chemistry, University of Valencia, C./Jose Beltran 2, 46980, Paterna, Spain.
| |
Collapse
|
3
|
Alexander A, Pillai AS, Akash BA, Ananthi N, Pal H, Enoch IV, Sayed M. Supramolecular association of a diguanidine derivative with a porphyrin-cyclodextrin conjugate and its binding to G-Quadruplex DNA. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Monteiro AR, Ramos CIV, Lourenço LMO, Fateixa S, Rodrigues J, Neves MGPMS, Trindade T. Interfacial assembly of zinc(II) phthalocyanines on graphene oxide (GO): Stable "turn-off-on" nanoplatforms to detect G-quadruplexes (G4). J Colloid Interface Sci 2022; 627:900-912. [PMID: 35901569 DOI: 10.1016/j.jcis.2022.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS The aggregation of phthalocyanines (Pcs) enfeebles their suitability as G-quadruplex (G4) ligands over time. It is hypothesized that the interfacial assembly of Pcs on graphene oxide (GO) influences intermolecular interactions, thereby affecting their physicochemical properties and inducing stabilization of Pcs in solution. Hence, the stacking of Pcs on GO could be tuned to create nanosystems with the ability to detect G4 for longer periods through a slow release of Pcs. EXPERIMENTS Four cationic structurally-related zinc(II) phthalocyanines (ZnPc) were non-covalently assembled on GO by ultrasonic exfoliation. A comprehensive characterization of ZnPcs@GO was carried out by spectroscopic techniques and electron microscopy to understand the organization of ZnPcs on GO. The fluorescence of ZnPcs@GO was studied in the presence of G4 (T2G5T)4 and duplex ds26 through spectrofluorimetric titrations and monitored along time. FINDINGS GO induced a re-organization of the ZnPcs mostly to J-aggregates and quenched their original fluorescence up to 98 % ("turn-off"). In general, ZnPcs@GO recovered their fluorescence ("turn-on") after the titrations and showed affinity to G4 (KD up to 1.92 μM). This is the first report that highlights the contribution of GO interfaces to assemble ZnPcs and allow their slow and controlled release to detect G4 over longer periods.
Collapse
Affiliation(s)
- Ana R Monteiro
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana Rodrigues
- I3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
A rapid and high sensitivity RNA detection based on NASBA and G4-ThT fluorescent biosensor. Sci Rep 2022; 12:10076. [PMID: 35710925 PMCID: PMC9203706 DOI: 10.1038/s41598-022-14107-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
In recent years, various newly emerged and re-emerged RNA viruses have seriously threatened the global public health. There is a pressing need for rapid and reliable nucleic acid–based assays for detecting viral RNA. Here, we successfully developed a highly sensitive, easy-to-operate G4-ThT-NASBA system to detect viral RNA that no need for labeled primers and probes. Next, we tested the system for detecting the Classical Swine Fever Virus (CSFV), an RNA virus that causes a highly contagious disease in domestic pigs and wild boar and easily causes huge economic losses. Results showed that the system, integrated the G4-ThT fluorescent biosensor and NASBA (Nuclear acid sequence-based amplification),is capable to detect as little as 2 copies/μL of viral RNA without interfering by other swine viral RNA. Moreover, we were able to detect CSFV RNA within 2 h in serum samples taken from the field in a real-time mode. These findings indicate that the G4-ThT-NASBA system is a rapid, high sensitivity and easy-to-operate technique for RNA detection. The method also has the real-time detection capability which may be easily integrated in a highly automated system such as microfluidic chips.
Collapse
|
6
|
Koç M, Kabay N. Synthesis and molecular docking studies of Zn(II)phthalocyanines containing anthraquinone moieties as selective ligands for G-quadruplex structures. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
New zinc(II) phthalocyanines (p-ZnPc and np-ZnPc) containing peripheral and non-peripheral positioned four anthraquinone moieties were synthesized by cyclotetramerization of 4-((2-(2-((8-Chloro-9,10-dioxo-9,10-dihydroanthracen-1-yl) amino) ethoxy) ethyl) thio) phthalonitrile and 3-((2-(2-((8-Chloro-9,10-dioxo-9,10-dihydroanthracen-1-yl) amino) ethoxy) ethyl) thio) phthalonitrile. All compounds were characterized by using a combination of analytical and spectroscopic techniques such as 1H, [Formula: see text]C NMR, FT-IR, UV-vis and MS spectral data. Also, molecular docking studies were performed using different G-quadruplex and double stranded nucleic acid fragments as possible interaction sites to predict the binding ability of the newly synthesized compounds.
