1
|
Seetaha S, Kamonsutthipaijit N, Yagi-Utsumi M, Seako Y, Yamaguchi T, Hannongbua S, Kato K, Choowongkomon K. Biophysical Characterization of p51 and p66 Monomers of HIV-1 Reverse Transcriptase with Their Inhibitors. Protein J 2023; 42:741-752. [PMID: 37728788 DOI: 10.1007/s10930-023-10156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Human immunodeficiency virus (HIV)-1 reverse transcriptase (HIV-1 RT) is responsible for the transcription of viral RNA genomes into DNA genomes and has become an important target for the treatment of acquired immune deficiency syndrome (AIDS). This study used biophysical techniques to characterize the HIV-1 RT structure, monomer forms, and the non-nucleoside reverse transcriptase inhibitors (NNRTIs) bound forms. Inactive p66W401A and p51W401A were selected as models to study the HIV-1 RT monomer structures. Nuclear magnetic resonance (NMR) spectroscopy revealed that the unliganded forms of p66W401A protein and p51W401A protein had similar conformation to each other in solution. The complexes of p66W401A or p51W401A with inhibitors showed similar conformations to p66 in the RT heterodimer bound to the NNRTIs. Furthermore, the results of paramagnetic relaxation enhancement (PRE)-assisted NMR revealed that the unliganded forms of the p66W401A and p51W401A conformations were different from the unliganded heterodimer, characterized by a greater distance between the fingers and thumb subdomains. Small-angle X-ray scattering (SAXS) experiments confirmed that p66W401A and p51W401A can bind with inhibitors, similar to the p66/p51 heterodimer. The findings of this study increase the structural knowledge base of HIV-1 RT monomers, which may be helpful in the future design of potent viral inhibitors.
Collapse
Affiliation(s)
- Supaphorn Seetaha
- KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nuntaporn Kamonsutthipaijit
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yanaka Seako
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takumi Yamaguchi
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems, Okazaki, Aichi, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kiattawee Choowongkomon
- KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
2
|
Kirby TW, Gabel SA, DeRose EF, Perera L, Krahn JM, Pedersen LC, London RE. Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase. Biomolecules 2023; 13:1603. [PMID: 38002285 PMCID: PMC10669680 DOI: 10.3390/biom13111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66' homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain. Target sites at subdomain interfaces were identified and computational analysis used to obtain an initial set of ligands for screening. Chromatographic evaluations of the p51 homodimer/monomer ratio support the feasibility of this approach. Ligands that bind near the interfaces and a ligand that binds directly to a region of the fingers subdomain involved in subunit interface formation were identified, and the interactions were further characterized by NMR spectroscopy and X-ray crystallography. Although these ligands were found to reduce dimer formation, further efforts will be required to obtain ligands with higher binding affinity. In contrast with previous ligand identification studies performed on the RT heterodimer, subunit interface surfaces are solvent-accessible in the p51 and p66 monomers, making these constructs preferable for identification of ligands that directly interfere with dimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA (J.M.K.)
| |
Collapse
|
3
|
Xi Z, Ilina TV, Guerrero M, Fan L, Sluis‐Cremer N, Wang Y, Ishima R. Relative domain orientation of the L289K HIV-1 reverse transcriptase monomer. Protein Sci 2022; 31:e4307. [PMID: 35481647 PMCID: PMC8996465 DOI: 10.1002/pro.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a heterodimer comprised p66 and p51 subunits (p66/p51). Several single amino acid substitutions in RT, including L289K, decrease p66/p51 dimer affinity, and reduce enzymatic functioning. Here, small-angle X-ray scattering (SAXS) with proton paramagnetic relaxation enhancement (PRE), 19 F site-specific NMR, and size exclusion chromatography (SEC) were performed for the p66 monomer with the L289K mutation, p66L289K . NMR and SAXS experiments clearly elucidated that the thumb and RNH domains in the monomer do not rigidly interact with each other but are spatially close to the RNH domain. Based on this structural model of the monomer, p66L289K and p51 were predicted to form a heterodimer while p66 and p51L289K not. We tested this hypothesis by SEC analysis of p66 and p51 containing L289K in different combinations and clearly demonstrated that L289K substitution in the p51 subunit, but not in the p66 subunit, reduces p66/p51 formation. Based on the derived monomer model and the importance of the inter-subunit RNH-thumb domain interaction in p66/p51, validated by SEC, the mechanism of p66 homodimer formation was discussed.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tatiana V. Ilina
