1
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
2
|
Cook I, Leyh TS. The N-Terminus of Human Sulfotransferase 2B1b─a Sterol-Sensing Allosteric Site. Biochemistry 2022; 61:843-855. [PMID: 35523209 DOI: 10.1021/acs.biochem.1c00740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among human cytosolic sulfotransferases, SULT2B1b is highly specific for oxysterols─oxidized cholesterol derivatives, including nuclear-receptor ligands causally linked to skin and neurodegerative diseases, cancer and atherosclerosis. Sulfonation of signaling oxysterols redirects their receptor-binding functions, and controlling these functions is expected to prove valuable in disease prevention and treatment. SULT2B1b is distinct among the human SULT2 isoforms by virtue of its atypically long N-terminus, which extends 15 residues beyond the next longest N-terminus in the family. Here, in silico studies are used to predict that the N-terminal extension forms an allosteric pocket and to identify potential allosteres. One such allostere, quercetin, is used to confirm the existence of the pocket and to demonstrate that allostere binding inhibits turnover. The structure of the pocket is obtained by positioning quercetin on the enzyme, using spin-label-triangulation NMR, followed by NMR distance-constrained molecular dynamics docking. The model is confirmed using a combination of site-directed mutagenesis and initial-rate studies. Stopped-flow ligand-binding studies demonstrate that inhibition is achieved by stabilizing the closed form of the enzyme active-site cap, which encapsulates the nucleotide, slowing its release. Finally, endogenous oxysterols are shown to bind to the site in a highly selective fashion─one of the two immediate biosynthetic precursors of cholesterol (7-dehydrocholesterol) is an inhibitor, while the other (24-dehydrocholesterol) is not. These findings provide insights into the allosteric dialogue in which SULT2B1b participates in in vivo and establishes a template against which to develop isoform-specific inhibitors to control SULT2B1b biology.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| |
Collapse
|
3
|
Wang T, Cook I, Leyh TS. The molecular basis of OH-PCB estrogen receptor activation. J Biol Chem 2021; 296:100353. [PMID: 33524392 PMCID: PMC7949139 DOI: 10.1016/j.jbc.2021.100353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Polychlorinated bisphenols (PCBs) continue to contaminate food chains globally where they concentrate in tissues and disrupt the endocrine systems of species throughout the ecosphere. Hydroxylated PCBs (OH-PCBs) are major PCB metabolites and high-affinity inhibitors of human estrogen sulfotransferase (SULT1E1), which sulfonates estrogens and thus prevents them from binding to and activating their receptors. OH-PCB inhibition of SULT1E1 is believed to contribute significantly to PCB-based endocrine disruption. Here, for the first time, the molecular basis of OH-PCB inhibition of SULT1E1 is revealed in a structure of SULT1E1 in complex with OH-PCB1 (4ʹ-OH-2,6-dichlorobiphenol) and its substrates, estradiol (E2), and PAP (3’-phosphoadenosine-5-phosphosulfate). OH-PCB1 prevents catalysis by intercalating between E2 and catalytic residues and establishes a new E2-binding site whose E2 affinity and positioning are greater than and competitive with those of the reactive-binding pocket. Such complexes have not been observed previously and offer a novel template for the design of high-affinity inhibitors. Mutating residues in direct contact with OH-PCB weaken its affinity without compromising the enzyme’s catalytic parameters. These OH-PCB resistant mutants were used in stable transfectant studies to demonstrate that OH-PCBs regulate estrogen receptors in cultured human cell lines by binding the OH-PCB binding pocket of SULT1E1.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
4
|
Cook I, Cacace M, Wang T, Darrah K, Deiters A, Leyh TS. Small-molecule control of neurotransmitter sulfonation. J Biol Chem 2021; 296:100094. [PMID: 33485192 PMCID: PMC7948405 DOI: 10.1074/jbc.ra120.015177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
Controlling unmodified serotonin levels in brain synapses is a primary objective when treating major depressive disorder-a disease that afflicts ∼20% of the world's population. Roughly 60% of patients respond poorly to first-line treatments and thus new therapeutic strategies are sought. To this end, we have constructed isoform-specific inhibitors of the human cytosolic sulfotransferase 1A3 (SULT1A3)-the isoform responsible for sulfonating ∼80% of the serotonin in the extracellular brain fluid. The inhibitor design includes a core ring structure, which anchors the inhibitor into a SULT1A3-specific binding pocket located outside the active site, and a side chain crafted to act as a latch to inhibit turnover by fastening down the SULT1A3 active-site cap. The inhibitors are allosteric, they bind with nanomolar affinity and are highly specific for the 1A3 isoform. The cap-stabilizing effects of the latch can be accurately calculated and are predicted to extend throughout the cap and into the surrounding protein. A free-energy correlation demonstrates that the percent inhibition at saturating inhibitor varies linearly with cap stabilization - the correlation is linear because the rate-limiting step of the catalytic cycle, nucleotide release, scales linearly with the fraction of enzyme in the cap-open form. Inhibitor efficacy in cultured cells was studied using a human mammary epithelial cell line that expresses SULT1A3 at levels comparable with those found in neurons. The inhibitors perform similarly in ex vivo and in vitro studies; consequently, SULT1A3 turnover can now be potently suppressed in an isoform-specific manner in human cells.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mary Cacace
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
5
|
