1
|
Rao P, Yaroslavsky MA, Miller JC, Schuler MA. Catalytic Site Constraints in the P450s Mediating Loganic Acid (7DLH) and Secologanic Acid Synthesis (SLAS) in Camptotheca. Biochemistry 2023; 62:2763-2774. [PMID: 37656055 DOI: 10.1021/acs.biochem.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Terpene indole alkaloids (TIAs) are plant-derived natural products synthesized in low levels in medicinal plants such as Catharanthus roseus and Camptotheca acuminata. TIA pathways species utilize several CYP72A subfamily members to form loganic acid from 7-deoxyloganic acid (a simple hydroxylation) as well as secologanin and secologanic acid from loganin and loganic acid (a C-C bond scission). Divergences in the specificities of these P450s have allowed Camptotheca secologanic acid synthases (SLASs) to become bifunctional enzymes capable of performing both reactions. In contrast, Catharanthus 7-deoxyloganic acid hydroxylase (7DLH) and secologanin synthase (SLS) have remained monofunctional enzymes capable either of monooxygenation or C-C bond scission. Our in vitro reconstitutions have now demonstrated that Camptotheca also contains a monofunctional 7DLH capable only of hydroxylating 7-deoxyloganic acid. Mutageneses aimed at evaluating residues important for the tight specificity of Camptotheca 7DLH (CYP72A729) and the broad specificity of SLAS (CYP72A564) have identified several residues where reciprocal switches substantially affect their activities: Lys128His in 7DLH increases hydroxylation of 7-deoxyloganic acid, and His132Lys in SLAS decreases this hydroxylation and C-C bond scissions of loganic acid and loganin; Gly321Ser in 7DLH does not affect hydroxylation of 7-deoxyloganic acid, whereas Ser324Gly in SLAS significantly increases C-C bond scission of loganic acid; Asp332Glu in the acid-alcohol pair of 7DLH increases hydroxylation of 7-deoxyloganic acid, whereas Glu335Asp in SLAS completely eliminates both of its activities. These mutations that enhance or eliminate these respective activities have significant potential to aid engineering efforts aimed at increasing TIA production in cell cultures, microbial systems, and/or other plants.
Collapse
Affiliation(s)
- Priya Rao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark A Yaroslavsky
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Justin C Miller
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
De Sciscio ML, Nardi AN, Parisi G, Bulfaro G, Costanzo A, Gugole E, Exertier C, Freda I, Savino C, Vallone B, Montemiglio LC, D’Abramo M. Effect of Salts on the Conformational Dynamics of the Cytochrome P450 OleP. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020832. [PMID: 36677890 PMCID: PMC9867029 DOI: 10.3390/molecules28020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Cytochrome P450 OleP catalytic activity is strongly influenced by its structural dynamic conformational behavior. Here, we combine equilibrium-binding experiments with all-atom molecular dynamics simulations to clarify how different environments affect OleP conformational equilibrium between the open and the closed-catalytic competent-forms. Our data clearly show that at high-ionic strength conditions, the closed form is favored, and, very interestingly, different mechanisms, depending on the chemistry of the cations, can be used to rationalize such an effect.
Collapse
Affiliation(s)
- Maria Laura De Sciscio
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Giacomo Parisi
- Center for Life Nano & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, IIT, 00185 Rome, Italy
| | - Giovanni Bulfaro
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
| | - Antonella Costanzo
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Takis Biotech, Via di Castel Romano 100, 00128 Rome, Italy
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Elena Gugole
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Cécile Exertier
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Ida Freda
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, CNR c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| | - Marco D’Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
- Correspondence: (B.V.); (L.C.M.); (M.D.)
| |
Collapse
|
3
|
Liou SH, Chuo SW, Qiu Y, Wang LP, Goodin DB. Linkage between Proximal and Distal Movements of P450cam Induced by Putidaredoxin. Biochemistry 2020; 59:2012-2021. [PMID: 32369344 PMCID: PMC9749489 DOI: 10.1021/acs.biochem.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Putidaredoxin (Pdx) is the exclusive reductase and a structural effector for P450cam (CYP101A1). However, the mechanism of how Pdx modulates the conformational states of P450cam remains elusive. Here we report a putative communication pathway for the Pdx-induced conformational change in P450cam using results of double electron-electron resonance (DEER) spectroscopy and molecular dynamics simulations. Use of solution state DEER measurements allows us to observe subtle conformational changes in the internal helices in P450cam among closed, open, and P450cam-Pdx complex states. Molecular dynamics simulations and dynamic network analysis suggest that Pdx binding is coupled to small coordinated movements of several regions of P450cam, including helices C, B', I, G, and F. These changes provide a linkage between the Pdx binding site on the proximal side of the enzyme and helices F/G on the distal side and the site of the largest movement resulting from the Pdx-induced closed-to-open transition. This study provides a detailed rationale for how Pdx exerts its long-recognized effector function at the active site from its binding site on the opposite face of the enzyme.
