1
|
Akiyama Y, Kimura K, Komatsu S, Takarada T, Maeda M, Kikuchi A. A Simple Colorimetric Assay of Bleomycin-Mediated DNA Cleavage Utilizing Double-Stranded DNA-Modified Gold Nanoparticles. Chembiochem 2023; 24:e202200451. [PMID: 36156837 PMCID: PMC10092608 DOI: 10.1002/cbic.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Indexed: 01/05/2023]
Abstract
A colorimetric assay of DNA cleavage by bleomycin (BLM) derivatives was developed utilizing high colloidal stability on double-stranded (ds) DNA-modified gold nanoparticles (dsDNA-AuNPs) possessing a cleavage site. The assay was performed using dsDNA-AuNPs treated with inactive BLM or activated BLM (Fe(II)⋅BLM). A 10-min exposure in dsDNA-AuNPs with inactive BLM treatment resulted in a rapid color change from red to purple because of salt-induced non-crosslinking aggregation of dsDNA-AuNPs. In contrast, the addition of active Fe(II)⋅BLM retained the red color, probably because of the formation of protruding structures at the outermost phase of dsDNA-AuNPs caused by BLM-mediated DNA cleavage. Furthermore, the results of our model experiments indicate that oxidative base release and DNA-cleavage pathways could be visually distinguished with color change. The present methodology was also applicable to model screening assays using several drugs with different mechanisms related to antitumor activity. These results strongly suggest that this assay with a rapid color change could lead to simple and efficient screening of potent antitumor agents.
Collapse
Affiliation(s)
- Yoshitsugu Akiyama
- Katsushika Division, Institute of Arts and Sciences, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan.,Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Kazunori Kimura
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Syuuhei Komatsu
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| | - Tohru Takarada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, 351-0198, Wako, Saitama, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, 125-8585, Katsushika, Tokyo, Japan
| |
Collapse
|
2
|
Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proc Natl Acad Sci U S A 2022; 119:e2112496119. [PMID: 35671421 PMCID: PMC9214542 DOI: 10.1073/pnas.2112496119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thermodynamic preferences to form non-native conformations are crucial for understanding how nucleic acids fold and function. However, they are difficult to measure experimentally because this requires accurately determining the population of minor low-abundance (<10%) conformations in a sea of other conformations. Here, we show that melting experiments enable facile measurements of thermodynamic preferences to adopt nonnative conformations in DNA and RNA. The key to this "delta-melt" approach is to use chemical modifications to render specific minor non-native conformations the major state. The validity and robustness of delta-melt is established for four different non-native conformations under various physiological conditions and sequence contexts through independent measurements of thermodynamic preferences using NMR. Delta-melt is faster relative to NMR, simple, and cost-effective and enables thermodynamic preferences to be measured for exceptionally low-populated conformations. Using delta-melt, we obtained rare insights into conformational cooperativity, obtaining evidence for significant cooperativity (1.0 to 2.5 kcal/mol) when simultaneously forming two adjacent Hoogsteen base pairs. We also measured the thermodynamic preferences to form G-C+ and A-T Hoogsteen and A-T base open states for nearly all 16 trinucleotide sequence contexts and found distinct sequence-specific variations on the order of 2 to 3 kcal/mol. This rich landscape of sequence-specific non-native minor conformations in the DNA double helix may help shape the sequence specificity of DNA biochemistry. Thus, melting experiments can now be used to access thermodynamic information regarding regions of the free energy landscape of biomolecules beyond the native folded and unfolded conformations.