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michel Guerrero
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer ResearchSAXS Core Facility of the National Cancer InstituteFrederickMarylandUSA
| | - Nicolas Sluis‐Cremer
- Department of Medicine, Division of Infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Yun‐Xing Wang
- Protein‐Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer InstituteNational Institutes of HealthFrederickMarylandUSA
| | - Rieko Ishima
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution. Int J Mol Sci 2020; 21:ijms21249545. [PMID: 33333923 PMCID: PMC7765405 DOI: 10.3390/ijms21249545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022] Open
Abstract
NMR studies of large proteins, over 100 kDa, in solution are technically challenging and, therefore, of considerable interest in the biophysics field. The challenge arises because the molecular tumbling of a protein in solution considerably slows as molecular mass increases, reducing the ability to detect resonances. In fact, the typical 1H-13C or 1H-15N correlation spectrum of a large protein, using a 13C- or 15N-uniformly labeled protein, shows severe line-broadening and signal overlap. Selective isotope labeling of methyl groups is a useful strategy to reduce these issues, however, the reduction in the number of signals that goes hand-in-hand with such a strategy is, in turn, disadvantageous for characterizing the overall features of the protein. When domain motion exists in large proteins, the domain motion differently affects backbone amide signals and methyl groups. Thus, the use of multiple NMR probes, such as 1H, 19F, 13C, and 15N, is ideal to gain overall structural or dynamical information for large proteins. We discuss the utility of observing different NMR nuclei when characterizing a large protein, namely, the 66 kDa multi-domain HIV-1 reverse transcriptase that forms a homodimer in solution. Importantly, we present a biophysical approach, complemented by biochemical assays, to understand not only the homodimer, p66/p66, but also the conformational changes that contribute to its maturation to a heterodimer, p66/p51, upon HIV-1 protease cleavage.
Collapse
|
5
|
London RE. HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable States. Structure 2019; 27:420-426. [PMID: 30639227 DOI: 10.1016/j.str.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022]
Abstract
There has been a steadily increasing appreciation of the fact that the relationship between protein sequence and structure is often sufficiently ambiguous to allow a single sequence to adopt alternative, stable folds. Living organisms have been able to utilize such metamorphic proteins in remarkable and unanticipated ways. HIV-1 reverse transcriptase is among the earliest such proteins identified and remains a unique example in which a functional heterodimer contains two, alternatively folded polymerase domains. Structural characterization of the p66 precursor protein combined with NMR spectroscopic and molecular modeling studies have provided insights into the factors underlying the metamorphic transition and the subunit-specific programmed unfolding step required to expose the protease cleavage site within the ribonuclease H domain, supporting the conversion of the p66/p66' precursor into the mature p66/p51 heterodimer.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Sadiq SK, Mirambeau G, Meyerhans A. Equilibrium Model of Drug-Modulated GagPol-Embedded HIV-1 Reverse Transcriptase Dimerization to Enhance Premature Protease Activation. AIDS Res Hum Retroviruses 2018; 34:804-807. [PMID: 30056738 DOI: 10.1089/aid.2018.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lack of effective strategies for killing cells latently infected with HIV-1 limits the eradication of AIDS. Unfortunately, current antiretroviral inhibitors are designed to target virus production but not latent infection. Interestingly, some non-nucleoside reverse transcriptase inhibitors (NNRTIs) have shown off-design effects, specifically, premature activation of HIV-1 protease (PR) within virus-infected cells that induces apoptosis. Here, we analyze an equilibrium model of HIV-1 reverse transcriptase (RT) binding to NNRTIs to understand the optimal binding characteristics that enhance RT dimerization within embedded GagPol dimers. This would allow NNRTIs to act as PR autoactivation enhancers (PAEs). We compute that ∼700-fold enhancement is theoretically possible by PAEs. Both a strong drug-dimer binding affinity (KD12 < 100 nM) and relatively weaker drug-monomer affinity (KD2/KD12 > 10) are required for significant enhancement (∼50-fold or more) relative to the drug-free dimer concentration within a drug concentration limit of 10 μM. Our approach rationalizes the observed effects of efavirenz on premature activation of PR and may be useful to guide the design of suitable drug candidates and their optimal dosage regimens for this therapy class.
