1
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
2
|
Martins LS, Kruger HG, Naicker T, Alves CN, Lameira J, Araújo Silva JR. Computational insights for predicting the binding and selectivity of peptidomimetic plasmepsin IV inhibitors against cathepsin D. RSC Adv 2022; 13:602-614. [PMID: 36605626 PMCID: PMC9773328 DOI: 10.1039/d2ra06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by P. falciparum and are essential for the survival and growth of the parasite. Therefore, Plm enzymes are reported as an important antimalarial drug target. Herein, we have applied molecular docking, molecular dynamics (MD) simulations, and binding free energy with the Linear Interaction Energy (LIE) approach to investigate the binding of peptidomimetic PlmIV inhibitors with a particular focus on understanding their selectivity against the human Asp protease cathepsin D (CatD). The residual decomposition analysis results suggest that amino acid differences in the subsite S3 of PlmIV and CatD are responsible for the higher selectivity of the 5a inhibitor. These findings yield excellent agreement with experimental binding data and provide new details regarding van der Waals and electrostatic interactions of subsite residues as well as structural properties of the PlmIV and CatD systems.
Collapse
Affiliation(s)
- Lucas Sousa Martins
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | | | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu-NatalDurban 4000South Africa
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| | - José Rogério Araújo Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do ParáBelémPará 66075-110Brazil
| |
Collapse
|
3
|
Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations. J Mol Graph Model 2022; 117:108280. [PMID: 35963109 DOI: 10.1016/j.jmgm.2022.108280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023]
Abstract
The Human Immunodeficiency Virus (HIV) has been the source of epidemic infection of AIDS for a longer period. One of the most difficult tasks is identifying novel medications that can help to decrease or control this global health hazard by overcoming drug resistance. In recent decades' nanoparticles are emerging as extremely relevant in drug delivery platforms. In the current study, the pristine (SWCNT) and hydroxyl functionalized (SWCNT-OH) versions of the SWCNT were investigated as inhibitors against the wild-type (WT) and three key mutants of HIV-1 protease (HIV-pr) (I50V, V82A, and I84V). Molecular docking of SWCNT in the catalytic domain and running all-atom MD simulations of all complexes are also part of this project. A thorough inspection of conformational dynamics from 50 ns trajectories reveals that both the pristine and SWCNT-OH can fit right to the pocket region of HIV-pr and govern flap dynamics. The binding affinity of the four HIV-pr-SWCNT/SWCNT-OH complexes was further investigated using MM-PBSA-dependent binding free energy studies. In most mutants and WT systems, SWCNT-OH was reported to bind proportionately many folds (kcal/mol) more than pristine SWCNTs. Hence, SWCNTs are possible HIV-pr inhibitors in terms of their stable existence in the pocket area, stronger binding to the protease, and regulation of flap dynamics in controlling the active site volume, which have vast potential for applications against drug resistance.
Collapse
|
4
|
Shabanpour Y, Sajjadi S, Behmard E, Abdolmaleki P, Keihan AH. The structural, dynamic, and thermodynamic basis of darunavir resistance of a heavily mutated HIV-1 protease using molecular dynamics simulation. Front Mol Biosci 2022; 9:927373. [PMID: 36046605 PMCID: PMC9420863 DOI: 10.3389/fmolb.2022.927373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The human immunodeficiency virus type 1 protease (HIV-1 PR) is an important enzyme in the life cycle of the HIV virus. It cleaves inactive pre-proteins of the virus and changes them into active proteins. Darunavir (DRV) suppresses the wild-type HIV-1 PR (WT-Pr) activity but cannot inhibit some mutant resistant forms (MUT-Pr). Increasing knowledge about the resistance mechanism can be helpful for designing more effective inhibitors. In this study, the mechanism of resistance of a highly MUT-Pr strain against DRV was investigated. For this purpose, complexes of DRV with WT-Pr (WT-Pr-D) and MUT-Pr (MUT-Pr-D) were studied by all-atom molecular dynamics simulation in order to extract the dynamic and energetic properties. Our data revealed that mutations increased the flap-tip flexibility due to the reduction of the flap-flap hydrophobic interactions. So, the protease’s conformation changed from a closed state to a semi-open state that can facilitate the disjunction of DRV from the active site. On the other hand, energy analysis limited to the final basins of the energy landscape indicated that the entropy of binding of DRV to MUT-Pr was more favorable than that of WT-Pr. However, the enthalpy penalty overcomes it and makes binding more unfavorable relative to the WT-Pr. The unfavorable interaction of DRV with R8, I50, I84, D25′, and A28′ residues in MUT-Pr-D relative to WT-Pr-D is the reason for this enthalpy penalty. Thus, mutations drive resistance to DRV. The hydrogen bond analysis showed that compared with WT-Pr, the hydrogen bonds between DRV and the active-site residues of MUT-Pr were disrupted.
Collapse
Affiliation(s)
- Yaser Shabanpour
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sharareh Sajjadi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Esmaeil Behmard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- *Correspondence: Amir Homayoun Keihan, ,
| |
Collapse
|
5
|
Wang C, Chen L, Wang R, Tang W, Zhao B. Effects of the G48M mutant on the dynamics properties and binding mechanism of PR with SQV and ATV. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2055013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Wanxia Tang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, People’s Republic of China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, People’s Republic of China
| |
Collapse
|
6
|
Ahsan M, Pindi C, Senapati S. Mechanism of darunavir binding to monomeric HIV-1 protease: a step forward in the rational design of dimerization inhibitors. Phys Chem Chem Phys 2022; 24:7107-7120. [PMID: 35262154 DOI: 10.1039/d2cp00024e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV protease (HIVPR) is a key target in AIDS therapeutics. All ten FDA-approved drugs that compete with substrates in binding to this dimeric enzyme's active site have become ineffective due to the emergence of drug resistant mutants. Blocking the dimerization interface of HIVPR is thus being explored as an alternate strategy. The latest drug, darunavir (DRV), which exhibited a high genetic barrier to viral resistance, is said to have a dual mode of action - (i) binding to the dimeric active site, and (ii) preventing the dimerization by binding to the HIVPR monomer. Despite several reports on DRV complexation with dimeric HIVPR, the mode and mechanism of the binding of DRV to the HIVPR monomer are poorly understood. In this study, we utilized all-atomic MD simulations and umbrella sampling techniques to identify the best possible binding mode of DRV to the monomeric HIVPR and its mechanism of association. The results suggest that DRV binds between the active site and the flap of the monomer, and the flap plays a crucial role in directing the drug to bind and driving the other protein domains to undergo induced fit changes for stronger complexation. The obtained binding mode of DRV was validated by comparing with various mutational data from clinical isolates to reported in vitro mutations. The identified binding pose was also able to successfully reproduce the experimental Ki value in the picomolar range. The residue-level information extracted from this study could accelerate the structure-based drug designing approaches targeting HIVPR dimerization.