Collapse
Affiliation(s)
- Mustafa Koç
- Department of Biomedical Engineering, Pamukkale University, Denizli, Turkey
| | - Nilgün Kabay
- Department of Biomedical Engineering, Pamukkale University, Denizli, Turkey
| |
Collapse
|
7
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
8
|
Uchiyama M, Okamoto C, Momotake A, Ikeue T, Yamamoto Y. Stepwise binding of a cationic phthalocyanine derivative to an all parallel-stranded tetrameric G-quadruplex DNA. J Inorg Biochem 2020; 213:111270. [DOI: 10.1016/j.jinorgbio.2020.111270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
9
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
10
|
He YD, Zheng KW, Wen CJ, Li XM, Gong JY, Hao YH, Zhao Y, Tan Z. Selective Targeting of Guanine-Vacancy-Bearing G-Quadruplexes by G-Quartet Complementation and Stabilization with a Guanine-Peptide Conjugate. J Am Chem Soc 2020; 142:11394-11403. [PMID: 32491844 DOI: 10.1021/jacs.0c00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilization of G-quadruplexes (G4s) formed in guanine-rich (G-rich) nucleic acids by small-molecule ligands has been extensively explored as a therapeutic approach for diseases such as cancer. Finding ligands with sufficient affinity and specificity toward G4s remains a challenge, and many ligands reported seemed to compromise between the two features. To cope with this challenge, we focused on targeting a particular type of G4s, i.e., the G-vacancy-bearing G-quadruplexes (GVBQs), by taking a structure complementation strategy to enhance both affinity and selectivity. In this approach, a G-quadruplex-binding peptide RHAU23 is guided toward a GVBQ by a guanine moiety covalently linked to the peptide. The filling-in of the vacancy in a GVBQ by the guanine ensures an exclusive recognition of GVBQ. Moreover, the synergy between the RHAU23 and the guanine dramatically improves both the affinity toward and stabilization of the GVBQ. Targeting a GVBQ in DNA by this bifunctional peptide strongly suppresses in vitro replication. This study demonstrates a novel and promising alternative targeting strategy to a distinctive panel of G4s that are as abundant as the canonical ones in the human genome.
Collapse
Affiliation(s)
- Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ke-Wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Cui-Jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xin-Min Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jia-Yuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-Hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | | | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| |
Collapse
|
11
|
Phthalocyanines for G-quadruplex aptamers binding. Bioorg Chem 2020; 100:103920. [PMID: 32413624 DOI: 10.1016/j.bioorg.2020.103920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The G-quadruplex (G4)-forming sequence within the AS1411 derivatives with alternative nucleobases and backbones can improve the chemical and biological properties of AS1411. Zn(II) phthalocyanine (ZnPc) derivatives have potential as high-affinity G4 ligands because they have similar size and shape to the G-quartets. The interactions of four Zn(II) phthalocyanines with the G4 AS1411 aptamer and its derivatives were determined by biophysical techniques, molecular docking and gel electrophoresis. Cell viability assay was carried out to evaluate the antiproliferative effects of Zn(II) phthalocyanines and complexes. CD experiments showed structural changes after addition of ZnPc 4, consistent with multiple binding modes and conformations shown by NMR and gel electrophoresis. CD melting confirmed that ZnPc 2 and ZnPc 4, both containing eight positive charges, are able to stabilize the AT11 G4 structure (ΔTm > 30 °C and 18.5 °C, respectively). Molecular docking studies of ZnPc 3 and ZnPc 4 suggested a preferential binding to the 3'- and 5'-end, respectively, of the AT11 G4. ZnPc 3 and its AT11 and AT11-L0 complexes revealed pronounced cytotoxic effect against cervical cancer cells and no cytotoxicity to normal human cells. Zn(II) phthalocyanines provide the basis for the development of effective therapeutic agents as G4 ligands.
Collapse
|
12
|
Saha P, Panda D, Müller D, Maity A, Schwalbe H, Dash J. In situ formation of transcriptional modulators using non-canonical DNA i-motifs. Chem Sci 2020; 11:2058-2067. [PMID: 32180928 PMCID: PMC7047845 DOI: 10.1039/d0sc00514b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, i-motif DNA-immobilized magnetic nanoparticles are used as templates to promote the in situ cycloaddition generating specific binders for i-motifs.
Non-canonical DNA i-motifs and G-quadruplexes are postulated as genetic switches for the transcriptional regulation of proto-oncogenes. However, in comparison to G-quadruplexes, the therapeutic potential of i-motifs is less explored. The development of i-motif selective ligands by conventional approaches is challenging due to the structural complexity of i-motifs. The target guided synthetic (TGS) approach involving in situ cycloaddition could provide specific ligands for these dynamic DNA structures. Herein, we have used i-motif forming C-rich DNA and their complementary G-quadruplex forming DNA sequences of c-MYC and BCL2 promoter regions as well as a control self-complementary duplex DNA sequence as the templates to generate selective ligands from a pool of reactive azide–alkyne building blocks. In our approach, thiolated DNA targets are immobilized on the surface of gold-coated iron nanoparticles to enable efficient isolation of the newly generated ligands from the solution mixture by simple magnetic decantation. The combinatorial in situ cycloaddition generated cell-membrane permeable triazole leads for respective DNA targets (c-MYC and BCL2 i-motifs and G-quadruplexes) that selectively promote their formation. In vitro cellular studies reveal that the c-MYC i-motif and G-quadruplex leads downregulate c-MYC gene expression whereas the BCL2 i-motif lead upregulates and the BCL2 G-quadruplex lead represses BCL2 gene expression. The TGS strategy using i-motif DNA nanotemplates represents a promising platform for the direct in situ formation of i-motif specific ligands for therapeutic intervention.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Deepanjan Panda
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Diana Müller
- Institute of Organic Chemistry and Chemical Biology , Center for Biomolecular Magnetic Resonance (BMRZ) , Goethe University , Max-von-Laue Strasse 7 , Frankfurt , D-60438 , Germany
| | - Arunabha Maity
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology , Center for Biomolecular Magnetic Resonance (BMRZ) , Goethe University , Max-von-Laue Strasse 7 , Frankfurt , D-60438 , Germany
| | - Jyotirmayee Dash
- School of Chemical Sciences , Indian Association for the Cultivation of Science , Jadavpur , Kolkata-700032 , India .