Collapse
Affiliation(s)
- S. Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Infection Biology Laboratory, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gilles Mirambeau
- Faculté des Sciences et Ingénierie, UFR de Biologie, Sorbonne Universités, Paris, France
| | - Andreas Meyerhans
- Infection Biology Laboratory, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
7
|
Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase. Biochem J 2017; 474:3321-3338. [PMID: 28811321 DOI: 10.1042/bcj20170480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/17/2022]
Abstract
Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66' homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of 15N-labeled RT216 - a construct that includes the fingers and most of the palm domains. These studies are consistent with the conclusion that the p66 monomer exists as a spring-loaded complex. Initial dissociation of the fingers/palm : connection complex allows the fingers/palm to adopt an alternate, more stable structure, reducing the rate of reassociation and facilitating subsequent maturation steps. One of the drivers for an initial extension of the fingers/palm domains is identified as a straightening of helix E relative to its conformation in the monomer by eliminating a bend of ∼50° near residue Phe160. NMR and circular dichroism data also are consistent with the conclusion that a hydrophobic surface of palm domain that becomes exposed after the initial dissociation, as well as the intrinsic conformational preferences of the palm domain C-terminal segment, facilitates the formation of the β-sheet structure that is unique to the active polymerase subunit. Spectral comparisons based on 15N-labeled constructs are all consistent with previous structural conclusions based on studies of 13C-methyl-labeled constructs.
Collapse
|
8
|
Pandey AK, Dixit U, Kholodovych V, Comollo TW, Pandey VN. The β1′−β2′ Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft. Biochemistry 2017. [PMID: 28627879 DOI: 10.1021/acs.biochem.7b00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashutosh K Pandey
- Department
of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical
School, Rutgers University-Newark, Newark, New Jersey 07103, United States
| | - Updesh Dixit
- Department
of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical
School, Rutgers University-Newark, Newark, New Jersey 07103, United States
| | - Vlad Kholodovych
- Office
of Advanced Research Computing, Rutgers University, Piscataway, New Jersey 08854, United States
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Thomas W. Comollo
- Department
of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical
School, Rutgers University-Newark, Newark, New Jersey 07103, United States
| | - Virendra N. Pandey
- Department
of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical
School, Rutgers University-Newark, Newark, New Jersey 07103, United States
| |
Collapse
|
9
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|
10
|
Zheng X, Pedersen LC, Gabel SA, Mueller GA, DeRose EF, London RE. Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war. Nucleic Acids Res 2016; 44:1776-88. [PMID: 26773054 PMCID: PMC4770237 DOI: 10.1093/nar/gkv1538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/24/2015] [Indexed: 11/14/2022] Open
Abstract
Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics.
Collapse
Affiliation(s)
- Xunhai Zheng
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
11
|
Zheng X, Perera L, Mueller GA, DeRose EF, London RE. Asymmetric conformational maturation of HIV-1 reverse transcriptase. eLife 2015; 4. [PMID: 26037594 PMCID: PMC4452869 DOI: 10.7554/elife.06359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
HIV-1 reverse transcriptase utilizes a metamorphic polymerase domain that is able to adopt two alternate structures that fulfill catalytic and structural roles, thereby minimizing its coding requirements. This ambiguity introduces folding challenges that are met by a complex maturation process. We have investigated this conformational maturation using NMR studies of methyl-labeled RT for the slower processes in combination with molecular dynamics simulations for rapid processes. Starting from an inactive conformation, the p66 precursor undergoes a unimolecular isomerization to a structure similar to its active form, exposing a large hydrophobic surface that facilitates initial homodimer formation. The resulting p66/p66' homodimer exists as a conformational heterodimer, after which a series of conformational adjustments on different time scales can be observed. Formation of the inter-subunit RH:thumb' interface occurs at an early stage, while maturation of the connection' and unfolding of the RH' domains are linked and occur on a much slower time scale. DOI:http://dx.doi.org/10.7554/eLife.06359.001 Proteins are made up of long chains of building blocks called amino acids. These chains can twist and fold in numerous ways to adopt the specific three-dimensional shapes that enable each protein to perform its role. In recent years, researchers have identified several proteins that can adopt different shapes from the same sequence of amino acids. These are known as