Collapse
Affiliation(s)
| | | | - Yudong Qiu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David B. Goodin
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Salt-bridge networks within globular and disordered proteins: characterizing trends for designable interactions. J Mol Model 2017. [PMID: 28626846 DOI: 10.1007/s00894-017-3376-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There has been considerable debate about the contribution of salt bridges to the stabilization of protein folds, in spite of their participation in crucial protein functions. Salt bridges appear to contribute to the activity-stability trade-off within proteins by bringing high-entropy charged amino acids into close contacts during the course of their functions. The current study analyzes the modes of association of salt bridges (in terms of networks) within globular proteins and at protein-protein interfaces. While the most common and trivial type of salt bridge is the isolated salt bridge, bifurcated salt bridge appears to be a distinct salt-bridge motif having a special topology and geometry. Bifurcated salt bridges are found ubiquitously in proteins and interprotein complexes. Interesting and attractive examples presenting different modes of interaction are highlighted. Bifurcated salt bridges appear to function as molecular clips that are used to stitch together large surface contours at interacting protein interfaces. The present work also emphasizes the key role of salt-bridge-mediated interactions in the partial folding of proteins containing long stretches of disordered regions. Salt-bridge-mediated interactions seem to be pivotal to the promotion of "disorder-to-order" transitions in small disordered protein fragments and their stabilization upon binding. The results obtained in this work should help to guide efforts to elucidate the modus operandi of these partially disordered proteins, and to conceptualize how these proteins manage to maintain the required amount of disorder even in their bound forms. This work could also potentially facilitate explorations of geometrically specific designable salt bridges through the characterization of composite salt-bridge networks. Graphical abstract ᅟ.
Collapse
|
5
|
Li L, Xia J, Li G, Garcia-Uribe A, Sheng Q, Anastasio MA, Wang LV. Label-free photoacoustic tomography of whole mouse brain structures ex vivo. NEUROPHOTONICS 2016; 3:035001. [PMID: 29181425 PMCID: PMC5696384 DOI: 10.1117/1.nph.3.3.035001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/06/2016] [Indexed: 05/03/2023]
Abstract
Capitalizing on endogenous hemoglobin contrast, photoacoustic-computed tomography (PACT), a deep-tissue high-resolution imaging modality, has drawn increasing interest in neuroimaging. However, most existing studies are limited to functional imaging on the cortical surface and the deep brain structural imaging capability of PACT has never been demonstrated. Here, we explicitly studied the limiting factors of deep brain PACT imaging. We found that the skull distorted the acoustic signal and blood suppressed the structural contrast from other chromophores. When the two effects are mitigated, PACT can potentially provide high-resolution label-free imaging of structures in the entire mouse brain. With [Formula: see text] in-plane resolution, we can clearly identify major structures of the brain, which complements magnetic resonance microscopy for imaging small-animal brain structures. Spectral PACT studies indicate that structural contrasts mainly originate from cytochrome distribution and that the presence of lipid sharpens the image contrast; brain histology results provide further validation. The feasibility of imaging the structure of the brain in vivo is also discussed. Our results demonstrate that PACT is a promising modality for both structural and functional brain imaging.
Collapse
Affiliation(s)
- Lei Li
- Washington University in St. Louis, Department of Electrical and System Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jun Xia
- University at Buffalo, The State University of New York, Department of Biomedical Engineering, 332 Bonner Hall, Buffalo, New York 14260, United States
| | - Guo Li
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Alejandro Garcia-Uribe
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Qiwei Sheng
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mark A. Anastasio
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Electrical and System Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
- Washington University in St. Louis, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, Zhou W, Bell SG. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 11:869-81. [PMID: 25587700 DOI: 10.1039/c4mb00665h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 Å resolution. This is the first structure of an enzyme from this CYP family, whose members are prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open conformation with an access channel leading from the heme to the surface. The substrate-free structure reveals the location of the key residues in the active site that are responsible for binding the substrate in the correct orientation for regioselective oxidation. Importantly, there are significant differences among these residues in members of the CYP109 and closely related CYP106 families and these likely account for the variations in substrate binding and oxidation profiles observed with these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a versatile electron transfer partner that is able to support the activity of CYP enzymes from other bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this explains why it can interact with PFOR and adrenodoxin which are predominantly negatively charged around their [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hall EA, Bell SG. The efficient and selective biocatalytic oxidation of norisoprenoid and aromatic substrates by CYP101B1 from Novosphingobium aromaticivorans DSM12444. RSC Adv 2015. [DOI: 10.1039/c4ra14010a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CYP101B1 fromNovosphingobium aromaticivoransoxidises ionone derivatives and phenylcyclohexane with high activity and regioselectivity.