Collapse
Affiliation(s)
- Mohd Ahsan
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Chinmai Pindi
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
7
|
Taguchi M, Oyama R, Kaneso M, Hayashi S. Hybrid QM/MM Free-Energy Evaluation of Drug-Resistant Mutational Effect on the Binding of an Inhibitor Indinavir to HIV-1 Protease. J Chem Inf Model 2022; 62:1328-1344. [PMID: 35212226 DOI: 10.1021/acs.jcim.1c01193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A human immunodeficiency virus-1 (HIV-1) protease is a homodimeric aspartic protease essential for the replication of HIV. The HIV-1 protease is a target protein in drug discovery for antiretroviral therapy, and various inhibitor molecules of transition state analogues have been developed. However, serious drug-resistant mutants have emerged. For understanding the molecular mechanism of the drug resistance, an accurate examination of the impacts of the mutations on ligand binding and enzymatic activity is necessary. Here, we present a molecular simulation study on the ligand binding of indinavir, a potent transition state analogue inhibitor, to the wild-type protein and a V82T/I84V drug-resistant mutant of the HIV-1 protease. We employed a hybrid ab initio quantum mechanical/molecular mechanical (QM/MM) free-energy optimization technique which combines a highly accurate QM description of the ligand molecule and its interaction with statistically ample conformational sampling of the MM protein environment by long-time molecular dynamics simulations. Through the free-energy calculations of protonation states of catalytic groups at the binding pocket and of the ligand-binding affinity changes upon the mutations, we successfully reproduced the experimentally observed significant reduction of the binding affinity upon the drug-resistant mutations and elucidated the underlying molecular mechanism. The present study opens the way for understanding the molecular mechanism of drug resistance through the direct quantitative comparison of ligand binding and enzymatic reaction with the same accuracy.
Collapse
Affiliation(s)
- Masahiko Taguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ryo Oyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kaneso
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Sadiq SK, Muñiz Chicharro A, Friedrich P, Wade RC. Multiscale Approach for Computing Gated Ligand Binding from Molecular Dynamics and Brownian Dynamics Simulations. J Chem Theory Comput 2021; 17:7912-7929. [PMID: 34739248 DOI: 10.1021/acs.jctc.1c00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We develop an approach to characterize the effects of gating by a multiconformation protein consisting of macrostate conformations that are either accessible or inaccessible to ligand binding. We first construct a Markov state model of the apo-protein from atomistic molecular dynamics simulations from which we identify macrostates and their conformations, compute their relative macrostate populations and interchange kinetics, and structurally characterize them in terms of ligand accessibility. We insert the calculated first-order rate constants for conformational transitions into a multistate gating theory from which we derive a gating factor γ that quantifies the degree of conformational gating. Applied to HIV-1 protease, our approach yields a kinetic network of three accessible (semi-open, open, and wide-open) and two inaccessible (closed and a newly identified, "parted") macrostate conformations. The parted conformation sterically partitions the active site, suggesting a possible role in product release. We find that the binding kinetics of drugs and drug-like inhibitors to HIV-1 protease falls in the slow gating regime. However, because γ = 0.75, conformational gating only modestly slows ligand binding. Brownian dynamics simulations of the diffusional association of eight inhibitors to the protease─having a wide range of experimental association constants (∼104-1010 M-1 s-1)─yields gated rate constants in the range of ∼0.5-5.7 × 108 M-1 s-1. This indicates that, whereas the association rate of some inhibitors could be described by the model, for many inhibitors either subsequent conformational transitions or alternate binding mechanisms may be rate-limiting. For systems known to be modulated by conformational gating, the approach could be scaled computationally efficiently to screen association kinetics for a large number of ligands.
Collapse
Affiliation(s)
- S Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.,Infection Biology Unit, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Abraham Muñiz Chicharro
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Patrick Friedrich
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
10
|
Yu YX, Wang W, Sun HB, Zhang LL, Wu SL, Liu WT. Insights into effect of the Asp25/Asp25' protonation states on binding of inhibitors Amprenavir and MKP97 to HIV-1 protease using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:615-641. [PMID: 34157882 DOI: 10.1080/1062936x.2021.1939149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The protonation states of two aspartic acids in the catalytic strands of HIV-1 protease (PR) remarkably affect bindings of inhibitors to PR. It is requisite for the design of potent inhibitors towards PR to investigate the influences of Asp25/Asp25' protonated states on dynamics behaviour of PR and binding mechanism of inhibitors to PR. In this work, molecular dynamics (MD) simulations, MM-GBSA method and principal component (PC) analysis were coupled to explore the effect of Asp25/Asp25' protonation states on conformational changes of PR and bindings of Amprenavir and MKP97 to PR. The results show that the Asp25/Asp25' protonation states exert different impacts on structural fluctuations, flexibility and motion modes of PR. Dynamics analysis verifies that Asp25/Asp25' protonated states highly affect conformational dynamics of two flaps in PR. The binding free energy calculations results suggest that the Asp25/Asp25' protonated states obviously strengthen bindings of inhibitors to PR compared to the non-protonation state. Calculations of residue-based free energy decomposition indicate that the Asp25/Asp25' protonation not only disturbs the interaction network of inhibitors with PR but also stabilizes bindings of inhibitors to PR by cancelling the electrostatic repulsive interaction. Therefore, special attentions should be paid to the Asp25/Asp25' protonation in the design of potent inhibitors towards PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
11
|
Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Molecules 2021; 26:molecules26133872. [PMID: 34202892 PMCID: PMC8270314 DOI: 10.3390/molecules26133872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.