metamorphic proteins and each shape may carry out a different role. HIV is a virus that causes AIDS, an illness that leads to progressive failure of a person’s immune system. The virus uses an enzyme called “reverse transcriptase” to copy its genetic material. The enzyme consists of two metamorphic protein subunits that are both derived from the same precursor protein called “p66”. One p66 subunit adopts an extended shape that enables it to carry out enzymatic activities. The second is processed into a smaller p51 subunit that is inactive but provides structural integrity to the enzyme. Zheng et al. have now used nuclear magnetic resonance and other state-of-the-art techniques to analyze the different stages of the conversion of the p66 protein into the mature reverse transcriptase enzyme. The analysis revealed the shape of a single p66 protein molecule, and showed that occasional changes in shape allow one p66 molecule to bind to a second. This means that an immature version of reverse transcriptase contains two p66 subunits with different shapes. The shapes of each of the two subunits then undergo further changes with time. In one of the subunits, competing interactions lead to a molecular tug-of-war that prevents part of the protein from adopting its folded shape. This part subsequently unravels and is later destroyed by another HIV enzyme (called HIV protease) to form the smaller p51 subunit. Since HIV needs reverse transcriptase in order to multiply and cause infection, drugs that prevent this enzyme from working are used to treat patients with AIDS. Current drugs target the mature form of the enzyme, but are of limited use because mutations can lead to drug-resistant forms of the proteins. The findings of Zheng et al. now fill a major gap in our understanding of the intermediate steps that lead to the formation of mature reverse transcriptase. These findings are expected to guide future work aimed at developing new drugs that interfere with maturation instead of blocking activity of the mature enzyme. DOI:http://dx.doi.org/10.7554/eLife.06359.002
Collapse
Affiliation(s)
- Xunhai Zheng
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| |
Collapse
|
12
|
Sharaf NG, Poliner E, Slack RL, Christen MT, Byeon IJL, Parniak MA, Gronenborn AM, Ishima R. The p66 immature precursor of HIV-1 reverse transcriptase. Proteins 2014; 82:2343-52. [PMID: 24771554 DOI: 10.1002/prot.24594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Abstract
In contrast to the wealth of structural data available for the mature p66/p51 heterodimeric human immunodeficiency virus type 1 reverse transcriptase (RT), the structure of the homodimeric p66 precursor remains unknown. In all X-ray structures of mature RT, free or complexed, the processing site in the p66 subunit, for generating the p51 subunit, is sequestered into a β-strand within the folded ribonuclease H (RNH) domain and is not readily accessible to proteolysis, rendering it difficult to propose a simple and straightforward mechanism of the maturation step. Here, we investigated, by solution NMR, the conformation of the RT p66 homodimer. Our data demonstrate that the RNH and Thumb domains in the p66 homodimer are folded and possess conformations very similar to those in mature RT. This finding suggests that maturation models which invoke a complete or predominantly unfolded RNH domain are unlikely. The present study lays the foundation for further in-depth mechanistic investigations at the atomic level.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zheng X, Pedersen LC, Gabel SA, Mueller GA, Cuneo MJ, DeRose EF, Krahn JM, London RE. Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Res 2014; 42:5361-77. [PMID: 24574528 PMCID: PMC4005681 DOI: 10.1093/nar/gku143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT), a critical enzyme of the HIV life cycle and an important drug target, undergoes complex and largely uncharacterized conformational rearrangements that underlie its asymmetric folding, dimerization and subunit-selective ribonuclease H domain (RH) proteolysis. In the present article we have used a combination of NMR spectroscopy, small angle X-ray scattering and X-ray crystallography to characterize the p51 and p66 monomers and the conformational maturation of the p66/p66′ homodimer. The p66 monomer exists as a loosely structured molecule in which the fingers/palm/connection, thumb and RH substructures are connected by flexible (disordered) linking segments. The initially observed homodimer is asymmetric and includes two fully folded RH domains, while exhibiting other conformational features similar to that of the RT heterodimer. The RH′ domain of the p66′ subunit undergoes selective unfolding with time constant ∼6.5 h, consistent with destabilization due to residue transfer to the polymerase′ domain on the p66′ subunit. A simultaneous increase in the intensity of resonances near the random coil positions is characterized by a similar time constant. Consistent with the residue transfer hypothesis, a construct of the isolated RH domain lacking the two N-terminal residues is shown to exhibit reduced stability. These results demonstrate that RH′ unfolding is coupled to homodimer formation.