Collapse
|
3
|
Wu PC, Tzeng SL, Chang CK, Kao YF, Waring MJ, Hou MH. Cooperative recognition of T:T mismatch by echinomycin causes structural distortions in DNA duplex. Nucleic Acids Res 2019; 46:7396-7404. [PMID: 29741655 PMCID: PMC6101601 DOI: 10.1093/nar/gky345] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Small-molecule compounds that target mismatched base pairs in DNA offer a novel prospective for cancer diagnosis and therapy. The potent anticancer antibiotic echinomycin functions by intercalating into DNA at CpG sites. Surprisingly, we found that the drug strongly prefers to bind to consecutive CpG steps separated by a single T:T mismatch. The preference appears to result from enhanced cooperativity associated with the binding of the second echinomycin molecule. Crystallographic studies reveal that this preference originates from the staggered quinoxaline rings of the two neighboring antibiotic molecules that surround the T:T mismatch forming continuous stacking interactions within the duplex. These and other associated changes in DNA conformation allow the formation of a minor groove pocket for tight binding of the second echinomycin molecule. We also show that echinomycin displays enhanced cytotoxicity against mismatch repair-deficient cell lines, raising the possibility of repurposing the drug for detection and treatment of mismatch repair-deficient cancers.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Fen Kao
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Kimura E, Kikuta E. Macrocyclic Zinc(II) Complexes for Selective Recognition of Nucleobases in Single- and Double-Stranded Polynucleotides. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The model study of zinc enzyme by Zn2+–cyclen complexes (cyclen = 1, 4, 7, 10-tetraazacyclododecane) disclosed the intrinsic properties of zinc(II) as having strong anion affinities and yet the resulting Zn2+–anion bonds have a labile nature. The basic understanding has evolved into novel selective nucleobase recognition by the Zn2+–cyclen complexes. The Zn2+–aromatic pendant cyclen complexes selectively and effectively bind to thymine T (or uracil U) in single- and double-stranded DNA (or RNA). The Zn2+ complexes work like molecular zippers to break A–T pairs in double-stranded DNA, as proven by various physicochemical and DNA footprinting measurements. Moreover, these Zn2+–complexes affect relevant biochemical and ultimately biological properties such as inhibition of a transcriptional factor and antimicrobial activities.
Collapse
Affiliation(s)
- Eiichi Kimura
- Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Emiko Kikuta
- Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
5
|
Shi WJ, Ren FD. Cooperativity effect of the ππ interaction between drug and DNA on intercalative binding induced by H-bonds: a QM/QTAIM investigation of the curcuminadenineH 2O model system. Phys Chem Chem Phys 2019; 21:11871-11882. [PMID: 31119251 DOI: 10.1039/c9cp01667h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to reveal the nature of intercalative binding of drug to DNA, the cooperativity effect of the ππ interaction was investigated in the curcuminadenineH2O model system by applying a combined QM and QTAIM computational approach. The H-bonds between the electron-donating group of curcumin and adenine induce the formation of the ππ stacking. The introduction of H2O weakens the H-bonding and ππ interactions, leading to an anti-cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that the anti-cooperative effect is the main driving force for the intercalative binding of drug to DNA bases, which is in agreement with many experimental phenomena. Therefore, the designed DNA-targeted intercalating drugs should possess not only hydrophobic moieties, but also strong electron-donating groups bound to the DNA bases with H-bonds, which can slow the variation rates of the strengths of the H-bonding and ππ interactions between drug and DNA bases in the anti-cooperative process, leading to the intercalation formation. The enthalpy change is the major factor driving the positive thermodynamic cooperativity.
Collapse
Affiliation(s)
- Wen-Jing Shi
- The Second Hospital of Shanxi Medical University, Taiyuan 030053, China.