Collapse
|
12
|
Sanusi ZK, Lawal MM, Gupta PL, Govender T, Baijnath S, Naicker T, Maguire GEM, Honarparvar B, Roitberg AE, Kruger HG. Exploring the concerted mechanistic pathway for HIV-1 PR-substrate revealed by umbrella sampling simulation. J Biomol Struct Dyn 2020; 40:1736-1747. [PMID: 33073714 DOI: 10.1080/07391102.2020.1832578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 protease (HIV-1 PR) is an essential enzyme for the replication process of its virus, and therefore considered an important target for the development of drugs against the acquired immunodeficiency syndrome (AIDS). Our previous study shows that the catalytic mechanism of subtype B/C-SA HIV-1 PR follows a one-step concerted acyclic hydrolysis reaction process using a two-layered ONIOM B3LYP/6-31++G(d,p) method. This present work is aimed at exploring the proposed mechanism of the proteolysis catalyzed by HIV-1 PR and to ensure our proposed mechanism is not an artefact of a single theoretical technique. Hence, we present umbrella sampling method that is suitable for calculating potential mean force (PMF) for non-covalent ligand/substrate-enzyme association/dissociation interactions which provide thermodynamic details for molecular recognition. The free activation energy results were computed in terms of PMF analysis within the hybrid QM(DFTB)/MM approach. The theoretical findings suggest that the proposed mechanism corresponds in principle with experimental data. Given our observations, we suggest that the QM/MM MD method can be used as a reliable computational technique to rationalize lead compounds against specific targets such as the HIV-1 protease.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Ahsan M, Pindi C, Senapati S. Electrostatics Plays a Crucial Role in HIV-1 Protease Substrate Binding, Drugs Fail to Take Advantage. Biochemistry 2020; 59:3316-3331. [PMID: 32822154 DOI: 10.1021/acs.biochem.0c00341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 protease (HIVPR) is an important drug target for combating AIDS. This enzyme is an aspartyl protease that is functionally active in its dimeric form. Nuclear magnetic resonance reports have convincingly shown that a pseudosymmetry exists at the HIVPR active site, where only one of the two aspartates remains protonated over the pH range of 2.5-7.0. To date, all HIVPR-targeted drug design strategies focused on maximizing the size-shape complementarity and van der Waals interactions of the small molecule drugs with the deprotonated, symmetric active site envelope of crystallized HIVPR. However, these strategies were ineffective with the emergence of drug resistant protease variants, primarily due to the steric clashes at the active site. In this study, we traced a specificity in the substrate binding motif that emerges primarily from the asymmetrical electrostatic potential present in the protease active site due to the uneven protonation. Our detailed results from atomistic molecular dynamics simulations show that while such a specific mode of substrate binding involves significant electrostatic interactions, none of the existing drugs or inhibitors could utilize this electrostatic hot spot. As the electrostatic is long-range interaction, it can provide sufficient binding strength without the necessity of increasing the bulkiness of the inhibitors. We propose that introducing the electrostatic component along with optimal fitting at the binding pocket could pave the way for promising designs that might be more effective against both wild type and HIVPR resistant variants.
Collapse
Affiliation(s)
- Mohd Ahsan
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Chinmai Pindi
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Department of Biotechnology and BJM School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Li J, Sae Her A, Traaseth NJ. Site-specific resolution of anionic residues in proteins using solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2020; 74:355-363. [PMID: 32514875 PMCID: PMC7472563 DOI: 10.1007/s10858-020-00323-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
NMR spectroscopy is commonly used to infer site-specific acid dissociation constants (pKa) since the chemical shift is sensitive to the protonation state. Methods that probe atoms nearest to the functional groups involved in acid/base chemistry are the most sensitive for determining the protonation state. In this work, we describe a magic-angle-spinning (MAS) solid-state NMR approach to measure chemical shifts on the side chain of the anionic residues aspartate and glutamate. This method involves a combination of double quantum spectroscopy in the indirect dimension and REDOR dephasing to provide a sensitive and resolved view of these amino acid residues that are commonly involved in enzyme catalysis and membrane protein transport. To demonstrate the applicability of the approach, we carried out measurements using a microcrystalline soluble protein (ubiquitin) and a membrane protein embedded in lipid bilayers (EmrE). Overall, the resolution available from the double quantum dimension and confidence in identification of aspartate and glutamate residues from the REDOR filter make this method the most convenient for characterizing protonation states and deriving pKa values using MAS solid-state NMR.
Collapse
Affiliation(s)
- Jianping Li
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Ampon Sae Her
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
15
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
16
|
Novel radial distribution function approach in the study of point mutations: the HIV-1 protease case study. Future Med Chem 2020; 12:1025-1036. [PMID: 32319305 DOI: 10.4155/fmc-2020-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Mutations are one of the engines of evolution. Under constant stress pressure, mutations can lead to the emergence of unwanted, drug-resistant entities. Methodology: The radial distribution function weighted by the number of valence shell electrons is used to design quantitative structure-activity relationship (QSAR) model relating descriptors with the inhibition constant for a series of wild-type HIV-1 protease inhibitor complexes. The residuals of complexes with mutant HIV-1 protease were correlated with the energy of the highest occupied molecular orbitals of the residues introduced to enzyme via point mutations. Conclusion: Successful identification of residues Ile3, Asp25, Val32 and Ile50 as the one whose substitution influences the inhibition constant the most, demonstrates the potential of the proposed methodology for the study of the effects of point mutations.
Collapse
|
17
|
Performance of radial distribution function-based descriptors in the chemoinformatic studies of HIV-1 protease. Future Med Chem 2020; 12:299-309. [DOI: 10.4155/fmc-2019-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: This letter investigates the role of radial distribution function-based descriptors for in silico design of new drugs. Methodology: The multiple linear regression models for HIV-1 protease and its complexes with a series of inhibitors were constructed. A detailed analysis of major atomic contributions to the radial distribution function descriptor weighted by the number of valence shell electrons identified residues Arg8, Asp29 and residues of the catalytic triad as crucial for the correlation with the inhibition constant, together with residues Asp30 and Ile50, whose mutations are known to cause an emergence of drug resistant variants. Conclusion: This study demonstrates an easy and fast assessment of the activity of potential drugs and the derivation of structural information of their complexes with the receptor or enzyme.
Collapse
|
18
|
Novak J, Grishina MA, Potemkin VA. The Influence of Hydrogen Atoms on the Performance of Radial Distribution Function-Based Descriptors in the Chemoinformatic Studies of HIV-1 Protease Complexes with Inhibitors. Curr Drug Discov Technol 2020; 18:414-422. [PMID: 31899678 DOI: 10.2174/1570163817666200102130415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
AIMS The aim of this letter is to explore the influence of adding hydrogen atoms to the crystallographic structures of HIV-1 protease complexes with a series of inhibitors on the performance of radial distribution function based descriptors recently introduced in chemoinformatic studies. BACKGROUND Quite recently the successful application of molecular descriptors based on a radial distribution function to correlate it with biologically interesting properties of a ligand - enzyme complex was demonstrated. Except its predictive power, the analysis of atoms with dominant contributions to the RDFs can be used to identify relevant atoms and interactions. Since original paper was published on dataset consisting of the X-ray structures of complexes without hydrogen atoms, we wonder weather addition of light atoms can provide us new piece of information. OBJECTIVE The primarily objective is to create the model correlating the RDF based descriptors and physicochemical properties of the HIV-1 protease complexes with inhibitors with hydrogen atoms. Then, we will compare the performance of new model with previous one, where the hydrogen atoms were discarded. Information about interactions between the enzyme and the inhibitors will be extracted from the analysis of the RDF. METHODS The radial distribution function descriptor weighted by the number of valence shell electrons has proven to be sensitive to the changes in the structure of the enzyme and enzyme-ligand complexes. For each structure in our data set, RDF will be calculated and using multiple linear regression method the mathematical model will be designed correlating RDF based descriptors and the physicochemical properties. Statistical analysis of the atom's contribution to the total RDF will reveal relevant interactions. RESULTS The applicability of RDF based descriptor for the correlation with pKi and EC50 values is demonstrated, while simple models containing only two or three parameters are able to explain 78 and 86 % of the variance, respectively. The models with explicitly included hydrogens are of comparable quality with the previous models without hydrogens. The analysis of the atom's dominant contributions highlighted the importance of the hydroxyl groups of the inhibitor near the Asp25 and Asp25' residues when it is bounded to the protease. CONCLUSION Models based on the RDF weighted by the number of valence shell electrons for correlating small number of molecular descriptors and physicocehmical properties for structures with and without hydrogens are of comparable quality and both can be used for identification of relevant functional groups and interactions. Other: Our approach can be integrated to the next generation virtual screening methods, because is fast, reliable with high predictability potential.