| |
Collapse
|
13
|
Yu Y, Zhang Q, Fei Y, Yan C, Ye T, Gao L, Gao H, Zhou X, Shao Y. Multicolorfully probing intramolecular G-Quadruplex tandem interface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117655. [PMID: 31670046 DOI: 10.1016/j.saa.2019.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
A long guanine-rich oliogonucleotide sequence can form multiple G-quadruplex (G4) tandem individuals in a single molecule with internal G4-G4 (inG4-G4) interfaces. The interface can exist at the stacked (s-inG4-G4) or unstacked (us-inG4-G4) state, dependent of the G4 conformation and environment. Because of the vital bioactivity of the G4 interface state, there is a great demand for developing a reliable multicolor fluorescence method to identify the interface state using a fluorophore that can emit at the individual wavelength for a specific interface. Herein, we found that a porphyrin with four dihydroxyphenyl substituents (OH2PP) can multicolorfully recognize the s-inG4-G4 dimer interface against the us-inG4-G4 dimer one. The s-inG4-G4 dimer cause significant red shifts in the excitation and emission bands of OH2PP in contrast to the us-inG4-G4 dimer and G4 monomers. OH2PP adopts a 1:1 binding mode with the s-inG4-G4 dimer, whereas a 2:1 binding mode occurs to the us-inG4-G4 dimer. The limit of detection (LOD) for the s-inG4-G4 structure is about tens of nM level. The observed binding dependence of OH2PP on the linker length between the G4 individuals suggests the interface binding with the s-inG4-G4 dimer. Deformation of the porphyrin macrocycle within the s-inG4-G4 interface confinement most likely contributes to the multicolorful response with the hyperporphyrin effect. Our work demonstrates that OH2PP is a promising fluorophore to fluorescently recognize the G4 multimer with an ideal interface-sensitive multicolor response.
Collapse
Affiliation(s)
- Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
14
|
Affiliation(s)
- Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
15
|
McRae EK, Nevonen DE, McKenna SA, Nemykin VN. Binding and photodynamic action of the cationic zinc phthalocyanines with different types of DNA toward understanding of their cancer therapy activity. J Inorg Biochem 2019; 199:110793. [DOI: 10.1016/j.jinorgbio.2019.110793] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
|
16
|
Ramos CIV, Almeida SP, Lourenço LMO, Pereira PMR, Fernandes R, Faustino MAF, Tomé JPC, Carvalho J, Cruz C, Neves MGPMS. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules 2019; 24:E733. [PMID: 30781675 PMCID: PMC6412362 DOI: 10.3390/molecules24040733] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The stabilization of G-Quadruplex DNA structures by ligands is a promising strategy for telomerase inhibition in cancer therapy since this enzyme is responsible for the unlimited proliferation of cancer cells. To assess the potential of a compound as a telomerase inhibitor, selectivity for quadruplex over duplex DNA is a fundamental attribute, as the drug must be able to recognize quadruplex DNA in the presence of a large amount of duplex DNA, in the cellular nucleus. By using different spectroscopic techniques, such as ultraviolet-visible, fluorescence and circular dichroism, this work evaluates the potential of a series of multicharged phthalocyanines, bearing four or eight positive charges, as G-Quadruplex stabilizing ligands. This work led us to conclude that the existence of a balance between the number and position of the positive charges in the phthalocyanine structure is a fundamental attribute for its selectivity for G-Quadruplex structures over duplex DNA structures. Two of the studied phthalocyanines, one with four peripheral positive charges (ZnPc1) and the other with less exposed eight positive charges (ZnPc4) showed high selectivity and affinity for G-Quadruplex over duplex DNA structures and were able to accumulate in the nucleus of UM-UC-3 bladder cancer cells.