Lardone MC, Reyes IN, Ortiz E, Piottante A, Palma C, Ebensperger M, Castro A. Testicular steroid sulfatase overexpression is associated with Leydig cell dysfunction in primary spermatogenic failure. Andrology 2020; 9:657-664. [PMID: 33290605 DOI: 10.1111/andr.12950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Decreased testosterone (T) to LH ratio and increased 17β-estradiol (E2) serum concentrations represent a common finding among patients with severe spermatogenic failure, suggesting a concurrent Leydig cell steroidogenic dysfunction. Aromatase overexpression has been associated with increased serum and intratesticular E2 in these patients. However, it is unknown whether the sulfatase pathway contributes to the increased availability of active estrogens in patients with primary spermatogenic failure. OBJECTIVES To assess estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) mRNA abundance in testicular tissue of patients with Sertoli cell-only syndrome (SCOS) and normal tissues, its association with serum and intratesticular hormone levels, and to explore the mRNA and protein testicular localization of both enzymes. MATERIALS AND METHODS Testicular tissues of 23 subjects with SCOS (cases) and 22 patients with obstructive azoospermia and normal spermatogenesis (controls) were obtained after biopsy. SULT1E1 and STS transcripts accumulation was quantified by RT-qPCR. For mRNA and protein localization, we performed RT-qPCR in Leydig cell clusters and seminiferous tubules isolated by laser-capture microdissection and immunofluorescence in testicular tissues. Serum and intratesticular hormones were measured by immunoradiometric assays. RESULTS SULT1E1 mRNA accumulation was similar in both groups. The amount of STS mRNA was higher in cases (p = 0.007) and inversely correlated with T/LH ratio (r = -0.402; p = 0.02). Also, a near significant correlation was observed with intratesticular E2 (r = 0.329, p = 0.057), in agreement with higher intratesticular E2 in cases (p < 0.001). Strong STS immunoreaction was localized in the wall of small blood vessels but not in Leydig cells. Both SULT1E1 and STS mRNA abundance was similar in Leydig cell clusters and the tubular compartment, except for lower SUTL1E1 mRNA in the seminiferous tubules of SCOS patients (p = 0.001). CONCLUSIONS Our results suggest that an unbalance of the STS/SULT1E1 pathway contributes to the testicular hyperestrogenic microenvironment in patients with primary spermatogenic failure and Leydig cell dysfunction.
Collapse
Affiliation(s)
- Maria C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Ian N Reyes
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Eliana Ortiz
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Cristián Palma
- Urology Department, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, Clínica Las Condes, Santiago, Chile
| | - Mauricio Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Idris M, Mitchell DJ, Gordon R, Sidharthan NP, Butcher NJ, Minchin RF. Interaction of the Brain-Selective Sulfotransferase SULT4A1 with Other Cytosolic Sulfotransferases: Effects on Protein Expression and Function. Drug Metab Dispos 2020; 48:337-344. [PMID: 32152050 DOI: 10.1124/dmd.119.089714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Sulfotransferase (SULT) 4A1 is a brain-selective sulfotransferase-like protein that has recently been shown to be essential for normal neuronal development in mice. In the present study, SULT4A1 was found to colocalize with SULT1A1/3 in human brain neurons. Using immunoprecipitation, SULT4A1 was shown to interact with both SULT1A1 and SULT1A3 when expressed in human cells. Mutation of the conserved dimerization motif located in the C terminus of the sulfotransferases prevented this interaction. Both ectopically expressed and endogenous SULT4A1 decreased SULT1A1/3 protein levels in neuronal cells, and this was also prevented by mutation of the dimerization motif. During differentiation of neuronal SH-SY5Y cells, there was a loss in SULT1A1/3 protein but an increase in SULT4A1 protein. This resulted in an increase in the toxicity of dopamine, a substrate for SULT1A3. Inhibition of SULT4A1 using small interference RNA abrogated the loss in SULT1A1/3 and reversed dopamine toxicity. These results show a reciprocal relationship between SULT4A1 and the other sulfotransferases, suggesting that it may act as a chaperone to control the expression of SULT1A1/3 in neuronal cells. SIGNIFICANCE STATEMENT: The catalytically inactive sulfotransferase (SULT) 4A1 may regulate the function of other SULTs by interacting with them via a conserved dimerization motif. In neuron-like cells, SULT4A1 is able to modulate dopamine toxicity by interacting with SULT1A3, potentially decreasing the metabolism of dopamine.
Collapse
Affiliation(s)
- Misgana Idris
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Deanne J Mitchell
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Richard Gordon
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Neelima P Sidharthan
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
7
|
Darrah K, Wang T, Cook I, Cacace M, Deiters A, Leyh TS. Allosteres to regulate neurotransmitter sulfonation. J Biol Chem 2019; 294:2293-2301. [PMID: 30545938 PMCID: PMC6378965 DOI: 10.1074/jbc.ra118.006511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Catecholamine neurotransmitter levels in the synapses of the brain shape human disposition-cognitive flexibility, aggression, depression, and reward seeking-and manipulating these levels is a major objective of the pharmaceutical industry. Certain neurotransmitters are extensively sulfonated and inactivated by human sulfotransferase 1A3 (SULT1A3). To our knowledge, sulfonation as a therapeutic means of regulating transmitter activity has not been explored. Here, we describe the discovery of a SULT1A3 allosteric site that can be used to inhibit the enzyme. The structure of the new site is determined using spin-label-triangulation NMR. The site forms a cleft at the edge of a conserved ∼30-residue active-site cap that must open and close during the catalytic cycle. Allosteres anchor into the site via π-stacking interactions with two residues that sandwich the planar core of the allostere and inhibit the enzyme through cap-stabilizing interactions with substituents attached to the core. Changes in cap free energy were calculated ab initio as a function of core substituents and used to design and synthesize a series of inhibitors intended to progressively stabilize the cap and slow turnover. The inhibitors bound tightly (34 nm to 7.4 μm) and exhibited progressive inhibition. The cap-stabilizing effects of the inhibitors were experimentally determined and agreed remarkably well with the theoretical predictions. These studies establish a reliable heuristic for the design of SULT1A3 allosteric inhibitors and demonstrate that the free-energy changes of a small, dynamic loop that is critical for SULT substrate selection and turnover can be calculated accurately.
