1
|
Hollås H, Ramirez J, Nominé Y, Kostmann C, Toto A, Gianni S, Travé G, Vedeler A. The cooperative folding of annexin A2 relies on a transient nonnative intermediate. Biophys J 2022; 121:4492-4504. [PMID: 36325614 PMCID: PMC9748365 DOI: 10.1016/j.bpj.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins (Anxs) are a family of highly homologous proteins that bind and aggregate lipid vesicles in the presence of calcium. All members of the family contain a variable N-terminus determining specific functions, followed by a conserved core region responsible for the general calcium-dependent lipid-binding property. The core structure consists of four homologous domains (DI-DIV), each consisting of a right-handed super-helix of five α-helices. We present data from a combination of site-directed mutagenesis, NMR, and circular dichroism showing that the G25-D34 region of the N-terminus as well as the contacts between residues D38A, R63A, and Q67A of AnxA2-DI are crucial for the autonomous folding and stability of DI of AnxA2. However, we also show that the folding of the full-length protein is very robust in that mutations and truncations that disrupted the folding of AnxA2-DI did not abolish the folding of full-length AnxA2, only lowering its thermal stability. This robustness of the folding of full-length AnxA2 is likely to be mediated by the existence of at least one transient nonnative intermediate as suggested by our kinetic data using stopped-flow fluorescence experiments. We also show that hydrophobic amino acids in AnxA2-DI involved in interfacial contacts with AnxA2-DIV are important for the cooperative folding and stability of the full-length protein. Mutating all of the V57E-V98R-G101Y residues in AnxA2-DI did not affect the folding of the domain, only its stability, but prevented the cooperative folding of the full-length protein. Our collective results favor a highly cooperative and robust folding process mediated by alternative intermediate steps. Since AnxA2 is a multifunctional protein involved in several steps of the progression of cell transformation, these data on structure and folding pathways are therefore crucial to designing anticancer drugs targeting AnxA2.
Collapse
Affiliation(s)
- Hanne Hollås
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Juan Ramirez
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Angelo Toto
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Gianni
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France.
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Raddum AM, Hollås H, Shumilin IA, Henklein P, Kretsinger R, Fossen T, Vedeler A. The native structure of annexin A2 peptides in hydrophilic environment determines their anti-angiogenic effects. Biochem Pharmacol 2015; 95:1-15. [PMID: 25772737 DOI: 10.1016/j.bcp.2015.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/27/2015] [Indexed: 01/23/2023]
Abstract
The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Torgils Fossen
- Centre for Pharmacy and Department of Chemistry, University of Bergen, Norway
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen.
| |
Collapse
|
3
|
Aukrust I, Evensen L, Hollås H, Berven F, Atkinson RA, Travé G, Flatmark T, Vedeler A. Engineering, Biophysical Characterisation and Binding Properties of a Soluble Mutant form of Annexin A2 Domain IV that Adopts a Partially Folded Conformation. J Mol Biol 2006; 363:469-81. [PMID: 16963080 DOI: 10.1016/j.jmb.2006.08.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 11/15/2022]
Abstract
The four approximately 75-residue domains (repeats) that constitute the annexin core structure all possess an identical five-alpha-helix bundle topology, but the physico-chemical properties of the isolated domains are different. Domain IV of the annexins has previously been expressed only as inclusion bodies, resistant to solubilisation. Analysis of the conserved, exposed hydrophobic residues of the four annexin domains reveals that domain IV contains the largest number of hydrophobic residues involved in interfacial contacts with the other domains. We designed five constructs of domain IV of annexin A2 in which several interfacial hydrophobic residues were substituted by hydrophilic residues. The mutant domain, in which all fully exposed hydrophobic interfacial residues were substituted, was isolated as a soluble protein. Circular dichroism measurements indicate that it harbours a high content of alpha-helical secondary structure and some tertiary structure. The CD-monitored (lambda=222 nm) thermal melting profile suggests a weak cooperative transition. Nuclear magnetic resonance (1H-15N) correlation spectroscopy reveals heterogeneous line broadening and an intermediate spectral dispersion. These properties are indicative of a partially folded protein in which some residues are in a fairly structured conformation, whereas others are in an unfolded state. This conclusion is corroborated by 1-anilinonaphthalene-8-sulfonate fluorescence (ANS) analyses. Surface plasmon resonance measurements also indicate that this domain binds heparin, a known ligand of domain IV in the full-length annexin A2, although with lower affinity.
Collapse
Affiliation(s)
- Ingvild Aukrust
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Gallopin M, Ochsenbein F, Guittet É, van Heijenoort C. Analysis of slow motions in the micro–millisecond range on domain 1 of annexin I. CR CHIM 2004. [DOI: 10.1016/j.crci.2003.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Huynh T, Smith JC, Sanson A. Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data. Biophys J 2002; 83:681-98. [PMID: 12124256 PMCID: PMC1302178 DOI: 10.1016/s0006-3495(02)75200-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.