Collapse
Affiliation(s)
- Emma A. Hall
- School of Chemistry and Physics
- University of Adelaide
- Australia
| | - Stephen G. Bell
- School of Chemistry and Physics
- University of Adelaide
- Australia
| |
Collapse
|
8
|
Zhao C, Gao Q, Roberts AG, Shaffer SA, Doneanu CE, Xue S, Goodlett DR, Nelson SD, Atkins WM. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). Biochemistry 2012; 51:9488-500. [PMID: 23150942 DOI: 10.1021/bi301069r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.
Collapse
Affiliation(s)
- Chunsheng Zhao
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae. Antimicrob Agents Chemother 2011; 56:391-402. [PMID: 22037849 DOI: 10.1128/aac.05227-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.
Collapse
|
10
|
The structure of CYP101D2 unveils a potential path for substrate entry into the active site. Biochem J 2011; 433:85-93. [PMID: 20950270 DOI: 10.1042/bj20101017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochrome P450 CYP101D2 from Novosphingobium aromaticivorans DSM12444 is closely related to CYP101D1 from the same bacterium and to P450cam (CYP101A1) from Pseudomonas putida. All three are capable of oxidizing camphor stereoselectively to 5-exo-hydroxycamphor. The crystal structure of CYP101D2 revealed that the likely ferredoxin-binding site on the proximal face is largely positively charged, similar to that of CYP101D1. However, both the native and camphor-soaked forms of CYP101D2 had open conformations with an access channel. In the active site of the camphor-soaked form, the camphor carbonyl interacted with the haem-iron-bound water. Two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure: one located in the access channel, flanked by the B/C and F/G loops and the I helix, and the other in a cavity on the surface of the enzyme near the F helix side of the F/G loop. The observed open structures may be conformers of the CYP101D2 enzyme that enable the substrate to enter the buried active site via a conformational selection mechanism. The second and third binding sites may be intermediate locations of substrate entry and translocation into the active site, and provide insight into a multi-step substrate-binding mechanism.
Collapse
|
11
|
Klvana M, Pavlova M, Koudelakova T, Chaloupkova R, Dvorak P, Prokop Z, Stsiapanava A, Kuty M, Kuta-Smatanova I, Dohnalek J, Kulhanek P, Wade RC, Damborsky J. Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol 2009; 392:1339-56. [PMID: 19577578 DOI: 10.1016/j.jmb.2009.06.076] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
Abstract
Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.
Collapse
Affiliation(s)
- Martin Klvana
- Loschmidt Laboratories, Institute of Experimental Biology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mikšovská J, Horsa S, Davis MF, Franzen S. Conformational Dynamics Associated with Photodissociation of CO from Dehaloperoxidase Studied Using Photoacoustic Calorimetry. Biochemistry 2008; 47:11510-7. [DOI: 10.1021/bi8012033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jaroslava Mikšovská
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Simona Horsa
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael F. Davis
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Stefan Franzen
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
13
|
Oertling WA, Cornellison CD, Treff NR, Watanabe J, Pressler MA, Small JR. Photoacoustic characterization of protein dynamics following CO photodetachment from fully reduced bovine cytochrome c oxidase. J Inorg Biochem 2007; 101:635-43. [PMID: 17280717 DOI: 10.1016/j.jinorgbio.2006.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 12/08/2006] [Accepted: 12/12/2006] [Indexed: 11/25/2022]
Abstract
We report a protein conformational change following carbon monoxide photodetachment from fully reduced bovine cytochrome c oxidase that is hypothesized to be associated with changes in ligand mobility through a dioxygen access channel in the protein. Although not resolved by earlier photoacoustic or optical studies on this adduct, utilization of slightly lower temperatures revealed a process with a kinetic lifetime of about 70 ns at 10 degrees C. We measure an enthalpy change of about 8 kcal/mol in 0.050 M HEPES buffer that becomes less endothermic (DeltaH approximately 2 kcal/mol) at higher ionic strength. The volume contraction of about -0.7 mL/mol associated with the process almost doubles in higher ionic strength buffer systems. Measurements of samples in phosphate buffer systems are similar and appear to display the same subtle ionic strength dependence. Both the isolation of this photoacoustic signal component and the possible dependence on ionic strength of the thermodynamic parameters derived from its analysis appear analogous to and consistent with prior photoacoustic results monitoring CO photodetachment from the camphor complex of cytochrome P-450. Accordingly, we consider a similar model in which a conformational change results in movement of an exposed charged group or groups towards the interior of the protein, out of contact with solvent, as in the closing of a salt bridge.