Collapse
Affiliation(s)
- Kristie Darrah
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Ting Wang
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Mary Cacace
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Alexander Deiters
- From the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 and
| | - Thomas S Leyh
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| |
Collapse
|
8
|
Cook I, Wang T, Leyh TS. Isoform-specific therapeutic control of sulfonation in humans. Biochem Pharmacol 2018; 159:25-31. [PMID: 30423313 DOI: 10.1016/j.bcp.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
The activities of hundreds, perhaps thousands, of metabolites are regulated by human cytosolic sulfotransferases (SULTs) - a 13-member family of disease relevant enzymes that catalyze transfer of the sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfonate) to the hydroxyls and amines of acceptors. SULTs harbor two independent allosteric sites, one of which, the focus of this work, binds non-steroidal anti-inflammatory drugs (NSAIDs). The structure of the first NSAID-binding site - that of SULT1A1 - was elucidated recently and homology modeling suggest that variants of the site are present in all SULT isoforms. The objective of the current study was to assess whether the NSAID-binding site can be used to regulate sulfuryl transfer in humans in an isoform specific manner. Mefenamic acid (Mef) is a potent (Ki 27 nM) NSAID-inhibitor of SULT1A1 - the predominant SULT isoform in small intestine and liver. Acetaminophen (APAP), a SULT1A1 specific substrate, is extensively sulfonated in humans. Dehydroepiandrosterone (DHEA) is specific for SULT2A1, which we show here is insensitive to Mef inhibition. APAP and DHEA sulfonates are readily quantified in urine and thus the effects of Mef on APAP and DHEA sulfonation could be studied non-invasively. Compounds were given orally in a single therapeutic dose to a healthy, adult male human with a typical APAP-metabolite profile. Mef profoundly decreased APAP sulfonation during first pass metabolism and substantially decreased systemic APAP sulfonation without influencing DHEA sulfonation; thus, it appears the NSAID site can be used to control sulfonation in humans in a SULT-isoform specific manner.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States.
| |
Collapse
|
9
|
Wang T, Cook I, Leyh TS. The NSAID allosteric site of human cytosolic sulfotransferases. J Biol Chem 2017; 292:20305-20312. [PMID: 29038294 PMCID: PMC5724015 DOI: 10.1074/jbc.m117.817387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/04/2017] [Indexed: 11/06/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed drugs worldwide-more than 111 million prescriptions were written in the United States in 2014. NSAIDs allosterically inhibit cytosolic sulfotransferases (SULTs) with high specificity and therapeutically relevant affinities. This study focuses on the interactions of SULT1A1 and mefenamic acid (MEF)-a potent, highly specific NSAID inhibitor of 1A1. Here, the first structure of an NSAID allosteric site-the MEF-binding site of SULT1A1-is determined using spin-label triangulation NMR. The structure is confirmed by site-directed mutagenesis and provides a molecular framework for understanding NSAID binding and isoform specificity. The mechanism of NSAID inhibition is explored using molecular dynamics and equilibrium and pre-steady-state ligand-binding studies. MEF inhibits SULT1A1 turnover through an indirect (helix-mediated) stabilization of the closed form of the active-site cap of the enzyme, which traps the nucleotide and slows its release. Using the NSAID-binding site structure of SULT1A1 as a comparative model, it appears that 11 of the 13 human SULT isoforms harbor an NSAID-binding site. We hypothesize that these sites evolved to enable SULT isoforms to respond to metabolites that lie within their metabolic domains. Finally, the NSAID-binding site structure offers a template for developing isozyme-specific allosteric inhibitors that can be used to regulate specific areas of sulfuryl-transfer metabolism.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
10
|
Guidry AL, Tibbs ZE, Runge-Morris M, Falany CN. Expression, purification and characterization of human cytosolic sulfotransferase (SULT) 1C4. Horm Mol Biol Clin Investig 2017; 29:27-36. [PMID: 28222028 DOI: 10.1515/hmbci-2016-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Human cytosolic sulfotransferase 1C4 (hSULT1C4) is a dimeric Phase II drug-metabolizing enzyme primarily expressed in the developing fetus. SULTs facilitate the transfer of a hydrophilic sulfonate moiety from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto an acceptor substrate altering the substrate's biological activity and increasing the compound's water solubility. While several of the hSULTs' endogenous and xenobiotic substrates have been identified, the physiological function of hSULT1C4 remains unknown. The fetal expression of hSULT1C4 leads to the hypothesis that the function of this enzyme may be to regulate metabolic and hormonal signaling molecules, such as estrogenic compounds, that may be generated or consumed by the mother during fetal development. Human SULT1C4 has previously been shown to sulfonate estrogenic compounds, such as catechol estrogens; therefore, this study focused on the expression and purification of hSULT1C4 in order to further characterize this enzyme's sulfonation of estrogenic compounds. Molecular modeling of the enzyme's native properties helped to establish a novel purification protocol for hSULT1C4. The optimal activity assay conditions for hSULT1C4 were determined to be pH 7.4 at 37°C for up to 10 min. Kinetic analysis revealed the enzyme's reduced affinity for PAPS compared to PAP. Human SULT1C4 sulfonated all the estrogenic compounds tested, including dietary flavonoids and environmental estrogens; however, the enzyme has a higher affinity for sulfonation of flavonoids. These results suggest hSULT1C4 could be metabolizing and regulating hormone signaling pathways during human fetal development.