| | | |
Collapse
|
6
|
Pan J, Cao DL, Ren FD, Wang JL, Yang L. Theoretical investigation into the cooperativity effect between the intermolecular π∙π and H-bonding interactions in the curcumin∙cytosine∙H2O system. J Mol Model 2018; 24:298. [DOI: 10.1007/s00894-018-3836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
|
7
|
Modulation of Hoogsteen dynamics on DNA recognition. Nat Commun 2018; 9:1473. [PMID: 29662229 PMCID: PMC5902632 DOI: 10.1038/s41467-018-03516-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
In naked duplex DNA, G–C and A–T Watson-Crick base pairs exist in dynamic equilibrium with their Hoogsteen counterparts. Here, we used nuclear magnetic resonance (NMR) relaxation dispersion and molecular dynamics (MD) simulations to examine how Watson-Crick/Hoogsteen dynamics are modulated upon recognition of duplex DNA by the bisintercalator echinomycin and monointercalator actinomycin D. In both cases, DNA recognition results in the quenching of Hoogsteen dynamics at base pairs involved in intermolecular base-specific hydrogen bonds. In the case of echinomycin, the Hoogsteen population increased 10-fold for base pairs flanking the chromophore most likely due to intermolecular stacking interactions, whereas actinomycin D minimally affected Hoogsteen dynamics at other sites. Modulation of Hoogsteen dynamics at binding interfaces may be a general phenomenon with important implications for DNA–ligand and DNA–protein recognition. DNA is found in a dynamic equilibrium between standard Watson-Crick (WC) base pairs and non-standard Hoogsteen (HG) base pairs. Here the authors describe the influence of echinomycin and actinomycin D ligands binding on the HG-WC base pair dynamics in DNA.
Collapse
|
8
|
Zhen JP, Wei XC, Shi WJ, Huang ZY, Jin B, Zhou YK. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H 2O system. J Biomol Struct Dyn 2017; 36:3587-3606. [PMID: 29092677 DOI: 10.1080/07391102.2017.1400469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Collapse
Affiliation(s)
- Jun-Ping Zhen
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Xiao-Chun Wei
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Wen-Jing Shi
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Zhu-Yuan Huang
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Bo Jin
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Yu-Kun Zhou
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| |
Collapse
|
9
|
Camunas-Soler J, Alemany A, Ritort F. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science 2017; 355:412-415. [PMID: 28126820 DOI: 10.1126/science.aah4077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Abstract
Thermodynamic bulk measurements of binding reactions rely on the validity of the law of mass action and the assumption of a dilute solution. Yet, important biological systems such as allosteric ligand-receptor binding, macromolecular crowding, or misfolded molecules may not follow these assumptions and may require a particular reaction model. Here we introduce a fluctuation theorem for ligand binding and an experimental approach using single-molecule force spectroscopy to determine binding energies, selectivity, and allostery of nucleic acids and peptides in a model-independent fashion. A similar approach could be used for proteins. This work extends the use of fluctuation theorems beyond unimolecular folding reactions, bridging the thermodynamics of small systems and the basic laws of chemical equilibrium.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Alemany
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Kimura E, Katsube N, Koike T, Shiro M, Aoki S. Effects of Bis(aromatic) Pendants on Recognition of Nucleobase Thymine by Zn2+ -1,4,7,10-tetraazacyclododecane (Zn2+ -cyclen). Supramol Chem 2010. [DOI: 10.1080/10610270290025997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eiichi Kimura
- a Department of Medicinal Chemistry, Faculty of Medicine , Hiroshima University , Kasumi 1-2-3, Minami-ku, Hiroshima , 734-8551 , Japan
| | - Naomi Katsube
- a Department of Medicinal Chemistry, Faculty of Medicine , Hiroshima University , Kasumi 1-2-3, Minami-ku, Hiroshima , 734-8551 , Japan
| | - Tohru Koike
- a Department of Medicinal Chemistry, Faculty of Medicine , Hiroshima University , Kasumi 1-2-3, Minami-ku, Hiroshima , 734-8551 , Japan
| | - Motoo Shiro
- b Rigaku Corporation X-ray Research Laboratory , Matsubaracho 3-9-12, Akishima, Tokyo , 196-8666 , Japan
| | - Shin Aoki
- a Department of Medicinal Chemistry, Faculty of Medicine , Hiroshima University , Kasumi 1-2-3, Minami-ku, Hiroshima , 734-8551 , Japan
| |
Collapse
|
11
|
Moretti R, Ansari AZ. Expanding the specificity of DNA targeting by harnessing cooperative assembly. Biochimie 2008; 90:1015-25. [PMID: 18343232 DOI: 10.1016/j.biochi.2008.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/18/2008] [Indexed: 12/24/2022]
Abstract
The precise control of developmental and regulatory processes in the cell requires accurate recognition of specific DNA sites. For genomes as large as that of humans, single-molecule-DNA binders have difficulties accurately and specifically recognizing the intended targets. Natural transcription factors overcome these difficulties by forming non-covalent complexes on the DNA with other transcription factors. These cooperative complexes overcome the difficulties of single-molecule transcription factors, allowing specific, combinatorial control of a range of transcriptional targets. Artificial transcription factors have been designed to take advantage of this technique of cooperative assembly, facilitating future studies in whole genome targeting. In contrast to a simple model of component independence, cooperative complexes as a whole often display slightly altered DNA specificity from what would be expected from the analysis of their separate components. The true sequence specificity of cooperative complexes, and thus their presumed in vivo targets, have to be experimentally probed. A number of techniques, such as the cognate site identity array, now allow for rapid, high-throughput determination of the specificity of cooperative complexes.