Collapse
Affiliation(s)
- Jurica Novak
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| | - Maria A Grishina
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| | - Vladimir A Potemkin
- South Ural State University, 20-A, Tchaikovsky Str., Chelyabinsk 454080, Russian Federation
| |
Collapse
|
19
|
Brockerman JA, Okon M, Withers SG, McIntosh LP. The pK a values of the catalytic residues in the retaining glycoside hydrolase T26H mutant of T4 lysozyme. Protein Sci 2018; 28:620-632. [PMID: 30537432 DOI: 10.1002/pro.3562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
T4 phage lysozyme (T4L) is an enzyme that cleaves bacterial cell wall peptidoglycan. Remarkably, the single substitution of the active site Thr26 to a His (T26H) converts T4L from an inverting to a retaining glycoside hydrolase with transglycosylase activity. It has been proposed that T26H-T4L follows a double displacement mechanism with His26 serving as a nucleophile to form a covalent glycosyl-enzyme intermediate (Kuroki et al., PNAS 1999; 96:8949-8954). To gain further insights into this or alternative mechanisms, we used NMR spectroscopy to measure the acid dissociation constants (pKa values) and/or define the ionization states of the Asp, Glu, His, and Arg residues in the T4L mutant. Most notably, the pKa value of the putative nucleophile His26 is 6.8 ± 0.1, whereas that of the general acid Glu11 is 4.7 ± 0.1. If the proposed mechanism holds true, then T26H-T4L follows a reverse protonation pathway in which only a minor population of the free enzyme is in its catalytically competent ionization state with His26 deprotonated and Glu11 protonated. Our studies also confirm that all arginines in T26H-T4L, including the active site Arg145, are positively charged under neutral pH conditions. BRIEF STATEMENT: The replacement of a single amino acid changes T4 lysozyme from an inverting to a retaining glycoside hydrolase. Using NMR spectroscopy, we measured the pKa values of the ionizable residues in the active site of this mutant enzyme. Along with previously reported data, these results provide important constraints for understanding the catalytic mechanisms by which the wild-type and mutant form of T4 lysozyme cleave bacterial peptidoglycan.
Collapse
Affiliation(s)
- Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
20
|
Bastys T, Gapsys V, Doncheva NT, Kaiser R, de Groot BL, Kalinina OV. Consistent Prediction of Mutation Effect on Drug Binding in HIV-1 Protease Using Alchemical Calculations. J Chem Theory Comput 2018; 14:3397-3408. [PMID: 29847122 DOI: 10.1021/acs.jctc.7b01109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a large number of antiretroviral drugs targeting HIV-1 protease for inhibition, mutations in this protein during the course of patient treatment can render them inefficient. This emerging resistance inspired numerous computational studies of the HIV-1 protease aimed at predicting the effect of mutations on drug binding in terms of free binding energy Δ G, as well as in mechanistic terms. In this study, we analyze ten different protease-inhibitor complexes carrying major resistance-associated mutations (RAMs) G48V, I50V, and L90M using molecular dynamics simulations. We demonstrate that alchemical free energy calculations can consistently predict the effect of mutations on drug binding. By explicitly probing different protonation states of the catalytic aspartic dyad, we reveal the importance of the correct choice of protonation state for the accuracy of the result. We also provide insight into how different mutations affect drug binding in their specific ways, with the unifying theme of how all of them affect the crucial drug binding regions of the protease.
Collapse
Affiliation(s)
- Tomas Bastys
- Department for Computational Biology and Applied Algorithmics , Max Planck Institute for Informatics , D-66123 Saarbrücken , Germany.,Saarbrücken Graduate School of Computer Science , University of Saarland , D-66123 Saarbrücken , Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics , Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany
| | - Nadezhda T Doncheva
- Department for Computational Biology and Applied Algorithmics , Max Planck Institute for Informatics , D-66123 Saarbrücken , Germany.,Faculty of Health and Medical Sciences , University of Copenhagen , 2200 Copenhagen , Denmark
| | - Rolf Kaiser
- Institute for Virology , University Clinic of Cologne , D-50935 Köln , Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics , Max Planck Institute for Biophysical Chemistry , D-37077 Göttingen , Germany
| | - Olga V Kalinina
- Department for Computational Biology and Applied Algorithmics , Max Planck Institute for Informatics , D-66123 Saarbrücken , Germany
| |
Collapse
|
21
|
Hidaka K, Kimura T, Sankaranarayanan R, Wang J, McDaniel KF, Kempf DJ, Kameoka M, Adachi M, Kuroki R, Nguyen JT, Hayashi Y, Kiso Y. Identification of Highly Potent Human Immunodeficiency Virus Type-1 Protease Inhibitors against Lopinavir and Darunavir Resistant Viruses from Allophenylnorstatine-Based Peptidomimetics with P2 Tetrahydrofuranylglycine. J Med Chem 2018; 61:5138-5153. [PMID: 29852069 DOI: 10.1021/acs.jmedchem.7b01709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The emergence of drug-resistant HIV from a widespread antiviral chemotherapy targeting HIV protease in the past decades is unavoidable and provides a challenge to develop alternative inhibitors. We synthesized a series of allophenylnorstatine-based peptidomimetics with various P3, P2, and P2́ moieties. The derivatives with P2 tetrahydrofuranylglycine (Thfg) were found to be potent against wild type HIV-1 protease and the virus, leading to a highly potent compound 21f (KNI-1657) against lopinavir/ritonavir- or darunavir-resistant strains. Co-crystal structures of 21f and the wild-type protease revealed numerous key hydrogen bonding interactions with Thfg. These results suggest that the strategy to design allophenylnorstatine-based peptidomimetics combined with Thfg residue would be promising for generating candidates to overcome multidrug resistance.
