1
|
Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY. Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148238. [PMID: 32533935 DOI: 10.1016/j.bbabio.2020.148238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10-2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA- state with essentially 100% yield. P+HA- decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA- (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA- decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA- to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA- to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
2
|
Switching sides-Reengineered primary charge separation in the bacterial photosynthetic reaction center. Proc Natl Acad Sci U S A 2019; 117:865-871. [PMID: 31892543 DOI: 10.1073/pnas.1916119117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report 90% yield of electron transfer (ET) from the singlet excited state P* of the primary electron-donor P (a bacteriochlorophyll dimer) to the B-side bacteriopheophytin (HB) in the bacterial photosynthetic reaction center (RC). Starting from a platform Rhodobacter sphaeroides RC bearing several amino acid changes, an Arg in place of the native Leu at L185-positioned over one face of HB and only ∼4 Å from the 4 central nitrogens of the HB macrocycle-is the key additional mutation providing 90% yield of P+HB - This all but matches the near-unity yield of A-side P+HA - charge separation in the native RC. The 90% yield of ET to HB derives from (minimally) 3 P* populations with distinct means of P* decay. In an ∼40% population, P* decays in ∼4 ps via a 2-step process involving a short-lived P+BB - intermediate, analogous to initial charge separation on the A side of wild-type RCs. In an ∼50% population, P* → P+HB - conversion takes place in ∼20 ps by a superexchange mechanism mediated by BB An ∼10% population of P* decays in ∼150 ps largely by internal conversion. These results address the long-standing dichotomy of A- versus B-side initial charge separation in native RCs and have implications for the mechanism(s) and timescale of initial ET that are required to achieve a near-quantitative yield of unidirectional charge separation.
Collapse
|
3
|
Dutta PK, Lin S, Loskutov A, Levenberg S, Jun D, Saer R, Beatty JT, Liu Y, Yan H, Woodbury NW. Reengineering the Optical Absorption Cross-Section of Photosynthetic Reaction Centers. J Am Chem Soc 2014; 136:4599-604. [DOI: 10.1021/ja411843k] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | - Daniel Jun
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Rafael Saer
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
4
|
Mechanism of Charge Separation in Purple Bacterial Reaction Centers. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Bixon M, Jortner J. Electron Transfer-from Isolated Molecules to Biomolecules. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141656.ch3] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Kirmaier C, Laible PD, Hindin E, Hanson DK, Holten D. Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00283-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Franzen S, Stanley RJ. A theoretical explanation for quantum yield failure in bacterial photosynthetic reaction centers. Chem Phys 2002. [DOI: 10.1016/s0301-0104(01)00582-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Pincák R, Pudlak M. Noise breaking the twofold symmetry of photosynthetic reaction centers: electron transfer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 64:031906. [PMID: 11580366 DOI: 10.1103/physreve.64.031906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2000] [Revised: 03/27/2001] [Indexed: 05/23/2023]
Abstract
In this work we present a stochastic model to elucidate the unidirectionality of the primary charge separation process in the bacterial reaction centers where two symmetric ways of electron transfer (ET), starting from the common electron donor, are possible. We have used a model of three sites/molecules with ET beginning at site 1 with the option to proceed to site 2 or site 3. If the direct ET between sites 2 and 3 is not allowed and electron cannot escape from the system then it is shown that the different stochastic fluctuations in the energy of sites and the interaction between sites on these two ways are sufficient to cause the transient asymmetric electron distribution at site 2 and 3 during relaxation to the steady state. This means that overall asymmetric ET can be caused by the transient asymmetric electron distribution if there is a possibility for an electron to escape from the three-site system. To explore this possibility we have introduced a sink into the model at the end of each of the sites 2 and 3. The dependence of the asymmetry in electron transfer on the value of the sink parameter, introduced through an additional imaginary diagonal matrix element of the Hamiltonian, was investigated. Results show indeed that the unidirectionality of the electron transfer generated in the system of three molecules depends strongly on the sink parameter value.
Collapse
Affiliation(s)
- R Pincák
- Department of Biophysics, P.J. Safárik University, Jesenná 5, 041 54 Kosice, Slovak Republic
| | | |
Collapse
|
10
|
The role of accessory bacteriochlorophylls in the primary charge transfer in the photosynthetic reaction centers. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00642-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Lin S, Jackson JA, Taguchi AKW, Woodbury NW. B-Side Electron Transfer Promoted by Absorbance of Multiple Photons in Rhodobacter sphaeroides R-26 Reaction Centers. J Phys Chem B 1999. [DOI: 10.1021/jp990303j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Su Lin
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287-1604
| | - Jonathan A. Jackson
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona, 85287-1604
| |
Collapse
|
12
|
Kennis JT, Shkuropatov AY, van Stokkum IH, Gast P, Hoff AJ, Shuvalov VA, Aartsma TJ. Formation of a long-lived P+BA- state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry 1997; 36:16231-8. [PMID: 9405057 DOI: 10.1021/bi9712605] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Femtosecond transient absorption spectroscopy in the range of 500-1040 nm was used to study electron transfer at 5 K in reaction centers of Rhodobacter sphaeroides R26 in which the bacteriopheophytins (BPhe) were replaced by plant pheophytin a (Phe). Primary charge separation took place with a time constant of 1.6 ps, similar to that found in native RCs. Spectral changes around 1020 nm indicated the formation of reduced bacteriochlorophyll (BChl) with the same time constant, and its subsequent decay in 620 ps. This observation identifies the accessory BChl as the primary electron acceptor. No evidence was found for electron transfer to Phe, indicating that electron transfer from BA- occurs directly to the quinone (QA) through superexchange. The results are explained by a model in which the free energy level of P+Phe- lies above that of P+BA-, which itself is below P*. Assuming that the pigment exchange does not affect the energy levels of P* and P+BA-, our results strongly support a two-step model for primary electron transfer in the native bacterial RC, with no, or very little, admixture of superexchange.
Collapse
Affiliation(s)
- J T Kennis
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Arnaut LG, Formosinho SJ. Theory of electron transfer reactions in photosynthetic bacteria reaction centers. J Photochem Photobiol A Chem 1997. [DOI: 10.1016/s1010-6030(97)00225-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Lin S, Taguchi AKW, Woodbury NW. Excitation Wavelength Dependence of Energy Transfer and Charge Separation in Reaction Centers from Rhodobacter sphaeroides: Evidence for Adiabatic Electron Transfer. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp961590j] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Su Lin
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry, and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
15
|
Peloquin JM, Lin S, Taguchi AKW, Woodbury NW. Excitation Wavelength Dependence of Bacterial Reaction Center Photochemistry. 2. Low-Temperature Measurements and Spectroscopy of Charge Separation. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9610168] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|