Collapse
Affiliation(s)
- Rocco Moretti
- Department of Biochemistry, The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Negri A, Marco E, García-Hernández V, Domingo A, Llamas-Saiz AL, Porto-Sandá S, Riguera R, Laine W, David-Cordonnier MH, Bailly C, García-Fernández LF, Vaquero JJ, Gago F. Antitumor Activity, X-ray Crystal Structure, and DNA Binding Properties of Thiocoraline A, a Natural Bisintercalating Thiodepsipeptide. J Med Chem 2007; 50:3322-33. [PMID: 17571868 DOI: 10.1021/jm070381s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The marine natural product thiocoraline A displayed approximately equal cytotoxic activity at nanomolar concentrations in a panel of 12 human cancer cell lines. X-ray diffraction analyses of orthorhombic crystals of this DNA-binding drug revealed arrays of docked pairs of staple-shaped molecules in which one pendent hydroxyquinoline chromophore from each cysteine-rich molecule appears intercalated between the two chromophores of a facing molecule. This arrangement is in contrast to the proposed mode of binding to DNA that shows the two drug chromophores clamping two stacked base pairs, in agreement with the nearest-neighbor exclusion principle. Proof of DNA sequence recognition was obtained from both classical DNase I footprinting experiments and determination of the melting temperatures of several custom-designed fluorescently labeled oligonucleotides. A rationale for the DNA-binding behavior was gained when models of thiocoraline clamping a central step embedded in several octanucleotides were built and studied by means of unrestrained molecular dynamics simulations in aqueous solution.
Collapse
Affiliation(s)
- Ana Negri
- Departamento de Farmacología, Universidad de AlcalA, E-28871 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tseng YD, Ge H, Wang X, Edwardson JM, Waring MJ, Fitzgerald WJ, Henderson RM. Atomic force microscopy study of the structural effects induced by echinomycin binding to DNA. J Mol Biol 2005; 345:745-58. [PMID: 15588823 DOI: 10.1016/j.jmb.2004.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 10/08/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Atomic force microscopy (AFM) has been used to examine the conformational effects of echinomycin, a DNA bis-intercalating antibiotic, on linear and circular DNA. Four different 398 bp DNA fragments were synthesized, comprising a combination of normal and/or modified bases including 2,6-diaminopurine and inosine (which are the corresponding analogues of adenine and guanosine in which the 2-amino group that is crucial for echinomycin binding has been added or removed, respectively). Analysis of AFM images provided contour lengths, which were used as a direct measure of bis-intercalation. About 66 echinomycin molecules are able to bind to each fragment, corresponding to a site size of six base-pairs. The presence of base-modified nucleotides affects DNA conformation, as determined by the helical rise per base-pair. At the same time, the values obtained for the dissociation constant correlate with the types of preferred binding site available among the different DNA fragments; echinomycin binds to TpD sites much more tightly than to CpG sites. The structural perturbations induced when echinomycin binds to closed circular duplex pBR322 DNA were also investigated and a method for quantification of the structural changes is presented. In the presence of increasing echinomycin concentration, the plasmid can be seen to proceed through a series of transitions in which its supercoiling decreases, relaxes, and then increases.