Collapse
|
11
|
The structure of the catechin-binding site of human sulfotransferase 1A1. Proc Natl Acad Sci U S A 2016; 113:14312-14317. [PMID: 27911811 DOI: 10.1073/pnas.1613913113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We are just beginning to understand the allosteric regulation of the human cytosolic sulfotransferase (SULTs) family-13 disease-relevant enzymes that regulate the activities of hundreds, if not thousands, of signaling small molecules. SULT1A1, the predominant isoform in adult liver, harbors two noninteracting allosteric sites, each of which binds a different molecular family: the catechins (naturally occurring flavonols) and nonsteroidal antiinflammatory drugs (NSAIDs). Here, we present the structure of an SULT allosteric binding site-the catechin-binding site of SULT1A1 bound to epigallocatechin gallate (EGCG). The allosteric pocket resides in a dynamic region of the protein that enables EGCG to control opening and closure of the enzyme's active-site cap. Furthermore, the structure offers a molecular explanation for the isozyme specificity of EGCG, which is corroborated experimentally. The binding-site structure was obtained without X-ray crystallography or multidimensional NMR. Instead, a SULT1A1 apoprotein structure was used to guide positioning of a small number of spin-labeled single-Cys mutants that coat the entire enzyme surface with a paramagnetic field of sufficient strength to determine its contribution to the bound ligand's transverse (T2) relaxation from its 1D solution spectrum. EGCG protons were mapped to the protein surface by triangulation using the T2 values to calculate their distances to a trio of spin-labeled Cys mutants. The final structure was obtained using distance-constrained molecular dynamics docking. This approach, which is readily extensible to other systems, is applicable over a wide range of ligand affinities, requires little protein, avoids the need for isotopically labeled protein, and has no protein molecular weight limitations.
Collapse
|
12
|
Tibbs ZE, Falany CN. An engineered heterodimeric model to investigate SULT1B1 dependence on intersubunit communication. Biochem Pharmacol 2016; 115:123-33. [PMID: 27338799 DOI: 10.1016/j.bcp.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023]
Abstract
Cytosolic sulfotransferases (SULTs) biotransform small molecules to polar sulfate esters as a means to alter their activities within the body. Understanding the molecular mechanism by which the SULTs perform their function is important for optimizing future therapeutic applications. Recent evidence suggests each SULT isoform acts by a half-site reaction (HSR) mechanism, in which a single SULT dimer subunit is active at any given time. HSR requires communication through the highly conserved KxxxTVxxxE dimerization motif. In this investigation, we sought to test the intersubunit interactions of SULT1B1 as it relates to enzyme activity. We generated two populations of SULT1B1 isoforms that efficiently heterodimerize upon mixing by targeted point mutation of the KxxxTVxxxE motif to KxxxTVxxxK or ExxxTVxxxE. The heterodimer exhibited wildtype-like activity with regard to native size, thermal integrity, PAP affinity, and PAPS Km, therefore serving as a valid model for investigating SULT1B1 dimer subunit interactions. The approach granted control over each independent subunit, permitting mutation of the critical 3'-phosphoadenosine 5'-phosphosulfate (PAPS) binding residue Arg258 and/or the catalytic base His109 in a single subunit of the dimer. Substitution of the dysfunctional subunits for fully active subunits yielded dimeric SULT1B1 with 50% the activity of the fully competent dimer, suggesting SULT1B1 intersubunit communication does not significantly contribute to the isoform's activity. These results are a testament to the unique properties of individual SULT isoforms. The dimerization system described in this manuscript can be used to study subunit interactions in other SULT isoforms as well as proteins in other families.
Collapse
Affiliation(s)
- Zachary E Tibbs
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-0019, United States.
| | - Charles N Falany
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-0019, United States.