Collapse
Affiliation(s)
- Catarina I V Ramos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana P Almeida
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Patrícia M R Pereira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Wong RC, Lo PC, Ng DK. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole ligands as c-myc G-quadruplex binders. Int J Biol Macromol 2018; 114:479-490. [DOI: 10.1016/j.ijbiomac.2018.03.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 10/24/2022]
|
19
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole Derivatives' Binding to c-KIT G-Quadruplex DNA. Molecules 2018; 23:E1134. [PMID: 29747481 PMCID: PMC6099540 DOI: 10.3390/molecules23051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
The binding affinities of three carbazole derivatives to the intramolecular G-quadruplex (GQ) DNA formed by the sequence 5′-AGGGAGGGCGCTGGGAGGAGGG-3′, derived from the c-KIT 1 oncogene region, were investigated. All carbazole cationic ligands that differed in the substituents on the nitrogen atom were able to stabilize G-quadruplex, as demonstrated using UV-Vis, fluorescence and CD spectroscopic techniques as well as molecular modeling. The spectrophotometric titration results showed spectral features characteristic of these ligands-bathochromic shifts and initial hypochromicity followed by hyperchromicity at higher GQ concentrations. All free carbazole ligands exhibited modest fluorescent properties, but after binding to the DNA the fluorescence intensity increased significantly. The binding affinities of carbazole ligands to the c-KIT 1 DNA were comparable showing values in the order of 10⁵ M−1. Molecular modeling highlights the differences in interactions between each particular ligand and studied G-quadruplex, which potentially influenced binding strength. Obtained results relevant that all three investigated ligands have stabilization properties on studied G-quadruplex.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Martyna Kuta-Siejkowska
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Uslan C, İşleyen ND, Öztürk Y, Yıldız BT, Çakar ZP, Göksel M, Durmuş M, Gürsel YH, Sesalan BŞ. A novel of PEG-conjugated phthalocyanine and evaluation of its photocytotoxicity and antibacterial properties for photodynamic therapy. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617500729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A poly(ethylene glycol) (PEG)-conjugated silicon(IV) phthalocyanine axially substituted with (PEG1000) chains (SiPc-PEG) was synthesized, and this novel phthalocyanine was characterized by [Formula: see text]H-NMR, FT-IR and UV-Vis spectrophotometric methods. Elemental analysis data were beneficial for the evaluation of the chemical structure of the new compound. The total number of (O–CH[Formula: see text]–CH[Formula: see text] units was calculated as 44 and the structure of the new PEG-conjugated silicon phthalocyanine was determined by the use of integral areas in [Formula: see text]H-NMR spectrum and the ratio of SiPc:PEG1000 was found as 1:2. The photophysical and photochemical properties were determined in both DMSO and aqueous solutions. In addition, the photocytotoxicity of the novel PEG-conjugated silicon(IV) phthalocyanine was also examined by testing against human cervical-carcinoma (HeLa) and hepato-carcinoma cells (HuH-7). The IC[Formula: see text] value for the SiPc-PEG compound was determined as 0.28 [Formula: see text]M for HeLa cells and 0.4 [Formula: see text]M for HuH-7 cells. These results imply that HeLa cells are apparently more responsive to photodynamic therapy (PDT) treatment by SiPc-PEG than HuH-7 cells at low concentrations (up to 0.5 [Formula: see text]M) of the studied photosensitizer. Additionally, SiPc-PEG showed antibacterial activity against Escherichia coli at 48 h of incubation, the viabilities of E.coli cultures exposed to 1000 [Formula: see text]g/mL and 2500 [Formula: see text]g/mL SiPc-PEG concentration were reduced by about 90%, and the additional growth inhibitory effect of photoactivation was also observed clearly at these efficient concentrations. To conclude, the novel compound may have a high potential for photodynamic therapy.
Collapse
Affiliation(s)
- Canan Uslan
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
- Istanbul Kultur University, Faculty of Engineering, Atakoy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | - Naciye Durmuş İşleyen
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Maslak, 34469 Istanbul, Turkey
- Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics, Research Center (ITU-MOBGAM), Maslak, 34469 Istanbul, Turkey
| | - Yetkin Öztürk
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Maslak, 34469 Istanbul, Turkey
- Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics, Research Center (ITU-MOBGAM), Maslak, 34469 Istanbul, Turkey
| | - Burcu Turanlı Yıldız
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Maslak, 34469 Istanbul, Turkey
- Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics, Research Center (ITU-MOBGAM), Maslak, 34469 Istanbul, Turkey
| | - Z. Petek Çakar
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Maslak, 34469 Istanbul, Turkey
- Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics, Research Center (ITU-MOBGAM), Maslak, 34469 Istanbul, Turkey
| | - Meltem Göksel
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
- Kocaeli University, Kosekoy Vocational School, Department of Chemistry, Kartepe, 41250, Kocaeli, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze, 41400, Kocaeli, Turkey
| | - Yeşim Hepuzer Gürsel
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
| | - B. Şebnem Sesalan
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
21
|
Zhou H, Wu ZF, Han QJ, Zhong HM, Peng JB, Li X, Fan XL. Stable and Label-Free Fluorescent Probe Based on G-triplex DNA and Thioflavin T. Anal Chem 2018; 90:3220-3226. [PMID: 29378390 DOI: 10.1021/acs.analchem.7b04666] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-triplexes have recently been identified as a new kind of DNA structures. They perhaps possess specific biological and chemical functions similar as identified G-quadruplex but can be formed by shorter G-rich sequences with only three G-tracts. However, until now, limited G-triplexes sequences have been reported, which might be due to the fact that their stability is one of the biggest concerns during their functional studies and application research. Herein, we found a G-rich sequence (5'-TGGGTAGGGCGGG-3') which can form a stable G-triplex (Tm ∼ 60 °C) at room temperature. The stable G-triplex can combine with thioflavin T and function as an efficient fluorescence light-up probe. Comparing with the traditional G-quadruplex based probe, this triplex based probe was easy to be controlled and excited. Finally, the probe was successfully applied into constructing a label-free molecular beacon for miRNA detection. Taking advantage of these abilities of the G-triplex based fluorescent probe, the challenges faced during designing G-rich sequences based fluorescent biosensors can be efficiently solved. These findings provide important information for the future application of G-triplex.