Collapse
Affiliation(s)
- Yolanda D Tseng
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Li N, Guo L, Jiang J, Yang X. Interaction of echinomycin with guanine: electrochemistry and spectroscopy studies. Biophys Chem 2004; 111:259-65. [PMID: 15501569 DOI: 10.1016/j.bpc.2004.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 06/10/2004] [Accepted: 06/16/2004] [Indexed: 11/22/2022]
Abstract
The interaction of antitumor antibiotic, echinomycin (Echi) with guanine (Gua) was thoroughly investigated by adsorptive transfer stripping cyclic voltammetry, ultraviolet and visible adsorption spectra (UV/Vis) and Fourier-transform infrared spectroscopy (FTIR). Electrochemistry provided a simple tool for verifying the occurrence of interaction between Echi and Gua. Echi could be accumulated from the solution and give well-defined electrochemical signals in 0.1 M phosphate buffer solution (pH 7.0) only when Gua was present on the surface of the electrochemically pretreated glass carbon electrode (GCE), suggesting a strong binding of Echi to Gua. All the acquired spectral data showed that a new adduct between Echi and Gua was formed, and two pairs of adjacent intermolecular hydrogen bonds between the Ala backbone atoms in Echi and Gua (Ala-NH to Gua-N3 and Gua-NH2 to Ala-CO) played a dominating role in the interaction. Electrochemistry coupled with spectroscopy techniques could provide a relatively easy way to obtain useful insights into the molecular mechanism of drug-DNA interactions, which should be important in the development of new anticancer drugs with specific base recognition.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.
| | | |
Collapse
|
16
|
Abstract
Many anticancer, antibiotic, and antiviral drugs exert their primary biological effects by reversibly interacting with nucleic acids. Therefore, these biomolecules represent a major target in drug development strategies designed to produce next generation therapeutics for diseases such as cancer. In order to improve the clinical efficacy of existing drugs and also to design new ones it is necessary to understand the molecular basis of drug-DNA interactions in structural, thermodynamic, and kinetic detail. The past decade has witnessed an increase in the number of rigorous biophysical studies of drug-DNA systems and considerable knowledge has been gained in the energetics of these binding reactions. This is, in part, due to the increased availability of high-sensitivity calorimetric techniques, which have allowed the thermodynamics of drug-DNA interactions to be probed directly and accurately. The focus of this article is to review thermodynamic approaches to examining drug-DNA recognition. Specifically, an overview of a recently developed method of analysis that dissects the binding free energy of these reactions into five component terms is presented. The results of applying this analysis to the DNA binding interactions of both minor groove drugs and intercalators are discussed. The solvent water plays a key role in nucleic acid structure and consequently in the binding of ligands to these biomolecules. Any rational approach to DNA-targeted drug design requires an understanding of how water participates in recognition and binding events. Recent studies examining hydration changes that accompany DNA binding by intercalators will be reviewed. Finally some aspects of cooperativity in drug-DNA interactions are described and the importance of considering cooperative effects when examining these reactions is highlighted.