Collapse
Affiliation(s)
- Koushi Hidaka
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical Sciences , Kobe Gakuin University , Kobe 650-8586 , Japan
| | - Tooru Kimura
- Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Kyoto 607-8412 , Japan
| | - Rajesh Sankaranarayanan
- Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Kyoto 607-8412 , Japan
| | - Jun Wang
- Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Kyoto 607-8412 , Japan
| | - Keith F McDaniel
- Global Pharmaceutical Research and Development , AbbVie , North Chicago , Illinois 60064 , United States
| | - Dale J Kempf
- Global Pharmaceutical Research and Development , AbbVie , North Chicago , Illinois 60064 , United States
| | - Masanori Kameoka
- Department of International Health , Kobe University Graduate School of Health Sciences , Kobe 654-0142 , Japan
| | - Motoyasu Adachi
- Quantum Beam Science Drectorate , National Institutes for Quantum and Radiological Science and Technology , Tokai , Ibaraki 319-1106 , Japan
| | - Ryota Kuroki
- Quantum Beam Science Center , Japan Atomic Energy Agency , Tokai , Ibaraki 319-1195 , Japan
| | - Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry , Kyoto Pharmaceutical University , Kyoto 607-8412 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Tokyo 192-0392 , Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Sciences , Nagahama Institute of Bio-Science and Technology , Nagahama 526-0829 , Japan
| |
Collapse
|
22
|
Mackenzie HW, Hansen DF. A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15N η chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2017; 69:123-132. [PMID: 29127559 PMCID: PMC5711973 DOI: 10.1007/s10858-017-0137-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 05/25/2023]
Abstract
Arginine side-chains are often key for enzyme catalysis, protein-ligand and protein-protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ-Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.
Collapse
Affiliation(s)
- Harold W Mackenzie
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
23
|
Oksanen E, Chen JCH, Fisher SZ. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Molecules 2017; 22:molecules22040596. [PMID: 28387738 PMCID: PMC6154725 DOI: 10.3390/molecules22040596] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.
Collapse
Affiliation(s)
- Esko Oksanen
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biochemistry and Structural Biology, Lund University, Sölvegatan 39, 22362 Lund, Sweden.
| | - Julian C-H Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Suzanne Zoë Fisher
- Science Directorate, European Spallation Source ERIC, Tunavägen 24, 22100 Lund, Sweden.
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
24
|
Yu Y, Wang J, Chen Z, Wang G, Shao Q, Shi J, Zhu W. Structural insights into HIV-1 protease flap opening processes and key intermediates. RSC Adv 2017. [DOI: 10.1039/c7ra09691g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The study provided an integrated view of the transition pathway of the flap opening of HIV-1 protease using MD simulation.
Collapse
Affiliation(s)
- Yuqi Yu
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jinan Wang
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Zhaoqiang Chen
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Guimin Wang
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Qiang Shao
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jiye Shi
- UCB Biopharma SPRL
- Chemin du Foriest
- Belgium
| | - Weiliang Zhu
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
25
|
Krzemińska A, Moliner V, Świderek K. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease. J Am Chem Soc 2016; 138:16283-16298. [PMID: 27935692 DOI: 10.1021/jacs.6b06856] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HIV-1 Protease (HIV-1 PR) is one of the three enzymes essential for the replication process of HIV-1 virus, which explains why it has been the main target for design of drugs against acquired immunodeficiency syndrome (AIDS). This work is focused on exploring the proteolysis reaction catalyzed by HIV-1 PR, with special attention to the dynamic and electrostatic effects governing its catalytic power. Free energy surfaces for all possible mechanisms have been computed in terms of potentials of mean force (PMFs) within hybrid QM/MM potentials, with the QM subset of atoms described at semiempirical (AM1) and DFT (M06-2X) level. The results suggest that the most favorable reaction mechanism involves formation of a gem-diol intermediate, whose decomposition into the product complex would correspond to the rate-limiting step. The agreement between the activation free energy of this step with experimental data, as well as kinetic isotope effects (KIEs), supports this prediction. The role of the protein dynamic was studied by protein isotope labeling in the framework of the Variational Transition State Theory. The predicted enzyme KIEs, also very close to the values measured experimentally, reveal a measurable but small dynamic effect. Our calculations show how the contribution of dynamic effects to the effective activation free energy appears to be below 1 kcal·mol-1. On the contrary, the electric field created by the protein in the active site of the enzyme emerges as being critical for the electronic reorganization required during the reaction. These electrostatic properties of the active site could be used as a mold for future drug design.
Collapse
Affiliation(s)
- Agnieszka Krzemińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Katarzyna Świderek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland.,Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
26
|
Soares RO, Torres PHM, da Silva ML, Pascutti PG. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations. J Struct Biol 2016; 195:216-226. [PMID: 27291071 DOI: 10.1016/j.jsb.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
The active site of HIV protease (HIV-PR) is covered by two flaps. These flaps are known to be essential for the catalytic activity of the HIV-PR, but their exact conformations at the different stages of the enzymatic pathway remain subject to debate. Understanding the correct functional dynamics of the flaps might aid the development of new HIV-PR inhibitors. It is known that, the HIV-PR catalytic efficiency is pH-dependent, likely due to the influence of processes such as charge transfer and protonation/deprotonation of ionizable residues. Several Molecular Dynamics (MD) simulations have reported information about the HIV-PR flaps. However, in MD simulations the protonation of a residue is fixed and thus it is not possible to study the correlation between conformation and protonation state. To address this shortcoming, this work attempts to capture, through Constant pH Molecular Dynamics (CpHMD), the conformations of the apo, substrate-bound and inhibitor-bound HIV-PR, which differ drastically in their flap arrangements. The results show that the HIV-PR flaps conformations are defined by the protonation of the catalytic residues Asp25/Asp25' and that these residues are sensitive to pH changes. This study suggests that the catalytic aspartates can modulate the opening of the active site and substrate binding.
Collapse
Affiliation(s)
- Rosemberg O Soares
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil.
| | - Pedro H M Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Manuela L da Silva
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| |
Collapse
|
27
|
Chen J. Drug resistance mechanisms of three mutations V32I, I47V and V82I in HIV-1 protease toward inhibitors probed by molecular dynamics simulations and binding free energy predictions. RSC Adv 2016. [DOI: 10.1039/c6ra09201b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular dynamics simulation and binding free energy calculations were used to probe drug resistance of HIV-1 protease mutations toward inhibitors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science
- Shandong Jiaotong University
- Jinan 250357
- China
| |
Collapse
|
28
|
Forli S. Charting a Path to Success in Virtual Screening. Molecules 2015; 20:18732-58. [PMID: 26501243 PMCID: PMC4630810 DOI: 10.3390/molecules201018732] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 12/27/2022] Open
Abstract
Docking is commonly applied to drug design efforts, especially high-throughput virtual screenings of small molecules, to identify new compounds that bind to a given target. Despite great advances and successful applications in recent years, a number of issues remain unsolved. Most of the challenges and problems faced when running docking experiments are independent of the specific software used, and can be ascribed to either improper input preparation or to the simplified approaches applied to achieve high-throughput speed. Being aware of approximations and limitations of such methods is essential to prevent errors, deal with misleading results, and increase the success rate of virtual screening campaigns. In this review, best practices and most common issues of docking and virtual screening will be discussed, covering the journey from the design of the virtual experiment to the hit identification.