| |
Collapse
|
13
|
Wang T, Cook I, Leyh TS. Isozyme Specific Allosteric Regulation of Human Sulfotransferase 1A1. Biochemistry 2016; 55:4036-46. [PMID: 27356022 DOI: 10.1021/acs.biochem.6b00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human cytosolic sulfotransferases (SULTs) comprise a 13-member enzyme family that regulates the activities of hundreds, perhaps thousands, of signaling small molecules via regiospecific transfer of the sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and amines of acceptors. Signaling molecules regulated by sulfonation include numerous steroid and thyroid hormones, epinephrine, serotonin, and dopamine. SULT1A1, a major phase II metabolism SULT isoform, is found at a high concentration in liver and has recently been show to harbor two allosteric binding sites, each of which binds a separate and complex class of compounds: the catechins (naturally occurring polyphenols) and nonsteroidal anti-inflammatory drugs. Among catechins, epigallocatechin gallate (EGCG) displays high affinity and specificity for SULT1A1. The allosteric network associated with either site has yet to be defined. Here, using equilibrium binding and pre-steady state studies, the network is shown to involve 14 distinct complexes. ECGG binds both the allosteric site and, relatively weakly, the active site of SULT1A1. It is not a SULT1A1 substrate but is sulfonated by SULT2A1. EGCG binds 17-fold more tightly when the active-site cap of the enzyme is closed by the binding of the nucleotide. When nucleotide is saturating, EGCG binds in two phases. In the first, it binds to the cap-open conformer; in the second, it traps the cap in the closed configuration. Cap closure encapsulates the nucleotide, preventing its release; hence, the EGCG-induced cap stabilization slows nucleotide release, inhibiting turnover. Finally, a comprehensive quantitative model of the network is presented.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| |
Collapse
|
14
|
Cook I, Wang T, Leyh TS. Sulfotransferase 1A1 Substrate Selectivity: A Molecular Clamp Mechanism. Biochemistry 2016; 54:6114-22. [PMID: 26340710 DOI: 10.1021/acs.biochem.5b00406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The human cytosolic sulfotransferases (SULTs) regulate hundreds, perhaps thousands, of small molecule metabolites and xenobiotics via transfer of a sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of the recipients. In liver, where it is abundant, SULT1A1 engages in modifying metabolites and neutralizing toxins. The specificity of 1A1 is the broadest of any SULT, and understanding its selectivity is fundamental to understanding its biology. Here, for the first time, we show that SULT1A1 substrates separate naturally into two classes: those whose affinities are either enhanced ∼20-fold (positive synergy) or unaffected (neutral synergy) by the presence of a saturating nucleotide. kcat for the positive-synergy substrates is shown to be ∼100-fold greater than that of neutral-synergy compounds; consequently, the catalytic efficiency (kcat/Km) is approximately 3 orders of magnitude greater for the positive-synergy species. All-atom dynamics modeling suggests a molecular mechanism for these observations in which the binding of only positive-synergy compounds causes two phenylalanine residues (F81 and 84) to reposition and "sandwich" the phenolic moiety of the substrates, thus enhancing substrate affinity and positioning the nucleophilic oxygen for attack. Molecular dynamics movies reveal that the neutral-synergy compounds "wander" about the active site, infrequently achieving a reactive position. In-depth analysis of select point mutants strongly supports the model and provides an intimate view of the interdependent catalytic functions of subsections of the active site.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| |
Collapse
|
15
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
16
|
Tibbs ZE, Falany CN. Dimeric human sulfotransferase 1B1 displays cofactor-dependent subunit communication. Pharmacol Res Perspect 2015; 3:e00147. [PMID: 26236487 PMCID: PMC4492763 DOI: 10.1002/prp2.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/05/2015] [Accepted: 03/22/2015] [Indexed: 01/27/2023] Open
Abstract
The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), and release the byproduct, 3', 5'-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro.
Collapse
Affiliation(s)
- Zachary E Tibbs
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham Birmingham, Alabama, 35294-0019
| | - Charles N Falany
- The Department of Pharmacology and Toxicology, The University of Alabama at Birmingham Birmingham, Alabama, 35294-0019
| |
Collapse
|
17
|
Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015; 30:3-20. [DOI: 10.1016/j.dmpk.2014.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
18
|
Cook I, Wang T, Falany CN, Leyh TS. The allosteric binding sites of sulfotransferase 1A1. Drug Metab Dispos 2014; 43:418-23. [PMID: 25534770 DOI: 10.1124/dmd.114.061887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human sulfotransferases (SULTs) comprise a small, 13-member enzyme family that regulates the activities of thousands of compounds-endogenous metabolites, drugs, and other xenobiotics. SULTs transfer the sulfuryl-moiety (-SO3) from a nucleotide donor, PAPS (3'-phosphoadenosine 5'-phosphosulfate), to the hydroxyls and primary amines of acceptors. SULT1A1, a progenitor of the family, has evolved to sulfonate compounds that are remarkably structurally diverse. SULT1A1, which is found in many tissues, is the predominant SULT in liver, where it is a major component of phase II metabolism. Early work demonstrated that catechins and nonsteroidal anti-inflammatory drugs inhibit SULT1A1 and suggested that the inhibition was not competitive versus substrates. Here, the mechanism of inhibition of a single, high affinity representative from each class [epigallocatechin gallate (EGCG) and mefenamic acid] is determined using initial-rate and equilibrium-binding studies. The findings reveal that the inhibitors bind at sites separate from those of substrates, and at saturation turnover of the enzyme is reduced to a nonzero value. Further, the EGCG inhibition patterns suggest a molecular explanation for its isozyme specificity. Remarkably, the inhibitors bind at sites that are separate from one another, and binding at one site does not affect affinity at the other. For the first time, it is clear that SULT1A1 is allosterically regulated, and that it contains at least two, functionally distinct allosteric sites, each of which responds to a different class of compounds.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology (I.C., T.W., T.S.L.), Albert Einstein College of Medicine, Bronx, New York; and Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama (C.N.F.)
| | - Ting Wang
- Department of Microbiology and Immunology (I.C., T.W., T.S.L.), Albert Einstein College of Medicine, Bronx, New York; and Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama (C.N.F.)
| | - Charles N Falany
- Department of Microbiology and Immunology (I.C., T.W., T.S.L.), Albert Einstein College of Medicine, Bronx, New York; and Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama (C.N.F.)
| | - Thomas S Leyh
- Department of Microbiology and Immunology (I.C., T.W., T.S.L.), Albert Einstein College of Medicine, Bronx, New York; and Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama (C.N.F.)