Collapse
Affiliation(s)
- Ihtshamul Haq
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK.
| |
Collapse
|
17
|
Brondani V, Klimkait T, Egly JM, Hamy F. Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J Mol Biol 2002; 319:715-28. [PMID: 12054865 DOI: 10.1016/s0022-2836(02)00376-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported that retinoids were inducing a complete switch in the expression of two isoforms from the fgf8 gene. In order to gain insight into the transcriptional mechanisms possibly involved in this regulation, we cloned and sequenced a fragment of genomic DNA encompassing 6 kb of the region 5' upstream of the fgf8 coding sequence and investigated its promoter elements. A comprehensive series of biochemical and cellular experiments determined two distinct functional regions cis-responsive to retinoids and/or their receptors: (i) a canonical RARE (type DR2) which is the cis target of a RARalpha-RXRalpha liganded heterodimer; and (ii) a completely novel type of response element composed of two half-binding sites separated by 87 nucleotides, which we demonstrate to be the target of an unliganded RARalpha homodimer phosphorylated on the Ser77 residue. Combined activities of these cis and trans-acting factors support a model of a complex regulation of fgf8 expression: by alternative binding to two distinct promoter elements, phosphorylated-unliganded-RARalpha homodimer or its liganded form have two distinct and mutually exclusive trans-activating activities, explaining the expression of two different isoforms of fgf8.
Collapse
Affiliation(s)
- Vincent Brondani
- Oncology Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Jelen F, Erdem A, Palecek E. Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode. Bioelectrochemistry 2002; 55:165-7. [PMID: 11786366 DOI: 10.1016/s1567-5394(01)00143-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interactions of echinomycin (Echi) with DNA was studied by cyclic voltammetry (CV) with hanging mercury drop electrode (HMDE). Echinomycin was electrochemically active, yielding several signals. Interaction of Echi with dsDNA attached to a hanging mercury drop electrode resulted in high Echi signals, suggesting a strong binding of Echi to dsDNA by bis-intercalation at the electrode surface. Under the same conditions, interaction of Echi with ssDNA produced almost no Echi signal. This behavior is in agreement with a strong binding of Echi to dsDNA and a very weak binding of Echi to ssDNA observed earlier in solution. Echi, thus, appears to be a good candidate for redox indicator in electrochemical DNA hybridization sensors.
Collapse
Affiliation(s)
- Frantisek Jelen
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic.
| | | | | |
Collapse
|
19
|
Harris SA, Gavathiotis E, Searle MS, Orozco M, Laughton CA. Cooperativity in drug-DNA recognition: a molecular dynamics study. J Am Chem Soc 2001; 123:12658-63. [PMID: 11741431 DOI: 10.1021/ja016233n] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR studies have shown that the minor groove-binding ligand Hoechst 33258 binds to the two T4/A4 tracts within the duplex d(CTTTTCGAAAAG)2 in a highly cooperative manner, such that in titration experiments no intermediate 1:1 complex can be detected. The NMR-derived structures of the free DNA and the 2:1 complex have been obtained, but can shed little light on what the origins of this cooperativity may be. Here we present the results of a series of molecular dynamics simulations on the free DNA, the 1:1 complex, and the 2:1 complex, which have been designed to enable us to calculate thermodynamic parameters associated with the molecular recognition events. The results of the molecular dynamics studies confirm that structural factors alone cannot explain the cooperativity observed, indeed when enthalpic and hydration factors are looked at in isolation, the recognition process is predicted to be slightly anticooperative. However, when changes in configurational entropy are taken into account as well, the overall free energy differences are such that the calculated cooperativity is in good agreement with that observed experimentally. The results indicate the power of molecular dynamics methods to provide reasonable explanations for phenomena that are difficult to explain on the basis of static models alone, and provide a nice example of the concept of "allostery without conformational change".