Collapse
Affiliation(s)
- W Anthony Oertling
- Department of Chemistry and Biochemistry, 226 Science Building, Eastern Washington University, Cheney, WA 99004-2440, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Lockney D, Miksovská J. Characterization of carbon monoxide photodissociation from Fe(II)LPO with photoacoustic calorimetry. J Phys Chem B 2007; 110:24165-70. [PMID: 17125388 DOI: 10.1021/jp0641233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoperoxidase belongs to a family of mammalian peroxidases that catalyze the oxidation of halides and small organic molecules in the presence of H2O2. We have used photoacoustic calorimetry to characterize thermodynamic parameters associated with ligand dissociation from bovine milk lactoperoxidase. Upon CO photorelease, a prompt (tau < 50 ns) exothermic volume contraction (DeltaH = -20 +/- 7 kcal mol-1 and DeltaH = -2 +/- 1 mL mol-1) was measured at pH 7.0 and 4.0, whereas an endothermic expansion (DeltaH = 30 +/- 13 kcal mol-1 and DeltaV = 9 +/- 2 mL mol(-1)) was observed at pH 10.0 and 7.0 in the presence of 500 mM NaCl. We attribute the observed volume and enthalpy changes to electrostriction arising from changes in the charge distribution associated with a reorganization of the heme binding pocket upon ligand dissociation. It is likely that cleavage of the Fe-CO bond is accompanied by distortion of a salt bridge between Arg557 and the heme propionate group, resulting in the observed electrostriction due to changes in charge distribution.
Collapse
Affiliation(s)
- Dustin Lockney
- Chemistry Department, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, USA
| | | |
Collapse
|
15
|
Hata M, Hirano Y, Hoshino T, Nishida R, Tsuda M. Theoretical Study on Compound I Formation in Monooxygenation Mechanism by Cytochrome P450. J Phys Chem B 2004. [DOI: 10.1021/jp0496248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayuki Hata
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Yoshinori Hirano
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Rie Nishida
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Minoru Tsuda
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Gensch T, Viappiani C. Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology. Photochem Photobiol Sci 2003; 2:699-721. [PMID: 12911218 DOI: 10.1039/b303177b] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal methods are currently being employed in a variety of research areas, ranging from materials science to environmental monitoring. Despite the common term which they are collected under, the implementations of these techniques are as diverse as the fields of application. In this review, we concentrate on the recent applications of time-resolved methods in photochemistry and photobiology.
Collapse
Affiliation(s)
- Thomas Gensch
- Forschungszentrum Jülich, Institut für Biologische Informationsverarbeitung 1, 52425 Jülich, Germany.
| | | |
Collapse
|
17
|
Angeloni L, Feis A. Protein relaxation in the photodissociation of myoglobin-CO complexes. Photochem Photobiol Sci 2003; 2:730-40. [PMID: 12911220 DOI: 10.1039/b301756g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laser-induced optoacoustic spectroscopy has been applied to the study of the photodissociation of myoglobin-CO complexes. Time-resolved optoacoustic signals have been measured from aqueous solutions of horse myoglobin-CO complex (hMbCO) at pH 3.5 and 8, and of sperm whale myoglobin-CO complex (swMbCO) at pH 8, in the temperature range 273-300 K. The signal of hMbCO at pH 8 exhibits three components. The first, which is faster than 20 ns and is associated with a reaction enthalpy of 61 kJ mol(-1), corresponds to Fe-CO bond breakage. The second component has a decay time of 80 ns at 293 K and is associated with an exothermic protein relaxation (-13 kJ mol(-1)) and a volume change of -3 ml mol(-1). The relaxation, which involves a state where the photo-dissociated CO is still in a protein docking site, is thermally activated, with an activation enthalpy of 51 kJ mol(-1). The third component has a decay time of 800 ns at 293 K and an activation enthalpy of 39 kJ mol(-1), and is associated with an endothermic process (26 kJ mol(-1)) and an expansion of 19 ml mol(-1). This process is ascribed to the migration of the photodissociated CO to the bulk solvent. At acidic pH, the latter process becomes faster (230 ns) and the volume change decreases. These features are correlated with the presence of an open form of the protein. swMbCO exhibits two components only, due to the overlap of the two fastest processes. The first involves a reaction enthalpy of 49 kJ mol(-1) and a volume contraction of -4.9 ml mol(-1). The second component (900 ns at 293 K, activation enthalpy 45 kJ mol(-1)) is associated with a reaction enthalpy of 38 kJ mol(-1) and a volume expansion of 15.3 ml mol(-1). These experimental findings have been interpreted by means of a new model, which also takes into account both laser flash photolysis results and structural information. The model is based on a two-dimensional scheme which describes both protein relaxation and the CO pathway following photodissociation.