| |
Collapse
|
19
|
Bythell-Douglas R, Suttisansanee U, Flematti GR, Challenor M, Lee M, Panjikar S, Honek JF, Bond CS. The Crystal Structure of a HomodimericPseudomonasGlyoxalase I Enzyme Reveals Asymmetric Metallation Commensurate with Half-of-Sites Activity. Chemistry 2014; 21:541-4. [DOI: 10.1002/chem.201405402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 01/11/2023]
|
20
|
Wang T, Cook I, Leyh TS. 3'-Phosphoadenosine 5'-phosphosulfate allosterically regulates sulfotransferase turnover. Biochemistry 2014; 53:6893-900. [PMID: 25314023 PMCID: PMC4230322 DOI: 10.1021/bi501120p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Human cytosolic sulfotransferases
(SULTs) regulate the activities
of thousands of small molecules—metabolites, drugs, and other
xenobiotics—via the transfer of the sulfuryl moiety (-SO3) from 3′-phosphoadenosine 5′-phosphosulfate
(PAPS) to the hydroxyls and primary amines of acceptors. SULT1A1 is
the most abundant SULT in liver and has the broadest substrate spectrum
of any SULT. Here we present the discovery of a new form of SULT1A1
allosteric regulation that modulates the catalytic efficiency of the
enzyme over a 130-fold dynamic range. The molecular basis of the regulation
is explored in detail and is shown to be rooted in an energetic coupling
between the active-site caps of adjacent subunits in the SULT1A1 dimer.
The first nucleotide to bind causes closure of the cap to which it
is bound and at the same time stabilizes the cap in the adjacent subunit
in the open position. Binding of the second nucleotide causes both
caps to open. Cap closure sterically controls active-site access of
the nucleotide and acceptor; consequently, the structural changes
in the cap that occur as a function of nucleotide occupancy lead to
changes in the substrate affinities and turnover of the enzyme. PAPS
levels in tissues from a variety of organs suggest that the catalytic
efficiency of the enzyme varies across tissues over the full 130-fold
range and that efficiency is greatest in those tissues that experience
the greatest xenobiotic “load”.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461-1926, United States
| | | | | |
Collapse
|
21
|
Wang T, Cook I, Falany CN, Leyh TS. Paradigms of sulfotransferase catalysis: the mechanism of SULT2A1. J Biol Chem 2014; 289:26474-26480. [PMID: 25056952 DOI: 10.1074/jbc.m114.573501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytosolic sulfotransferases (SULTs) regulate the activities of thousands of signaling small molecules via transfer of the sulfuryl moiety (-SO3) from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the hydroxyls and primary amines of acceptors. Sulfonation controls the affinities of ligands for their targets, and thereby regulates numerous receptors, which, in turn, regulate complex cellular responses. Despite their biological and medical relevance, basic SULT mechanism issues remain unresolved. To settle these issues, and to create an in-depth model of SULT catalysis, the complete kinetic mechanism of a representative member of the human SULT family, SULT2A1, was determined. The mechanism is composed of eight enzyme forms that interconvert via 22 rate constants, each of which was determined independently. The result is a complete quantitative description of the mechanism that accurately predicts complex enzymatic behavior. This is the first description of a SULT mechanism at this resolution, and it reveals numerous principles of SULT catalysis and resolves previously ambiguous issues. The structures and catalytic behaviors SULTs are highly conserved; hence, the mechanism presented here should prove paradigmatic for the family.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Charles N Falany
- Departments of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294-0019 and
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
22
|
Sidharthan NP, Butcher NJ, Mitchell DJ, Minchin RF. Expression of the orphan cytosolic sulfotransferase SULT4A1 and its major splice variant in human tissues and cells: dimerization, degradation and polyubiquitination. PLoS One 2014; 9:e101520. [PMID: 24988429 PMCID: PMC4079325 DOI: 10.1371/journal.pone.0101520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/08/2014] [Indexed: 11/19/2022] Open
Abstract
The cytosolic sulfotransferase SULT4A1 is highly conserved between mammalian species but its function remains unknown. Polymorphisms in the SULT4A1 gene have been linked to susceptibility to schizophrenia. There are 2 major SULT4A1 transcripts in humans, one that encodes full length protein (wild-type) and one that encodes a truncated protein (variant). Here, we investigated the expression of SULT4A1 in human tissues by RT-PCR and found the wild-type mRNA to be expressed mainly in the brain, gastrointestinal tract and prostate while the splice variant was more widely expressed. In human cell-lines, the wild-type transcript was found in neuronal cells, but the variant transcript was expressed in nearly all other lines examined. Western blot analysis only identified SULT4A1 protein in cells that expressed the wild-type mRNA. No variant protein was detected in cells that expressed the variant mRNA. Ectopically expressed full length SULT4A1 protein was stable while the truncated protein was not, having a half-life of approximately 3 hr. SULT4A1 was also shown to homodimerize, consistent with other SULTs that contain the consensus dimerization motif. Mutation of the dimerization motif resulted in a monomeric form of SULT4A1 that was rapidly degraded by polyubiquitination on the lysine located within the dimerization motif. These results show that SULT4A1 is widely expressed in human tissues, but mostly as a splice variant that produces a rapidly degraded protein. Dimerization protects the protein from degradation. Since many other cytosolic sulfotransferases possess the conserved lysine within the dimerization motif, homodimerization may serve, in part, to stabilize these enzymes in vivo.