Collapse
Affiliation(s)
- Stefano Forli
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Sci Rep 2015; 5:10517. [PMID: 26012849 PMCID: PMC4444956 DOI: 10.1038/srep10517] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Molecular dynamics simulations are performed to investigate the dynamic properties of wild-type HIV-1 protease and its two multi-drug-resistant variants (Flap + (L10I/G48V/I54V/V82A) and Act (V82T/I84V)) as well as their binding with APV and DRV inhibitors. The hydrophobic interactions between flap and 80 s (80’s) loop residues (mainly I50-I84’ and I50’-I84) play an important role in maintaining the closed conformation of HIV-1 protease. The double mutation in Act variant weakens the hydrophobic interactions, leading to the transition from closed to semi-open conformation of apo Act. APV or DRV binds with HIV-1 protease via both hydrophobic and hydrogen bonding interactions. The hydrophobic interactions from the inhibitor is aimed to the residues of I50 (I50’), I84 (I84’), and V82 (V82’) which create hydrophobic core clusters to further stabilize the closed conformation of flaps, and the hydrogen bonding interactions are mainly focused with the active site of HIV-1 protease. The combined change in the two kinds of protease-inhibitor interactions is correlated with the observed resistance mutations. The present study sheds light on the microscopic mechanism underlying the mutation effects on the dynamics of HIV-1 protease and the inhibition by APV and DRV, providing useful information to the design of more potent and effective HIV-1 protease inhibitors.
Collapse
|
30
|
Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease. Comput Biol Chem 2015; 56:61-70. [PMID: 25889320 DOI: 10.1016/j.compbiolchem.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 11/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) protease is an attractive target when developing inhibitors to treat HTLV-1 associated diseases. To study the catalytic mechanism and design novel HTLV-1 protease inhibitors, the protonation states of the two catalytic aspartic acid residues must be determined. Free energy simulations have been conducted to study the proton transfer reaction between the catalytic residues of HTLV-1 protease using a combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulation. The free energy profiles for the reaction in the apo-enzyme and in an enzyme - substrate complex have been obtained. In the apo-enzyme, the two catalytic residues are chemically equivalent and are expected to be both unprotonated. Upon substrate binding, the catalytic residues of HTLV-1 protease evolve to a singly protonated state, in which the OD1 of Asp32 is protonated and forms a hydrogen bond with the OD1 of Asp32', which is unprotonated. The HTLV-1 protease-substrate complex structure obtained from this simulation can serve as the Michaelis complex structure for further mechanistic studies of HTLV-1 protease while providing a receptor structure with the correct protonation states for the active site residues toward the design of novel HTLV-1 protease inhibitors through virtual screening.
Collapse
|
31
|
Meher BR, Wang Y. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. J Mol Graph Model 2014; 56:60-73. [PMID: 25562662 DOI: 10.1016/j.jmgm.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/14/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022]
Abstract
Inhibitors of HIV-1 protease (HIV-1-pr) generally only bind to the active site of the protease. However, for some mutants such as V32I and M46L the TMC114 can bind not only to the active cavity but also to the groove of the flexible flaps. Although the second binding site suggests the higher efficiency of the drug against HIV-1-pr, the drug resistance in HIV-1-pr due to mutations cannot be ignored, which prompts us to investigate the molecular mechanisms of drug resistance and behavior of double bound TMC114 (2T) to HIV-1-pr. The conformational dynamics of HIV-1-pr and the binding of TMC114 to the WT, V32I and M46L mutants were investigated with all-atom molecular dynamic (MD) simulation. The 20 ns MD simulation shows many fascinating effects of the inhibitor binding to the WT and mutant proteases. MM-PBSA calculations explain the binding free energies unfavorable for the M46L and V32I mutants as compared to the WT. For the single binding (1T) the less binding affinity can be attributed to the entropic loss for both V32I-1T and M46L-1T. Although the second binding of TMC114 with flap does increase binding energy for the mutants (V32I-2T and M46L-2T), the considerable entropy loss results in the lower binding Gibbs free energies. Thus, binding of TMC114 in the flap region does not help much in the total gain in binding affinity of the system, which was verified from this study and thereby validating experiments.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, GA 31705, USA
| | - Yixuan Wang
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, GA 31705, USA.
| |
Collapse
|
32
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
33
|
McGee TD, Edwards J, Roitberg AE. pH-REMD Simulations Indicate That the Catalytic Aspartates of HIV-1 Protease Exist Primarily in a Monoprotonated State. J Phys Chem B 2014; 118:12577-85. [DOI: 10.1021/jp504011c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. Dwight McGee
- Department
of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Jesse Edwards
- Department
of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, Florida 32307, United States
| | - Adrian E. Roitberg
- Department
of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
34
|
Yang M, Jiang X, Jiang N. Protonation state and free energy calculation of HIV-1 protease–inhibitor complex based on electrostatic polarisation effect. Mol Phys 2013. [DOI: 10.1080/00268976.2013.857050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Maoyou Yang
- School of Science, Qilu University of Technology, Jinan 250353, China
| | - Xiaonan Jiang
- Department of Fundamental Education, Shandong College of Arts, Jinan 250014, China
| | - Ning Jiang
- Department of Hypertension, Jinan Hospital of Traditional Chinese Medicine, Jinan 250012, China
| |
Collapse
|
35
|
Weber IT, Waltman MJ, Mustyakimov M, Blakeley MP, Keen DA, Ghosh AK, Langan P, Kovalevsky AY. Joint X-ray/neutron crystallographic study of HIV-1 protease with clinical inhibitor amprenavir: insights for drug design. J Med Chem 2013; 56:5631-5. [PMID: 23772563 DOI: 10.1021/jm400684f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 protease is an important target for the development of antiviral inhibitors to treat AIDS. A room-temperature joint X-ray/neutron structure of the protease in complex with clinical drug amprenavir has been determined at 2.0 Å resolution. The structure provides direct determination of hydrogen atom positions in the enzyme active site. Analysis of the enzyme-drug interactions suggests that some hydrogen bonds may be weaker than deduced from the non-hydrogen interatomic distances. This information may be valuable for the design of improved protease inhibitors.