Collapse
Affiliation(s)
- Hui Zhou
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Zhi-Fang Wu
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Qian-Jin Han
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Hong-Mei Zhong
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Jun-Bin Peng
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Xun Li
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| | - Xiao-Lin Fan
- College of Chemistry and Chemical Engineering , Gannan Normal University , Ganzhou , 341000 , China
| |
Collapse
|
22
|
Platinum(II) and palladium(II) complexes of tridentate hydrazone-based ligands as selective guanine quadruplex binders. J Inorg Biochem 2017; 175:58-66. [DOI: 10.1016/j.jinorgbio.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
23
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
24
|
Li FL, Yang SP, Zhang WH, Liu Q, Yu H, Chen JX, Lang JP. Counterintuitive Solid-State Syntheses of Indium-Thiolate-Phen Cations as Efficient and Selective Fluorescent Biosensors for HIV-1 ds-DNA and Sudan Ebolavirus RNA Sequences. ChemistrySelect 2016. [DOI: 10.1002/slct.201600554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fu-Ling Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 Jiangsu People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| | - Shui-Ping Yang
- School of Pharmaceutical Sciences; Southern Medical University; Guangzhou 510515 Guangdong People's Republic of China
| | - Wen-Hua Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 Jiangsu People's Republic of China
| | - Quan Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 Jiangsu People's Republic of China
| | - Hong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 Jiangsu People's Republic of China
| | - Jin-Xiang Chen
- School of Pharmaceutical Sciences; Southern Medical University; Guangzhou 510515 Guangdong People's Republic of China
| | - Jian-Ping Lang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 Jiangsu People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| |
Collapse
|
25
|
Abstract
Cationic porphyrins (Prs) and phthalocyanines (Pcs) are strong photosensitizers that have drawn much attention for their potential in photodynamic therapy. These compounds have the interesting property of binding to nucleic acids, in particular G-rich quadruplex-forming sequences in DNA and RNA. In this review, we highlight their potential as anticancer drugs.
Collapse
|
26
|
Chauhan A, Paladhi S, Debnath M, Dash J. Selective recognition of c-MYC G-quadruplex DNA using prolinamide derivatives. Org Biomol Chem 2016; 14:5761-7. [DOI: 10.1039/c6ob00177g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the design, synthesis, biophysical and biological evaluation of triazole containing prolinamide derivatives as selectivec-MYCG-quadruplex binding ligands.
Collapse
Affiliation(s)
- Ajay Chauhan
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
| | - Sushovan Paladhi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| | - Manish Debnath
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Jyotirmayee Dash
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur
- India
- Department of Organic Chemistry
| |
Collapse
|
27
|
Le DD, Di Antonio M, Chan LKM, Balasubramanian S. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem Commun (Camb) 2015; 51:8048-50. [PMID: 25864836 DOI: 10.1039/c5cc02252e] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rapid and simple equilibrium-binding assay mediated by ligand-induced fluorescence quenching of fluorophore-labelled G-quadruplex (G4) structures enabled quantitative interrogation of mutually exclusive ligand binding interactions at opposed G-tetrads. This technique revealed that the ligands TmPyP4, PhenDC3, and PDS have differential chemotype-specific binding preferences for individual G-tetrads of a model genomic G4 structure.
Collapse
Affiliation(s)
- D D Le
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
28
|
Wang Y, Hu Y, Wu T, Liu H, Zhang L, Zhou X, Shao Y. Specific G-quadruplex structure recognition of human telomeric RNA over DNA by a fluorescently activated hyperporphyrin. Analyst 2015; 140:5169-75. [DOI: 10.1039/c5an00937e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective recognition of the G-quadruplex structure of human telomeric RNA (TERRA) over DNA was achieved using an activated hyperporphyrin as a fluorescent probe.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Yuehua Hu
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Tao Wu
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Hua Liu
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Lihua Zhang
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Xiaoshun Zhou
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| | - Yong Shao
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
- Zhejiang, People's Republic of China
| |
Collapse
|
29
|
Basappa C, Reddy VKR, Kotresh HMN, Musturappa PK, Devendrachari MC, Ganesh SD. Synthesis, Characterization, Novel Interaction of DNA, Antioxidant and Antimicrobial Studies of New Water Soluble Metallophthalocyanines Posture Eight Hydroxyphenyl Moiety via 1,3,4-oxadiazole Bridge. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chidananda Basappa
- Department of Industrial Chemistry, Sahyadri Science College (Autonomous); Kuvempu University; Shivamogga - 577 203 Karnataka India
| | - Venugopala K. R. Reddy
- Department of Chemistry; Vijayanagar Srikrishnadevaraya University; Bellary - 583 105 Karnataka India
| | - Harish M. N. Kotresh
- Department of Chemistry; Acharya Institute of Technology; Soladevanahalli, Hesaraghatta Main Road Bangalore Karnataka India
| | - Pradeep K. Musturappa
- Department of Industrial Chemistry, Sahyadri Science College (Autonomous); Kuvempu University; Shivamogga - 577 203 Karnataka India
| | | | - Shimoga D. Ganesh
- Department of Industrial Chemistry; Kuvempu University; Shankaraghatta - 577 451 Shivamogga Karnataka India
| |
Collapse
|
30
|
Discovery of a structural-element specific G-quadruplex "light-up" probe. Sci Rep 2014; 4:3776. [PMID: 24441075 PMCID: PMC3895904 DOI: 10.1038/srep03776] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/23/2013] [Indexed: 01/26/2023] Open
Abstract
The development of a fluorescent probe capable of detecting and distinguishing the wide diversity of G-quadruplex structures is particularly challenging. Herein, we report a novel BODIPY-based fluorescent sensor (GQR) that shows unprecedented selectivity to parallel-stranded G-quadruplexes with exposed ends and four medium grooves. Mechanistic studies suggest that GQR associates with G-quadruplex grooves close to the end of the tetrad core, which may explain the dye's specificity to only a subset of parallel structures. This specific recognition favours the disaggregation of GQR in aqueous solutions thereby recovering the inherent fluorescence of the dye. Due to its unique features, GQR represents a valuable tool for basic biological research and the rapid discovery of novel, specific ligands that target similar structural features of G-quadruplexes.