Collapse
Affiliation(s)
- Neelima P. Sidharthan
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Neville J. Butcher
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Deanne J. Mitchell
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Rodney F. Minchin
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
23
|
Malojčić G, Owen RL, Glockshuber R. Structural and Mechanistic Insights into the PAPS-Independent Sulfotransfer Catalyzed by Bacterial Aryl Sulfotransferase and the Role of the DsbL/DsbI System in Its Folding. Biochemistry 2014; 53:1870-7. [DOI: 10.1021/bi401725j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Goran Malojčić
- Institute
of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robin L. Owen
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Rudi Glockshuber
- Institute
of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
24
|
Cook I, Wang T, Falany CN, Leyh TS. High accuracy in silico sulfotransferase models. J Biol Chem 2013; 288:34494-501. [PMID: 24129576 PMCID: PMC3843064 DOI: 10.1074/jbc.m113.510974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/06/2013] [Indexed: 12/29/2022] Open
Abstract
Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.
Collapse
Affiliation(s)
- Ian Cook
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| | - Ting Wang
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| | - Charles N. Falany
- the Department of Pharmacology and Toxicology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294-0019
| | - Thomas S. Leyh
- From the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926 and
| |
Collapse
|
25
|
Gosavi RA, Knudsen GA, Birnbaum LS, Pedersen LC. Mimicking of estradiol binding by flame retardants and their metabolites: a crystallographic analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1194-9. [PMID: 23959441 PMCID: PMC3801471 DOI: 10.1289/ehp.1306902] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/13/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Brominated flame retardants (BFRs), used in many types of consumer goods, are being studied because of concerns about possible health effects related to endocrine disruption, immunotoxicity, reproductive toxicity, and neurotoxicity. Tetrabromobisphenol A (TBBPA), the most widely used BFR, and human metabolites of certain congeners of polybrominated diphenyl ether (e.g., 3-OH-BDE-47) have been suggested to inhibit estrogen sulfotransferase, potentially affecting estrogen metabolism. OBJECTIVES Our primary goal was to understand the structural mechanism for inhibition of the hormone-metabolizing enzyme estrogen sulfotransferase by certain BFRs. We also sought to understand various factors that facilitate the binding of flame retardants in the enzyme binding pocket. METHODS We used X-ray crystallography to obtain atomic detail of the binding modes of TBBPA and 3-OH-BDE-47 to estrogen sulfotransferase for comparison with binding of the endogenous substrate estradiol. RESULTS The crystal structures reveal how BFRs mimic estradiol binding as well as the various interactions between the compounds and protein residues that facilitate its binding. In addition, the structures provide insights into the ability of the sulfotransferase substrate binding pocket to accommodate a range of halogenated compounds that satisfy minimal structural criteria. CONCLUSIONS Our results show how BFRs or their metabolites can bind to and inhibit a key hormone-metabolizing enzyme, potentially causing endocrine disruption.
Collapse
Affiliation(s)
- Rajendrakumar A Gosavi
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, North Carolina, USA
| | | | | | | |
Collapse
|
26
|
Leyh TS, Cook I, Wang T. Structure, dynamics and selectivity in the sulfotransferase family. Drug Metab Rev 2013; 45:423-30. [PMID: 24025091 DOI: 10.3109/03602532.2013.835625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Combined structure, function and molecular dynamics studies of human cytosolic sulfotransferases (SULT1A1 and 2A1) have revealed that these enzymes contain a ≈ 30-residue active-site cap whose structure responds to substrates and mediates their interactions. The binding of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) gates access to the active site by a remodeling of the cap that constricts the pore through which acceptors must pass to enter the active site. While the PAPS-bound enzyme spends the majority (≈ 95%) of its time in the constricted state, the pore isomerizes between the open and closed states when the nucleotide (PAPS) is bound. The dimensions of the open and closed pores place widely different steric constraints on substrate selectivity. Nature appears to have crafted these enzymes with two specificity settings - a closed-pore setting that admits a set of closely related structures, and an open setting that allows a far wider spectrum of acceptor geometries. The specificities of these settings seem well matched to the metabolic demands for homeostatic and defensive SULT functions. The departure of nucleotide requires that the cap open. This isomerization dependent release can explain both the product bursts and substrate inhibition seen in many SULTs. Here, the experimental underpinnings of the cap-mechanism are reviewed, and the advantages of such a mechanism are considered in the context of the cellular and metabolic environment in which these enzymes operate.
Collapse
Affiliation(s)
- Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine , Bronx, NY , USA
| | | | | |
Collapse
|
27
|
Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS. Testing the sulfotransferase molecular pore hypothesis. J Biol Chem 2013; 288:8619-8626. [PMID: 23362278 DOI: 10.1074/jbc.m112.445015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytosolic sulfotransferases (SULTs) regulate the activities of hundreds of signaling metabolites via transfer of the sulfuryl moiety (-SO3) from activated sulfate (3'-phosphoadenosine 5'-phosphosulfate) to the hydroxyls and primary amines of xeno- and endobiotics. How SULTs select substrates from the scores of competing ligands present in a cytosolic milieu is an important issue in the field. Selectivity appears to be sterically controlled by a molecular pore that opens and closes in response to nucleotide binding. This point of view is fostered by structures showing nucleotide-dependent pore closure and the fact that nucleotide binding induces an isomerization that restricts access to the acceptor-binding pocket. Molecular dynamics models underscore the importance of pore isomerization in selectivity and predict that specific molecular linkages stabilize the closed pore in response to nucleotide binding. To test the pore model, these linkages were disrupted in SULT2A1 via mutagenesis, and the effects on selectivity were determined. The mutations uncoupled nucleotide binding from selectivity and produced enzymes that no longer discriminated between large and small substrates. The mutations did not affect the affinity or turnover of small substrates but resulted in a 183-fold gain in catalytic efficiently toward large substrates. Models predict that an 11-residue "flap" covering the acceptor-binding pocket can open and admit large substrates when nucleotide is bound; a mutant structure demonstrated that this is so. In summary, the model was shown to be a robust, accurate predictor of SULT structure and selectivity whose general features will likely apply to other members of the SULT family.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Jungwook Kim
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1926
| | - Charles N Falany
- Department Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham, Alabama 35294-0019
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1926.