Collapse
Affiliation(s)
- Irene T Weber
- Departments of Chemistry and Biology, Georgia State University , Atlanta, Georgia, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Formation of protein-ligand complexes causes various changes in both the receptor and the ligand. This review focuses on changes in pK and protonation states of ionizable groups that accompany protein-ligand binding. Physical origins of these effects are outlined, followed by a brief overview of the computational methods to predict them and the associated corrections to receptor-ligand binding affinities. Statistical prevalence, magnitude and spatial distribution of the pK and protonation state changes in protein-ligand binding are discussed in detail, based on both experimental and theoretical studies. While there is no doubt that these changes occur, they do not occur all the time; the estimated prevalence varies, both between individual complexes and by method. The changes occur not only in the immediate vicinity of the interface but also sometimes far away. When receptor-ligand binding is associated with protonation state change at particular pH, the binding becomes pH dependent: we review the interplay between sub-cellular characteristic pH and optimum pH of receptor-ligand binding. It is pointed out that there is a tendency for protonation state changes upon binding to be minimal at physiologically relevant pH for each complex (no net proton uptake/release), suggesting that native receptor-ligand interactions have evolved to reduce the energy cost associated with ionization changes. As a result, previously reported statistical prevalence of these changes - typically computed at the same pH for all complexes - may be higher than what may be expected at optimum pH specific to each complex. We also discuss whether proper account of protonation state changes appears to improve practical docking and scoring outcomes relevant to structure-based drug design. An overview of some of the existing challenges in the field is provided in conclusion.
Collapse
Affiliation(s)
- Alexey V Onufriev
- Department of Computer Science and Physics, 2050 Torgersen Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
37
|
Ding F, Dokholyan NV. Incorporating Backbone Flexibility in MedusaDock Improves Ligand-Binding Pose Prediction in the CSAR2011 Docking Benchmark. J Chem Inf Model 2012; 53:1871-9. [DOI: 10.1021/ci300478y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634,
United States
- Department
of Biochemistry and
Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Nikolay V. Dokholyan
- Department
of Biochemistry and
Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
MEHER BISWARANJAN, SATISH KUMAR MATTAPARTHIVENKATA, SHARMA SMRITI, BANDYOPADHYAY PRADIPTA. CONFORMATIONAL DYNAMICS OF HIV-1 PROTEASE: A COMPARATIVE MOLECULAR DYNAMICS SIMULATION STUDY WITH MULTIPLE AMBER FORCE FIELDS. J Bioinform Comput Biol 2012; 10:1250018. [DOI: 10.1142/s0219720012500187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.
Collapse
Affiliation(s)
- BISWA RANJAN MEHER
- Computational Biology Research Laboratory, Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA
| | - MATTAPARTHI VENKATA SATISH KUMAR
- Computational Biology Research Laboratory, Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - SMRITI SHARMA
- Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - PRADIPTA BANDYOPADHYAY
- Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
39
|
Meher BR, Wang Y. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism. J Mol Graph Model 2012; 38:430-45. [PMID: 23142620 DOI: 10.1016/j.jmgm.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50V(PR), V82A(PR) and I84V(PR)) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3-5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, GA 31705, USA
| | | |
Collapse
|
40
|
Experimental and ‘in silico’ analysis of the effect of pH on HIV-1 protease inhibitor affinity: Implications for the charge state of the protein ionogenic groups. Bioorg Med Chem 2012; 20:4838-47. [DOI: 10.1016/j.bmc.2012.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022]
|
41
|
Torbeev VY, Kent SBH. Ionization state of the catalytic dyad Asp25/25' in the HIV-1 protease: NMR studies of site-specifically 13C labelled HIV-1 protease prepared by total chemical synthesis. Org Biomol Chem 2012; 10:5887-91. [PMID: 22659831 DOI: 10.1039/c2ob25569c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Total chemical synthesis was used to site-specifically (13)C-label active site Asp25 and Asp25' residues in HIV-1 protease and in several chemically synthesized analogues of the enzyme molecule. (13)C NMR measurements were consistent with a monoprotonated state for the catalytic dyad formed by the interacting Asp25, Asp25' side chain carboxyls.
Collapse
Affiliation(s)
- Vladimir Yu Torbeev
- Institute for Biophysical Dynamics, Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
42
|
Transition states of native and drug-resistant HIV-1 protease are the same. Proc Natl Acad Sci U S A 2012; 109:6543-8. [PMID: 22493227 DOI: 10.1073/pnas.1202808109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
HIV-1 protease is an important target for the treatment of HIV/AIDS. However, drug resistance is a persistent problem and new inhibitors are needed. An approach toward understanding enzyme chemistry, the basis of drug resistance, and the design of powerful inhibitors is to establish the structure of enzymatic transition states. Enzymatic transition structures can be established by matching experimental kinetic isotope effects (KIEs) with theoretical predictions. However, the HIV-1 protease transition state has not been previously resolved using these methods. We have measured primary (14)C and (15)N KIEs and secondary (3)H and (18)O KIEs for native and multidrug-resistant HIV-1 protease (I84V). We observed (14)C KIEs ((14)V/K) of 1.029 ± 0.003 and 1.025 ± 0.005, (15)N KIEs ((15)V/K) of 0.987 ± 0.004 and 0.989 ± 0.003, (18)O KIEs ((18)V/K) of 0.999 ± 0.003 and 0.993 ± 0.003, and (3)H KIEs ((3)V/K) KIEs of 0.968 ± 0.001 and 0.976 ± 0.001 for the native and I84V enzyme, respectively. The chemical reaction involves nucleophilic water attack at the carbonyl carbon, proton transfer to the amide nitrogen leaving group, and C-N bond cleavage. A transition structure consistent with the KIE values involves proton transfer from the active site Asp-125 (1.32 Å) with partial hydrogen bond formation to the accepting nitrogen (1.20 Å) and partial bond loss from the carbonyl carbon to the amide leaving group (1.52 Å). The KIEs measured for the native and I84V enzyme indicate nearly identical transition states, implying that a true transition-state analogue should be effective against both enzymes.