Collapse
|
31
|
Liu L, Shao Y, Peng J, Huang C, Liu H, Zhang L. Molecular Rotor-Based Fluorescent Probe for Selective Recognition of Hybrid G-Quadruplex and as a K+ Sensor. Anal Chem 2014; 86:1622-31. [DOI: 10.1021/ac403326m] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingling Liu
- Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Yong Shao
- Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Jian Peng
- Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Chaobiao Huang
- Department
of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Hua Liu
- Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| | - Lihua Zhang
- Institute of Physical
Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s Republic of China
| |
Collapse
|
32
|
Roembke BT, Nakayama S, Sintim HO. Nucleic acid detection using G-quadruplex amplification methodologies. Methods 2013; 64:185-98. [PMID: 24135042 PMCID: PMC7129037 DOI: 10.1016/j.ymeth.2013.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/19/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
In the last decade, there has been an explosion in the use of G-quadruplex labels to detect various analytes, including DNA/RNA, proteins, metals and other metabolites. In this review, we focus on strategies for the detection of nucleic acids, using G-quadruplexes as detection labels or as enzyme labels that amplify detection signals. Methods to detect other analytes are briefly mentioned. We highlight various strategies, including split G-quadruplex, hemin-G-quadruplex conjugates, molecular beacon G-quadruplex or inhibited G-quadruplex probes. The tandem use of G-quadruplex labels with various DNA-modifying enzymes, such as polymerases (used for rolling circle amplification), exonucleases and endonucleases, is also discussed. Some of the detection modalities that are discussed in this review include fluorescence, colorimetric, chemiluminescence, and electrochemical methods.
Collapse
|
33
|
Zheng KW, Xiao S, Liu JQ, Zhang JY, Hao YH, Tan Z. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control. Nucleic Acids Res 2013; 41:5533-41. [PMID: 23585281 PMCID: PMC3664831 DOI: 10.1093/nar/gkt264] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G-quadruplex formation in genomic DNA is considered to regulate transcription. Previous investigations almost exclusively focused on intramolecular G-quadruplexes formed by DNA carrying four or more G-tracts, and structure formation has rarely been studied in physiologically relevant processes. Here, we report an almost entirely neglected, but actually much more prevalent form of G-quadruplexes, DNA:RNA hybrid G-quadruplexes (HQ) that forms in transcription. HQ formation requires as few as two G-tracts instead of four on a non-template DNA strand. Potential HQ sequences (PHQS) are present in >97% of human genes, with an average of 73 PHQSs per gene. HQ modulates transcription under both in vitro and in vivo conditions. Transcriptomal analysis of human tissues implies that maximal gene expression may be limited by the number of PHQS in genes. These features suggest that HQs may play fundamental roles in transcription regulation and other transcription-mediated processes.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Vummidi BR, Alzeer J, Luedtke NW. Fluorescent Probes for G-Quadruplex Structures. Chembiochem 2013; 14:540-58. [DOI: 10.1002/cbic.201200612] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Indexed: 12/19/2022]
|
35
|
Xie X, Choi B, Largy E, Guillot R, Granzhan A, Teulade-Fichou MP. Asymmetric Distyrylpyridinium Dyes as Red-Emitting Fluorescent Probes for Quadruplex DNA. Chemistry 2013; 19:1214-26. [DOI: 10.1002/chem.201203710] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 11/06/2022]
|
36
|
Doria F, Nadai M, Sattin G, Pasotti L, Richter SN, Freccero M. Water soluble extended naphthalene diimides as pH fluorescent sensors and G-quadruplex ligands. Org Biomol Chem 2012; 10:3830-40. [PMID: 22469919 DOI: 10.1039/c2ob07006e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extended naphthalene diimides (NDIs) fused to 1,4-dihydropyrazine-2,3-dione, containing two solubilizing moieties, have been synthesized. Fluorescence spectra of the new NDIs were remarkably affected by pH, as the second deprotonation of the dihydropyrazinedione moiety (pK(a) 6.9) switched off the emission. Binding to a G-quadruplex folded oligonucleotide and stoichiometry were evaluated by FRET melting assay and CD analysis. G-quadruplex binding was strongly enhanced shifting from pH 7.4 to pH 6.0 as a consequence of the dihydropyrazinedione moiety protonation. Cytotoxicity studies using two human telomerase-positive cell lines (HT29 and A549) revealed that the best G-quadruplex ligand was very active against the colon cell line, with an EC(50) of 300 nM.