Collapse
Affiliation(s)
- S A Harris
- School of Pharmaceutical Sciences, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
20
|
Guelev V, Lee J, Ward J, Sorey S, Hoffman DW, Iverson BL. Peptide bis-intercalator binds DNA via threading mode with sequence specific contacts in the major groove. ACTA ACUST UNITED AC 2001; 8:415-25. [PMID: 11358689 DOI: 10.1016/s1074-5521(01)00013-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We previously described a general class of DNA polyintercalators in which 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) intercalating units are connected via peptide linkers, resulting in the first known tetrakis- and octakis-intercalators. We showed further that changes in the composition of the peptide tether result in novel DNA binding site specificities. We now examine in detail the DNA binding mode and sequence specific recognition of Compound 1, an NDI bis-intercalator containing the peptide linker gly-gly-gly-lys. RESULTS 1H-NMR structural studies of Compound 1 bound to d(CGGTACCG)(2) confirmed a threading mode of intercalation, with four base pairs between the diimide units. The NMR data, combined with DNAse I footprinting of several analogs, suggest that specificity depends on a combination of steric and electrostatic contacts by the peptide linker in the floor of the major groove. CONCLUSIONS In view of the modular nature and facile synthesis of our NDI-based polyintercalators, such structural knowledge can be used to improve or alter the specificity of the compounds and design longer polyintercalators that recognize correspondingly longer DNA sequences with alternating access to both DNA grooves.
Collapse
Affiliation(s)
- V Guelev
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 78722, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wang L, Bailly C, Kumar A, Ding D, Bajic M, Boykin DW, Wilson WD. Specific molecular recognition of mixed nucleic acid sequences: an aromatic dication that binds in the DNA minor groove as a dimer. Proc Natl Acad Sci U S A 2000; 97:12-6. [PMID: 10618362 PMCID: PMC26607 DOI: 10.1073/pnas.97.1.12] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Guelev VM, Harting MT, Lokey RS, Iverson BL. Altered sequence specificity identified from a library of DNA-binding small molecules. CHEMISTRY & BIOLOGY 2000; 7:1-8. [PMID: 10662682 DOI: 10.1016/s1074-5521(00)00007-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The ability to target specific DNA sequences using small molecules has major implications for basic research and medicine. Previous studies revealed that a bis-intercalating molecule containing two 1,4,5,8-napthalenetetracarboxylic diimides separated by a lysine-tris-glycine linker binds to DNA cooperatively, in pairs, with a preference for G + C-rich sequences. Here we investigate the binding properties of a library of bis-intercalating molecules that have partially randomized peptide linkers. RESULTS A library of bis-intercalating derivatives with varied peptide linkers was screened for sequence specificity using DNase I footprinting on a 231 base pair (bp) restriction fragment. The library mixtures produced footprints that were generally similar to the parent bis-intercalator, which bound within a 15 bp G + C-rich repeat above 125 nM. Nevertheless, subtle differences in cleavage enhancement bands followed by library deconvolution revealed a derivative with novel specificity. A lysine-tris-beta-alanine derivative was found to bind preferentially within a 19 bp palindrome, without substantial loss of affinity. CONCLUSIONS Synthetically simple changes in the bis-intercalating compounds can produce derivatives with novel sequence specificity. The large size and symmetrical nature of the preferred binding sites suggest that cooperativity may be retained despite modified sequence specificity. Such findings, combined with structural data, could be used to develop versatile DNA ligands of modest molecular weight that target relatively long DNA sequences in a selective manner.