Collapse
Affiliation(s)
- Leonardo Angeloni
- Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
18
|
Jung C. Cytochrome P-450-CO and substrates: lessons from ligand binding under high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:309-28. [PMID: 11983405 DOI: 10.1016/s0167-4838(01)00353-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An overview of the application of high-pressure studies on the carbon monoxide complex of cytochrome P-450 is given. Different approaches to characterize ligand binding steps, the conformational states and substates and the compressibility of the ligand-bound complex are reviewed. A particular focus is the effect of substrates on these properties. It is shown that substrate mobility, compressibility and water accessibility are interrelated and may have functional meaning.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, Protein Dynamics Laboratory, Berlin, Germany.
| |
Collapse
|
19
|
Dunn AR, Dmochowski IJ, Bilwes AM, Gray HB, Crane BR. Probing the open state of cytochrome P450cam with ruthenium-linker substrates. Proc Natl Acad Sci U S A 2001; 98:12420-5. [PMID: 11606730 PMCID: PMC60069 DOI: 10.1073/pnas.221297998] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochromes P450 play key roles in drug metabolism and disease by oxidizing a wide variety of natural and xenobiotic compounds. High-resolution crystal structures of P450cam bound to ruthenium sensitizer-linked substrates reveal an open conformation of the enzyme that allows substrates to access the active center via a 22-A deep channel. Interactions of alkyl and fluorinated biphenyl linkers with the channel demonstrate the importance of exploiting protein dynamics for specific inhibitor design. Large changes in peripheral enzyme structure (F and G helices) couple to conformational changes in active center residues (I helix) implicated in proton pumping and dioxygen activation. Common conformational states among P450cam and homologous enzymes indicate that static and dynamic variability in the F/G helix region allows the 54 human P450s to oxidize thousands of substrates.
Collapse
Affiliation(s)
- A R Dunn
- The Beckman Institute, MC 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
20
|
Feis A, Angeloni L. Photodissociation of the CO Complex of Horseradish Peroxidase Studied by Laser-Induced Optoacoustic Spectroscopy. J Phys Chem B 2001. [DOI: 10.1021/jp002639v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Feis
- Department of Chemistry, University of Florence, Via Gino Capponi 9, I-50121 Firenze, Italy
| | - Leonardo Angeloni
- Department of Chemistry, University of Florence, Via Gino Capponi 9, I-50121 Firenze, Italy
| |
Collapse
|
21
|
Abstract
We have described two examples of time-resolved photoacoustic calorimetry for the study of heme protein transient intermediates. Before photoacoustic calorimetry, determining thermodynamic information on short-lived intermediates was difficult. Along with being sensitive to enthalpic and volume changes, photoacoustic calorimetry can detect conformational changes in a time-resolved manner. In complex protein systems, the interpretation of the structural origins of a conformational change is sometimes difficult. Site-directed mutagenesis has been used successfully to identify the residues that play important roles in the ligand binding to both Mb and cytochrome P450cam. In both systems the hydration state of salt bridges gave rise to volume changes that were identified through mutagenesis of the residues involved. With its increasing popularity and the power of site-directed mutagenesis, time-resolved photoacoustic calorimetry is fast becoming a technique to probe conformational dynamics in proteins.
Collapse
Affiliation(s)
- M A McLean
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Wade RC, Gabdoulline RR, Lüdemann SK, Lounnas V. Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations. Proc Natl Acad Sci U S A 1998; 95:5942-9. [PMID: 9600896 PMCID: PMC34177 DOI: 10.1073/pnas.95.11.5942] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.
Collapse
Affiliation(s)
- R C Wade
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|