Collapse
Affiliation(s)
- Filippo Doria
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Di Antonio M, Rodriguez R, Balasubramanian S. Experimental approaches to identify cellular G-quadruplex structures and functions. Methods 2012; 57:84-92. [PMID: 22343041 PMCID: PMC3563962 DOI: 10.1016/j.ymeth.2012.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/29/2012] [Indexed: 12/27/2022] Open
Abstract
Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA.
Collapse
Affiliation(s)
- Marco Di Antonio
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
38
|
Visualizing the Quadruplex: From Fluorescent Ligands to Light-Up Probes. Top Curr Chem (Cham) 2012; 330:111-77. [DOI: 10.1007/128_2012_346] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Yaku H, Fujimoto T, Murashima T, Miyoshi D, Sugimoto N. Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chem Commun (Camb) 2012; 48:6203-16. [DOI: 10.1039/c2cc31037f] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Chen CY, Wang Q, Liu JQ, Hao YH, Tan Z. Contribution of Telomere G-Quadruplex Stabilization to the Inhibition of Telomerase-Mediated Telomere Extension by Chemical Ligands. J Am Chem Soc 2011; 133:15036-44. [DOI: 10.1021/ja204326w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-yue Chen
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jia-quan Liu
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-hua Hao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zheng Tan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
41
|
Haider SM, Autiero I, Neidle S. Surface area accessibility and the preferred topology of telomeric DNA quadruplex–ligand complexes. Biochimie 2011; 93:1275-9. [DOI: 10.1016/j.biochi.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 05/18/2011] [Indexed: 01/14/2023]
|
42
|
Manet I, Manoli F, Donzello MP, Ercolani C, Vittori D, Cellai L, Masi A, Monti S. Tetra-2,3-pyrazinoporphyrazines with Externally Appended Pyridine Rings. 10. A Water-Soluble Bimetallic (ZnII/PtII) Porphyrazine Hexacation as Potential Plurimodal Agent for Cancer Therapy: Exploring the Behavior as Ligand of Telomeric DNA G-Quadruplex Structures. Inorg Chem 2011; 50:7403-11. [DOI: 10.1021/ic200514z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Francesco Manoli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Maria Pia Donzello
- Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Claudio Ercolani
- Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Daniela Vittori
- Dipartimento di Chimica, Università degli Studi di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Luciano Cellai
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma 1, 00015 Monterotondo Scalo, Rome, Italy
| | - Annalisa Masi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma 1, 00015 Monterotondo Scalo, Rome, Italy
| | - Sandra Monti
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
43
|
Dumas A, Luedtke NW. Highly fluorescent guanosine mimics for folding and energy transfer studies. Nucleic Acids Res 2011; 39:6825-34. [PMID: 21551219 PMCID: PMC3159459 DOI: 10.1093/nar/gkr281] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanosines with substituents at the 8-position can provide useful fluorescent probes that effectively mimic guanine residues even in highly demanding model systems such as polymorphic G-quadruplexes and duplex DNA. Here, we report the synthesis and photophysical properties of a small family of 8-substituted-2′-deoxyguanosines that have been incorporated into the human telomeric repeat sequence using phosphoramidite chemistry. These include 8-(2-pyridyl)-2′-deoxyguanosine (2PyG), 8-(2-phenylethenyl)-2′-deoxyguanosine (StG) and 8-[2-(pyrid-4-yl)-ethenyl]-2′-deoxyguanosine (4PVG). On DNA folding and stability, 8-substituted guanosines can exhibit context-dependent effects but were better tolerated by G-quadruplex and duplex structures than pyrimidine mismatches. In contrast to previously reported fluorescent guanine analogs, 8-substituted guanosines exhibit similar or even higher quantum yields upon their incorporation into nucleic acids (Φ = 0.02–0.45). We have used these highly emissive probes to quantify energy transfer efficiencies from unmodified DNA nucleobases to 8-substituted guanosines. The resulting DNA-to-probe energy transfer efficiencies (ηt) are highly structure selective, with ηt(duplex) < ηt(single-strand) < ηt(G-quadruplex). These trends were independent of the exact structural features and thermal stabilities of the G-quadruplexes or duplexes containing them. The combination of efficient energy transfer, high probe quantum yield, and high molar extinction coefficient of the DNA provides a highly sensitive and reliable readout of G-quadruplex formation even in highly diluted sample solutions of 0.25 nM.