Collapse
Affiliation(s)
- Xunhai Zheng
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zheng X, Mueller GA, DeRose EF, London RE. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP. Biophys J 2014; 104:2695-705. [PMID: 23790378 DOI: 10.1016/j.bpj.2013.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 11/27/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) play a central role in the treatment of AIDS, but their mechanisms of action are incompletely understood. The interaction of the NNRTI nevirapine (NVP) with HIV-1 reverse transcriptase (RT) is characterized by a preference for the open conformation of the fingers/thumb subdomains, and a reported variation of three orders of magnitude between the binding affinity of NVP for RT in the presence or absence of primer/template DNA. To investigate the relationship between conformation and ligand binding, we evaluated the use of methionine NMR probes positioned near the tip of the fingers or thumb subdomains. Such probes would be expected to be sensitive to changes in the local environment depending on the fractions of open and closed RT. Comparisons of the NMR spectra of three conservative mutations, I63M, L74M, and L289M, indicated that M63 showed the greatest shift sensitivity to the addition of NVP. The exchange kinetics of the M63 resonance are fast on the chemical shift timescale, but become slow in the presence of NVP due to the slow binding of RT with the inhibitor. The simplest model consistent with this behavior involves a rapid open/closed equilibrium coupled with a slow interaction of the inhibitor with the open conformation. Studies of RT in the presence of both NVP and MgATP indicate a strong negative cooperativity. Binding of MgATP reduces the fraction of RT bound to NVP, as indicated by the intensity of the NVP-perturbed M230 resonance, and enhances the dissociation rate constant of the NVP, resulting in an increase of the open/closed interconversion rate, so that the M63 resonance moves into the fast/intermediate-exchange regime. Protein-mediated interactions appear to explain most of the affinity variation of NVP for RT.
Collapse
Affiliation(s)
- Xunhai Zheng
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | |
Collapse
|
15
|
Marko RA, Liu HW, Ablenas CJ, Ehteshami M, Götte M, Cosa G. Binding kinetics and affinities of heterodimeric versus homodimeric HIV-1 reverse transcriptase on DNA-DNA substrates at the single-molecule level. J Phys Chem B 2013; 117:4560-7. [PMID: 23305243 DOI: 10.1021/jp308674g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During viral replication, HIV-1 reverse transcriptase (RT) plays a pivotal role in converting genomic RNA into proviral DNA. While the biologically relevant form of RT is the p66-p51 heterodimer, two recombinant homodimer forms of RT, p66-p66 and p51-p51, are also catalytically active. Here we investigate the binding of the three RT isoforms to a fluorescently labeled 19/50-nucleotide primer/template DNA duplex by exploiting single-molecule protein-induced fluorescence enhancement (SM-PIFE). PIFE, which does not require labeling of the protein, allows us to directly visualize the binding/unbinding of RT to a double-stranded DNA substrate. We provide values for the association and dissociation rate constants of the RT homodimers p66-p66 and p51-p51 with a double-stranded DNA substrate and compare those to the values recorded for the RT heterodimer p66-p51. We also report values for the equilibrium dissociation constant for the three isoforms. Our data reveal great similarities in the intrinsic binding affinities of p66-p51 and p66-p66, with characteristic Kd values in the nanomolar range, much smaller (50-100-fold) than that of p51-p51. Our data also show discrepancies in the association/dissociation dynamics among the three dimeric RT isoforms. Our results further show that the apparent binding affinity of p51-p51 for its DNA substrate is to a great extent time-dependent when compared to that of p66-p66 and p66-p51, and is more likely determined by the dimer dissociation into its constituent monomers rather than the intrinsic binding affinity of dimeric RT.