Collapse
|
43
|
Meher BR, Wang Y. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. J Phys Chem B 2012; 116:1884-900. [PMID: 22239286 DOI: 10.1021/jp2074804] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present work, the binding of inhibitor TMC114 (darunavir) to wild-type (WT), single (I50V) as well as double (I50L/A71V) mutant HIV-proteases (HIV-pr) was investigated with all-atom molecular dynamics (MD) simulations as well as molecular mechanic-Poisson-Boltzmann surface area (MM-PBSA) calculation. For both the apo and complexed HIV-pr, many intriguing effects due to double mutant, I50L/A71V, are observed. For example, the flap-flap distance and the distance from the active site to the flap residues in the apo I50L/A71V-HIV-pr are smaller than those of WT- and I50V-HIV-pr, probably making the active site smaller in volume and closer movement of flaps. For the complexed HIV-pr with TMC114, the double mutant I50L/A71V shows a less curling of the flap tips and less flexibility than WT and the single mutant I50V. As for the other previous studies, the present results also show that the single mutant I50V decreases the binding affinity of I50V-HIV-pr to TMC, resulting in a drug resistance; whereas the double mutant I50L/A71V increases the binding affinity, and as a result of the stronger binding, the I50L/A71V may be well adapted by the TMC114. The energy decomposition analysis suggests that the increase of the binding for the double mutant I50L/A71V-HIV-pr can be mainly attributed to the increase in electrostatic energy by -5.52 kacl/mol and van der Waals by -0.42 kcal/mol, which are canceled out in part by the increase of polar solvation energy of 1.99 kcal/mol. The I50L/A71V mutant directly increases the binding affinity by approximately -0.88 (Ile50 to Leu50) and -0.90 (Ile50' to Leu50') kcal/mol, accounting 45% for the total gain of the binding affinity. Besides the direct effects from the residues Leu50 and Leu50', the residue Gly49' increases the binding affinity of I50L/A71V-HIV-pr to the inhibitor by -0.74 kcal/mol, to which the electrostatic interaction of Leu50's backbone contributes by -1.23 kcal/mol. Another two residues Ile84 and Ile47' also increase the binding affinity by -0.22 and -0.29 kcal/mol, respectively, which can be mainly attributed to van der Waals terms (ΔT(vdw) = -0.21 and -0.39 kcal/mol).
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA
| | | |
Collapse
|
44
|
Liang G, Aldous S, Merriman G, Levell J, Pribish J, Cairns J, Chen X, Maignan S, Mathieu M, Tsay J, Sides K, Rebello S, Whitely B, Morize I, Pauls HW. Structure-based library design and the discovery of a potent and selective mast cell β-tryptase inhibitor as an oral therapeutic agent. Bioorg Med Chem Lett 2012; 22:1049-54. [DOI: 10.1016/j.bmcl.2011.11.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
45
|
|
46
|
Karthik S, Senapati S. Dynamic flaps in HIV-1 protease adopt unique ordering at different stages in the catalytic cycle. Proteins 2011; 79:1830-40. [PMID: 21465560 DOI: 10.1002/prot.23008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 11/07/2022]
Abstract
The flexibility of HIV-1 protease flaps is known to be essential for the enzymatic activity. Here we attempt to capture a multitude of conformations of the free and substrate-bound HIV-1 protease that differ drastically in their flap arrangements. The substrate binding process suggests the opening of active site gate in conjunction with a reversal of flap tip ordering, from the native semiopen state. The reversed-flap, open-gated enzyme readily transforms to a closed conformation after proper placement of the substrate into the binding cleft. After substrate processing, the closed state protease which possessed opposite flap ordering relative to the semiopen state, encounters another flap reversal via a second open conformation that facilitates the evolution of native semiopen state of correct flap ordering. The complicated transitional pathway, comprising of many high and low energy states, is explored by combining standard and activated molecular dynamics (MD) simulation techniques. The study not only complements the existing findings from X-ray, NMR, EPR, and MD studies but also provides a wealth of detailed information that could help the structure-based drug design process.
Collapse
Affiliation(s)
- Suresh Karthik
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | | |
Collapse
|
47
|
Sadiq SK, De Fabritiis G. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing. Proteins 2011; 78:2873-85. [PMID: 20715057 DOI: 10.1002/prot.22806] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An accurate description of the conformational dynamics of the β-hairpin flaps of HIV-1 protease is of central importance in elucidating the functional recognition of the enzyme by ligands. Using all-atom molecular dynamics simulations in explicit solvent, with a total of 461 trajectories of ∼50 ns each, we report the closed, semiopen, open, and wide-open flap conformation of the free wild-type protease. The free energy of flap opening and closing from the semiopen state is 0.9 ± 0.2 and 2.4 ± 0.4 kcal/mol, respectively. The mean relaxation time of opening is ∼8 ns, in good agreement with NMR data. The explicit solvent simulations quantitatively confirm the hypothesis that the semiopen state is the dominant population in the free protease whilst fast flap tip fluctuations lead frequently to an open state. More pronounced flap rearrangements lead to a rare wide-open state with the catalytic site completely exposed to the solvent. The structures of the different flap conformations provided herein are of general interest for improved drug design of HIV-1 protease, in particular, the wide-open conformation could be favored by the large Gag and GagPol polyprotein chains. Strategies that take into account multiple flap-gating mechanisms may lead to more effective inhibitors.
Collapse
Affiliation(s)
- S Kashif Sadiq
- Computational Biochemistry and Biophysics Lab, GRIB, IMIM-UPF, Barcelona Biomedical Research Park, 88 P/C 08003 Barcelona, Spain.
| | | |
Collapse
|
48
|
Ding F, Yin S, Dokholyan NV. Rapid flexible docking using a stochastic rotamer library of ligands. J Chem Inf Model 2011; 50:1623-32. [PMID: 20712341 DOI: 10.1021/ci100218t] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We developed an algorithm to build the ligand rotamer library "on-the-fly" during docking simulations. MedusaDock benchmarks demonstrate a rapid sampling efficiency and high prediction accuracy in both self- (to the cocrystallized state) and cross-docking (to a state cocrystallized with a different ligand), the latter of which mimics the virtual screening procedure in computational drug discovery. We also perform a virtual screening test of four flexible kinase targets, including cyclin-dependent kinase 2, vascular endothelial growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We find significant improvements of virtual screening enrichments when compared to rigid-receptor methods. The predictive power of MedusaDock in cross-docking and preliminary virtual-screening benchmarks highlights the importance to model both ligand and receptor flexibility simultaneously in computational docking.
Collapse
Affiliation(s)
- Feng Ding
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
49
|
Das A, Mahale S, Prashar V, Bihani S, Ferrer JL, Hosur MV. X-ray Snapshot of HIV-1 Protease in Action: Observation of Tetrahedral Intermediate and Short Ionic Hydrogen Bond SIHB with Catalytic Aspartate. J Am Chem Soc 2010; 132:6366-73. [DOI: 10.1021/ja100002b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amit Das
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Smita Mahale
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Vishal Prashar
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - Subhash Bihani
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - J.-L. Ferrer
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| | - M. V. Hosur
- Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India, National Institute for Research in Reproductive Health, Parel, Mumbai-400074, India, and LCCP/GSY, Institute de Biologie Structurale, J.-P. Ebel CEA-CNRS-UJF, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 1, France
| |
Collapse
|
50
|
Garrec J, Cascella M, Rothlisberger U, Fleurat-Lessard P. Low Inhibiting Power of N···CO Based Peptidomimetic Compounds against HIV-1 Protease: Insights from a QM/MM Study. J Chem Theory Comput 2010. [DOI: 10.1021/ct9004728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Julian Garrec
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michele Cascella
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Paul Fleurat-Lessard
- Université de Lyon, École Normale Supérieure de Lyon, Laboratoire de Chimie − UMR 5182, 46 allée d’Italie, 69364 Lyon Cedex 07, France, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|