Collapse
Affiliation(s)
- V M Guelev
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
23
|
Kikuta E, Murata M, Katsube N, Koike T, Kimura E. Novel Recognition of Thymine Base in Double-Stranded DNA by Zinc(II)−Macrocyclic Tetraamine Complexes Appended with Aromatic Groups. J Am Chem Soc 1999. [DOI: 10.1021/ja983884j] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emiko Kikuta
- Contribution from the Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Mariko Murata
- Contribution from the Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Naomi Katsube
- Contribution from the Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Tohru Koike
- Contribution from the Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Eiichi Kimura
- Contribution from the Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
24
|
Boger DL, Chen JH, Saionz KW, Jin Q. Synthesis of key sandramycin analogs: systematic examination of the intercalation chromophore. Bioorg Med Chem 1998; 6:85-102. [PMID: 9502108 DOI: 10.1016/s0968-0896(97)10014-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The preparation and examination of 2-22 constituting a systematic study of the chromophore of sandramycin (1) are detailed. Fluorescence quenching studies were used to establish binding constants for 1-24 within calf thymus DNA, within a single high affinity bis-intercalation binding site 5'-d(GCATGC)2, and to establish the preference for sandramycin binding to 5'-d(GCXXGC)2 where XX = AT, TA, GC, and CG. From the latter studies, sandramycin was found to exhibit a preference that follows the order: 5'-d(GCATGC)2 > 5'-d(GCGCGC)2, deltadeltaGo = 0.3kcal/mol > 5'-d(GCTAGC)2, 5'-d(GCCGGC)2, deltadeltaGo = 0.6 kcal/mol although it binds with high affinity to all four deoxyoligonucleotides. The two highest affinity sequences constitute repeating 5'-PuPy motifs with each intercalation event occurring at a 5'-PyPu step. The most effective sequence constitutes the less stable duplex, contains the sterically most accessible minor groove central to the bis-intercalation site, and the ability to accept two gly-NH/TC2 carbonyl H-bonds identified in prior NMR studies. Similarly, the contribution of the individual structural features of the chromophore were assessed with the high affinity duplex sequence 5'-d(GCATGC)2. To a first approximation, the cytotoxic properties were found to parallel trends established in the DNA binding affinities. The exception to this generalization was 4 which lacks the sandramycin chromophore phenol. Although typically 4-10x less potent than sandramycin against leukemia cell lines, it proved to be 1-10,000x more potent against melanomas, carcinomas, and adenocarcinomas exhibiting IC50 values of 1 pM-10 nM placing it among the most potent agents identified to date. Additionally, the first disclosure of the HIV-1 reverse transcriptase inhibitory activity of sandramycin (1) as well as that of its key analogs are described and define the chromophore structural features required for their exceptional potency. Two analogs, 18 and 3, roughly maintain the HIV-1 reverse transcriptase inhibitory potency of 1 but exhibit substantially diminished cytotoxic activity (10(2)-10(3)x).
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
25
|
Lokey RS, Kwok Y, Guelev V, Pursell CJ, Hurley LH, Iverson BL. A New Class of Polyintercalating Molecules. J Am Chem Soc 1997. [DOI: 10.1021/ja9706108] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Scott Lokey
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| | - Yan Kwok
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| | - Vladimir Guelev
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| | - Christopher J. Pursell
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| | - Laurence H. Hurley
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| | - Brent L. Iverson
- Contribution from the Departments of Chemistry, Biochemistry, and Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Department of Chemistry, Trinity University, San Antonio, Texas 78212
| |
Collapse
|
26
|
|
27
|
Bailly C, Payet D, Travers AA, Waring MJ. PCR-based development of DNA substrates containing modified bases: an efficient system for investigating the role of the exocyclic groups in chemical and structural recognition by minor groove binding drugs and proteins. Proc Natl Acad Sci U S A 1996; 93:13623-8. [PMID: 8942984 PMCID: PMC19371 DOI: 10.1073/pnas.93.24.13623] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1996] [Accepted: 09/05/1996] [Indexed: 02/03/2023] Open
Abstract
DNA molecules containing inosine in place of guanosine and/or 2,6-diaminopurine in place of adenine have been synthesized and tested as substrates for binding of sequence-selective ligands, both small and large. Footprinting patterns reveal that the binding sites for AT- or GC-specific antibiotics (distamycin or mithramycin, respectively) are completely changed in the modified DNAs, as expected for direct sequence readout involving contact with the purine 2-amino group. However, we also find large changes in the binding of HMG-D, a member of the HMG-1 family of chromosomal proteins, pointing to an indirect influence of the exocyclic amino group on ligand binding via an effect on the deformability of the double helix. This interpretation is confirmed by the finding that deoxyuridine-containing poly- and oligonucleotides, which lack the exocyclic methyl group of thymidine in the major groove, interact 5-10 times more strongly with HMG-D than do their counterparts containing natural nucleotides.
Collapse
Affiliation(s)
- C Bailly
- Department of Pharmacology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|