Collapse
Affiliation(s)
- Ryan A Marko
- Department of Chemistry and Center for Self Assembled Chemical Structures (CSACS/CRMAA), McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Gifford JL, Ishida H, Vogel HJ. Fast methionine-based solution structure determination of calcium-calmodulin complexes. JOURNAL OF BIOMOLECULAR NMR 2011; 50:71-81. [PMID: 21360154 DOI: 10.1007/s10858-011-9495-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca(2+)-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaM's backbone conformation and a structural plasticity in CaM's domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in the complex, they lack the translational information required to position the domains on the bound peptide and highlight the necessity of intermolecular NOEs. Here we employ a specific isotope labeling strategy in which the role of methionine in CaM-peptide interactions is exploited to collect these critical NOEs. By (1)H, (13)C-labeling the methyl groups of deuterated methionine against a (2)H, (12)C background, we can acquire a (13)C-edited NOESY characterized by simplified, easily analyzable spectra. Together with measured CaM backbone H(N)-N RDCs and intrapeptide NOE-based distances, these intermolecular NOEs provide restraints for a low temperature torsion-angle dynamics and simulated annealing protocol used to calculate the complex structure. We have applied our method to a CaM complex previously solved through X-ray crystallography: Ca(2+)-CaM bound to the CaM kinase I peptide (PDB code: 1MXE). The resulting structure has a backbone RMSD of 1.6 Å to that previously published. We have also used this test complex to investigate the importance of homologous model selection on the calculated outcome. In addition to having application for fast complex structure determination, this method can be used to determine the structures of difficult complexes characterized by chemical shift overlap and broad signals for which the traditional method based on the use of fully (13)C, (15)N-labeled CaM fails.
Collapse
Affiliation(s)
- Jessica L Gifford
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
17
|
Braz VA, Barkley MD, Jockusch RA, Wintrode PL. Efavirenz binding site in HIV-1 reverse transcriptase monomers. Biochemistry 2010; 49:10565-73. [PMID: 21090588 DOI: 10.1021/bi101480z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Efavirenz (EFV) is a potent nonnucleoside reverse transcriptase inhibitor (NNRTI) used in the treatment of AIDS. NNRTIs bind in a hydrophobic pocket located in the p66 subunit of reverse transcriptase (RT), which is not present in crystal structures of RT without an inhibitor. Recent studies showed that monomeric forms of the p66 and p51 subunits bind efavirenz with micromolar affinity. The effect of efavirenz on the solution conformations of p66 and p51 monomers was studied by hydrogen-deuterium exchange mass spectrometry (HXMS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). HXMS data reveal that five peptides, four of which contain efavirenz contact residues seen in the crystal structure of the RT-EFV complex, exhibit a reduced level of exchange in monomer-EFV complexes. Moreover, peptide 232-246 undergoes slow cooperative unfolding-refolding in the bound monomers, but at a rate much slower than that observed in the p66 subunit of the RT heterodimer [Seckler, J. M., Howard, K. J., Barkley, M. D., and Wintrode, P. L. (2009) Biochemistry 48, 7646-7655]. These results suggest that the efavirenz binding site on p66 and p51 monomers is similar to the NNRTI binding pocket in the p66 subunit of RT. Nanoelectrospray ionization FT-ICR mass spectra indicate that the intact monomers each have (at least) two different conformations. In the presence of efavirenz, the mass spectra change significantly and suggest that p51 adopts a single, more compact conformation, whereas p66 undergoes facile, electrospray-induced cleavage. The population shift is consistent with a selected-fit binding mechanism.
Collapse
Affiliation(s)
- Valerie A Braz
- Department of Chemistry, Case Western Reserve University,10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | |
Collapse
|
18
|
Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. JOURNAL OF BIOMOLECULAR NMR 2010; 48:31-47. [PMID: 20734113 PMCID: PMC5598763 DOI: 10.1007/s10858-010-9436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/13/2010] [Indexed: 05/12/2023]
Abstract
Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of (3)J (CSCC), (3)J (CSCH), and the isotropic shielding, sigma(iso). Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-(13)C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, (3)J (CSCC)/(3)J (COCC) approximately 0.7. It is further demonstrated that the (3)J (CSCH) coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of delta(13)Cepsilon. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large approximately 100 degrees chi(3) values. The utility of the delta(13)Cepsilon as a basis for estimating the gauche/trans ratio for chi(3) is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are discussed.
Collapse
Affiliation(s)
- Glenn L. Butterfoss
- The Courant Institute of Mathematical Sciences and the Center for Genomics & Systems Biology, New York University, New York, NY 10003 USA
| | - Eugene F. DeRose
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Scott A. Gabel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Joseph M. Krahn
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Geoffrey A. Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Xunhai Zheng
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|