Collapse
Affiliation(s)
- Tru Huynh
- Commissariat à l'Energie Atomique-Saclay, Département de Biologie Joliot-Curie/Service de Biophysique des Fonctions Membranaires and Unité de Recherche Associée Centre National de la Recherche Scientifique 2096, 91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
6
|
Ochsenbein F, Neumann JM, Guittet E, van Heijenoort C. Dynamical characterization of residual and non-native structures in a partially folded protein by (15)N NMR relaxation using a model based on a distribution of correlation times. Protein Sci 2002; 11:957-64. [PMID: 11910038 PMCID: PMC2373535 DOI: 10.1110/ps.4000102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A spectral density model based on a truncated lorentzian distribution of correlation times is used to analyze the nanosecond time-scale dynamics of the partially unfolded domain 2 of annexin I from its (15)N NMR relaxation parameters measured at three magnetic field strengths. The use of a distribution of correlation times enables the characterization of the dynamical features of the NH bonds of the protein in terms of heterogeneity of dynamical states in the nanosecond range. The variation along the sequence of the two dynamical parameters introduced, namely the center and the width of the distribution, points out the different types of residual secondary structures present in the D2 domain. Moreover, it allows a physically sensible interpretation of the dynamical behavior of the different residual helices and of the non-native structures. Also, a striking correspondence is found between the parameters obtained using an extended Lipari and Szabo model and the parameters obtained using the distribution of correlation times. This result led us to propose a specific interpretation of the model-free order parameter for internal motions in the nanosecond range in the case of unfolded states.
Collapse
Affiliation(s)
- Françoise Ochsenbein
- CNRS, Institut de Chimie des Substances Naturelles, F-91190 Gif sur Yvette, France.
| | | | | | | |
Collapse
|
7
|
Abstract
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been crystallized, and their molecular structures reveal interesting features that include the architecture of the annexin-type Ca2+ binding sites and a central hydrophilic pore proposed to function as a Ca2+ channel. In addition to the conserved core, all annexins contain a second principal domain. This domain, which NH2-terminally precedes the core, is unique for a given member of the family and most likely specifies individual annexin properties in vivo. Cellular and animal knock-out models as well as dominant-negative mutants have recently been established for a number of annexins, and the effects of such manipulations are strikingly different for different members of the family. At least for some annexins, it appears that they participate in the regulation of membrane organization and membrane traffic and the regulation of ion (Ca2+) currents across membranes or Ca2+ concentrations within cells. Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation. Finally, deregulations in annexin expression and activity have been correlated with human diseases, e.g., in acute promyelocytic leukemia and the antiphospholipid antibody syndrome, and the term annexinopathies has been coined.
Collapse
Affiliation(s)
- Volker Gerke
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
8
|
Gao J, Li Y, Yan H. NMR solution structure of domain 1 of human annexin I shows an autonomous folding unit. J Biol Chem 1999; 274:2971-7. [PMID: 9915835 DOI: 10.1074/jbc.274.5.2971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins are excellent models for studying the folding mechanisms of multidomain proteins because they have four-eight homologous helical domains with low identity in sequence but high similarity in folding. The structure of an isolated domain 1 of human annexin I has been determined by NMR spectroscopy. The sequential assignments of the 1H, 13C, and 15N resonances of the isolated domain 1 were established by multinuclear, multidimensional NMR spectroscopy. The solution structure of the isolated domain 1 was derived from 1,099 experimental NMR restraints using a hybrid distance geometry-simulated annealing protocol. The root mean square deviation of the ensemble of 20 refined conformers that represent the structure from the mean coordinate set derived from them was 0. 57 +/- 0.14 A and 1.11 +/- 0.19 A for the backbone atoms and all heavy atoms, respectively. The NMR structure of the isolated domain 1 could be superimposed with a root mean square deviation of 1.36 A for all backbone atoms with the corresponding part of the crystal structure of a truncated human annexin I containing all four domains, indicating that the structure of the isolated domain 1 is highly similar to that when it folded together with the other three domains. The result suggests that in contrast to isolated domain 2, which is largely unfolded in solution, isolated domain 1 constitutes an autonomous folding unit and interdomain interactions may play critical roles in the folding of annexin I.