| |
Collapse
|
28
|
Cook I, Wang T, Almo SC, Kim J, Falany CN, Leyh TS. The gate that governs sulfotransferase selectivity. Biochemistry 2012; 52:415-24. [PMID: 23256751 DOI: 10.1021/bi301492j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cytosolic sulfotransferases (SULTs) transfer the sulfuryl moiety (-SO(3)) from activated sulfate [3'-phosphoadenosine 5'-phosphosulfate (PAPS)] to the hydroxyls and primary amines of numerous metabolites, drugs, and xenobiotics. Receipt of the sulfuryl group often radically alters acceptor-target interactions. How these enzymes select particular substrates from the hundreds of candidates in a complex cytosol remains an important question. Recent work reveals PAPS binding causes SULT2A1 to undergo an isomerization that controls selectivity by constricting the opening through which acceptors must pass to enter the active site. The enzyme maintains an affinity for large substrates by isomerizing between the open and closed states with nucleotide bound. Here, the molecular basis of the nucleotide-induced closure is explored in equilibrium and nonequilibrium molecular dynamics simulations. The simulations predict that the active-site "cap," which covers both the nucleotide and acceptor binding sites, opens and closes in response to nucleotide. The cap subdivides into nucleotide and acceptor halves whose motions, while coupled, exhibit an independence that can explain the isomerization. In silico weakening of electrostatic interactions between the cap and base of the active site causes the acceptor half of the cap to open and close while the nucleotide lid remains shut. Simulations predict that SULT1A1, the most abundant SULT in human liver, will utilize a similar selection mechanism. This prediction is tested using fulvestrant, an anti-estrogen too large to pass through the closed pore, and estradiol, which is not restricted by closure. Equilibrium and pre-steady-state binding studies confirm that SULT1A1 undergoes a nucleotide-induced isomerzation that controls substrate selection.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1926, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cook I, Wang T, Falany CN, Leyh TS. A nucleotide-gated molecular pore selects sulfotransferase substrates. Biochemistry 2012; 51:5674-83. [PMID: 22703301 DOI: 10.1021/bi300631g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human SULT2A1 is one of two predominant sulfotransferases in liver and catalyzes transfer of the sulfuryl moiety (-SO(3)) from activated sulfate (PAPS, 3'-phosphoadenosine 5-phosphosulfate) to hundreds of acceptors (metabolites and xenobiotics). Sulfation recodes the biologic activity of acceptors by altering their receptor interactions. The molecular basis on which these enzymes select and sulfonate specific acceptors from complex mixtures of competitors in vivo is a long-standing issue in the SULT field. Raloxifene, a synthetic steroid used in the prevention of osteoporosis, and dehydroepiandrosterone (DHEA), a ubiquitous steroid precusor, are reported to be sulfated efficiently by SULT2A1 in vitro, yet unlike DHEA, raloxifene is not sulfated in vivo. This selectivity was explored in initial rate and equilibrium binding studies that demonstrate pronounced binding antisynergy (21-fold) between PAPS and raloxifene, but not DHEA. Analysis of crystal structures suggests that PAP binding restricts access to the acceptor-binding pocket by restructuring a nine-residue segment of the pocket edge that constricts the active site opening, or "pore", that sieves substrates on the basis of their geometries. In silico docking predicts that raloxifene, which is considerably larger than DHEA, can bind only to the unliganded (open) enzyme, whereas DHEA binds both the open and closed forms. The predictions of these structures with regard to substrate binding are tested using equilibrium and pre-steady-state ligand binding studies, and the results confirm that a nucleotide-driven isomerization controls access to the acceptor-binding pocket and plays an important role in substrate selection by SULT2A1 and possibly other sulfotransferases.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461-1926, USA
| | | | | | | |
Collapse
|
30
|
Lefurgy ST, Leyh TS. Analytical expressions for the homotropic binding of ligand to protein dimers and trimers. Anal Biochem 2011; 421:433-8. [PMID: 22230282 DOI: 10.1016/j.ab.2011.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 11/16/2022]
Abstract
Cooperative binding of a ligand to multiple subsites on a protein is a common theme among enzymes and receptors. The analysis of cooperative binding data (either positive or negative) often relies on the assumption that free ligand concentration, L, can be approximated by the total ligand concentration, L(T). When this approximation does not hold, such analyses result in inaccurate estimates of dissociation constants. Presented here are exact analytical expressions for equilibrium concentrations of all enzyme and ligand species (in terms of K(d) values and total concentrations of protein and ligand) for homotropic dimeric and trimeric protein-ligand systems. These equations circumvent the need to approximate L and are provided in Excel worksheets suitable for simulation and least-squares fitting. The equations and worksheets are expanded to treat cases where binding signals vary with distinct site occupancy.
Collapse
Affiliation(s)
- Scott T Lefurgy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|