Collapse
Affiliation(s)
- Anaëlle Dumas
- Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
44
|
Zhang XF. Fluorescence properties of phenol-modified zinc phthalocyanine that tuned by photoinduced intra-molecular electron transfer and pH values. J Fluoresc 2011; 21:1559-64. [PMID: 21264499 DOI: 10.1007/s10895-011-0844-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Tetra[α-(4-hydroxyphenoxy)] zinc phthalocyanine, ZnPc(α-OPhOH)(4), was synthesized and its photophysics was found to be sharply pH dependent. Dual fluorescence emission around 700 nm was observed when it is dissolved in basic solution. The fluorescence of the phthalocyanine can be sharply switched off at pH 9.1 due to the intramolecular photoinduced electron transfer (PET) in ZnPc(α-OPhONa)(4), formed by the deprotonation of ZnPc(α-OPhOH)(4). The photophysics of both ZnPc(α-OPhOH)(4) and ZnPc(α-OPhONa)(4) were studied in detail by UV-vis absorption, steady state and time-resolved fluorescence and transient absorption (TA) to reveal the fluorescence quenching mechanism. Intra-molecular PET in ZnPc(α-OPhONa)(4) from the donor, PhONa subunits, to the acceptor, ZnPc moiety, was characterized by the much smaller fluorescence quantum yield (0.003) and lifetime (<0.20 ns). PET was further evidenced by the occurrence of charge separation state (CSS) in TA spectra, i.e. the bands due to anion radical of ZnPc and phenol radical. The lifetime of the charge separation state is ca. 3 ns, the efficiency of PET is ca. 99% and the rate constant of PET is 2.3 × 10(10) s(-1).
Collapse
Affiliation(s)
- Xian-Fu Zhang
- Chemistry Department, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei Province, China 066004.
| |
Collapse
|
45
|
Zheng KW, Zhang D, Zhang LX, Hao YH, Zhou X, Tan Z. Dissecting the strand folding orientation and formation of G-quadruplexes in single- and double-stranded nucleic acids by ligand-induced photocleavage footprinting. J Am Chem Soc 2011; 133:1475-83. [PMID: 21207997 DOI: 10.1021/ja108972e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The widespread of G-quadruplex-forming sequences in genomic DNA and their role in regulating gene expression has made G-quadruplex structures attractive therapeutic targets against a variety of diseases, such as cancer. Information on the structure of G-quadruplexes is crucial for understanding their physiological roles and designing effective drugs against them. Resolving the structures of G-quadruplexes, however, remains a challenge especially for those in double-stranded DNA. In this work, we developed a photocleavage footprinting technique to determine the folding orientation of each individual G-tract in intramolecular G-quadruplex formed in both single- and double-stranded nucleic acids. Based on the differential photocleavage induced by a ligand tetrakis(2-trimethylaminoethylethanol) phthalocyaninato zinc tetraiodine (Zn-TTAPc) to the guanines between the two terminal G-quartets in a G-quadruplex, this method identifies the guanines hosted in each terminal G-quartets to reveal G-tract orientation. The method is extremely intuitive, straightforward, and requires little expertise. Besides, it also detects G-quadruplex formation in long single- and double-stranded nucleic acids.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Suntharalingam K, Vilar R. Interaction of metal complexes with nucleic acids. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1ic90027g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Manet I, Manoli F, Donzello MP, Viola E, Andreano G, Masi A, Cellai L, Monti S. A cationic ZnIIporphyrazine induces a stable parallel G-quadruplex conformation in human telomeric DNA. Org Biomol Chem 2011; 9:684-8. [DOI: 10.1039/c0ob00598c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Sparapani S, Haider SM, Doria F, Gunaratnam M, Neidle S. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes. J Am Chem Soc 2010; 132:12263-72. [PMID: 20718414 DOI: 10.1021/ja1003944] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structure-based modeling methods have been used to design a series of disubstituted triazole-linked acridine compounds with selectivity for human telomeric quadruplex DNAs. A focused library of these compounds was prepared using click chemistry and the selectivity concept was validated against two promoter quadruplexes from the c-kit gene with known molecular structures, as well as with duplex DNA using a FRET-based melting method. Lead compounds were found to have reduced effects on the thermal stability of the c-kit quadruplexes and duplex DNA structures. These effects were further explored with a series of competition experiments, which confirmed that binding to duplex DNA is very low even at high duplex:telomeric quadruplex ratios. Selectivity to the c-kit quadruplexes is more complex, with some evidence of their stabilization at increasing excess over human telomeric quadruplex DNA. Selectivity is a result of the dimensions of the triazole-acridine compounds, and in particular the separation of the two alkyl-amino terminal groups. Both lead compounds also have selective inhibitory effects on the proliferation of cancer cell lines compared to a normal cell line, and one has been shown to inhibit the activity of the telomerase enzyme, which is selectively expressed in tumor cells, where it plays a role in maintaining telomere integrity and cellular immortalization.
Collapse
Affiliation(s)
- Silvia Sparapani
- CR-UK Biomolecular Structure Group, The School of Pharmacy, University of London, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
49
|
Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg Med Chem Lett 2010; 20:6459-63. [DOI: 10.1016/j.bmcl.2010.09.066] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 01/22/2023]
|