Collapse
Affiliation(s)
- J Gao
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
9
|
Guerois R, Cordier-Ochsenbein F, Baleux F, Huynh-Dinh T, Neumann JM, Sanson A. A conformational equilibrium in a protein fragment caused by two consecutive capping boxes: 1H-, 13C-NMR, and mutational analysis. Protein Sci 1998; 7:1506-15. [PMID: 9684882 PMCID: PMC2144069 DOI: 10.1002/pro.5560070703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The conformational properties of an 18 residues peptide spanning the entire sequence, L1KTPA5QFDAD10ELRAA15MKG, of the first helix (A-helix) of domain 2 of annexin I, were thoroughly investigated. This fragment exhibits several singular features, and in particular, two successive potential capping boxes, T3xxQ6 and D8xxE11. The former corresponds to the native hydrogen bond network stabilizing the alpha helix N-terminus in the protein; the latter is a non-native capping box able to break the helix at residue D8, and is observed in the domain 2 partially folded state. Using 2D-NMR techniques, we showed that two main populations of conformers coexist in aqueous solution. The first corresponds to a single helix extending from T3 to K17. The second corresponds to a broken helix at residue Ds. Four mutants, T3A, F7A, D8A, and E11A, were designed to further analyze the role of key amino acids in the equilibrium between the two ensembles of conformers. The sensitivity of NMR parameters to account for the variations in the populations of conformers was evaluated for each peptide. Our data show the delta13Calpha chemical shift to be the most relevant parameter. We used it to estimate the population ratio in the various peptides between the two main ensembles of conformers, the full helix and the broken helix. For the WT, E11A, and F7A peptides, these ratios are respectively 35/65, 60/40, 60/40. Our results were compared to the data obtained from helix/coil transition algorithms.
Collapse
Affiliation(s)
- R Guerois
- Département de Biologie Cellulaire et Moléculaire, URA CNRS 2096, CEA Saclay, Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
10
|
Cordier-Ochsenbein F, Guerois R, Baleux F, Huynh-Dinh T, Lirsac PN, Russo-Marie F, Neumann JM, Sanson A. Exploring the folding pathways of annexin I, a multidomain protein. I. non-native structures stabilize the partially folded state of the isolated domain 2 of annexin I. J Mol Biol 1998; 279:1163-75. [PMID: 9642092 DOI: 10.1006/jmbi.1998.1829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteins of the annexin family constitute very attractive models because of their four approximately 70 residue domains, D1 to D4, exhibiting an identical topology comprising five helix segments with only a limited sequence homology of approximately 30%. We focus on the isolated D2 domain, which is only partially folded. A detailed analysis of this equilibrium partially folded state in aqueous solution and micellar solution using 15N-1H multidimensional NMR is presented. Comparison of the residual structure of the entire domain with that of shorter fragments indicates the presence of long-range transient hydrophobic interactions that slightly stabilize the secondary structure elements. The unfolded domain tends to behave as a four-helix, rather than as a five-helix domain. The ensemble of residual structures comprises: (i) a set of native structures consisting of three regions with large helix populations, in rather sharp correspondence with A, B and E helices, and a small helix population in the second part of the C helix; (ii) a set of non-native local structures corresponding to turn-like structures stabilized by several side-chain to side-chain interactions and helix-disruptive side-chains to backbone interactions. Remarkably, residues involved in these local non-native interactions are also involved, in the native structure, in structurally important non-local interactions. During the folding process of annexin I, the local non-native interactions have to switch to native long-range interactions. This structural switch reveals the existence of a sequence-encoded regulation of the folding pathways and kinetics, and emphasizes the key role of the non-native local structures in this regulation.
Collapse
Affiliation(s)
- F Cordier-Ochsenbein
- Département de Biologie Cellulaire et Moléculaire Section de Biophysique des Protéines et des Membranes and URA CNRS, 2096, Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cordier-Ochsenbein F, Guerois R, Russo-Marie F, Neumann JM, Sanson A. Exploring the folding pathways of annexin I, a multidomain protein. II. Hierarchy in domain folding propensities may govern the folding process. J Mol Biol 1998; 279:1177-85. [PMID: 9642093 DOI: 10.1006/jmbi.1998.1828] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the context of exploring the relationship between sequence and folding pathways, the multi-domain proteins of the annexin family constitute very attractive models. They are constituted of four approximately 70-residue domains, named D1 to D4, with identical topologies but only limited sequence homology of approximately 30%. The domains are organized in a pseudochiral circular arrangement. Here, we report on the folding propensity of the D1 domain of annexin I obtained from overexpression in Escherichia coli. Unlike the D2 domain, which is only partially folded, the isolated D1 domain exhibits autonomous refolding in pure aqueous solution. Similarly, the D3 domain and D2-D3 module were obtained from expression in E. coli but were found to be largely unfolded. No conclusion could be drawn for the D4 domain because it was not possible to extract it from the bacterial inclusion bodies. The data allow us to propose a plausible scenario for the annexin I folding. This working model states that firstly the D1 domain folds, and the D2 and D3 domains remain partly unfolded, facilitating the docking of the D4 domain to the D1 domain. In a second step, the D1 and D4 domains dock, and D4 may fold if already not folded. The final step starts with the stabilization of the D1-D4 module. This stabilization is crucial for allowing the non-native local interactions inside the still partially unfolded D2 domain to switch to the native long-range interactions involving D4. This switch allows the complete folding of D2 and D3. The model proposes a sequential and hierarchical process for the folding of annexin I and emphasizes the role of both native framework and non-native structures in the process.
Collapse
Affiliation(s)
- F Cordier-Ochsenbein
- Section de Biophysique des Protéines et des Membranes and URA CNRS 2096, Gif sur Yvette Cedex, CEA Saclay, 91191, France
| | | | | | | | | |
Collapse
|