1
|
Damoczi J, Knoops A, Martou MS, Jaumaux F, Gabant P, Mahillon J, Veening JW, Mignolet J, Hols P. Uncovering the arsenal of class II bacteriocins in salivarius streptococci. Commun Biol 2024; 7:1511. [PMID: 39543239 PMCID: PMC11564875 DOI: 10.1038/s42003-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Facing the antibiotic resistance crisis, bacteriocins are considered as a promising alternative to treat bacterial infections. In the human commensal Streptococcus salivarius, the production of unmodified bacteriocins (or salivaricins) is directly controlled at the transcriptional level by quorum-sensing. To discover hidden bacteriocins, we harnessed here the unique molecular signatures of salivaricins not yet used in available computational pipelines and performed genome mining followed by orthogonal reconstitution and expression. From 100 genomes of S. salivarius, we identified more than 50 bacteriocin candidates clustered into 21 groups. Strain-based analysis of bacteriocin combinations revealed significant diversity, reflecting the plasticity of seven independent loci. Activity tests showed both narrow and broad-spectrum bacteriocins with overlapping activities against a wide panel of Gram-positive bacteria, including notorious multidrug-resistant pathogens. Overall, this work provides a search-to-test generic pipeline for bacteriocin discovery with high impact for bacterial ecology and broad applications in the food and biomedical fields.
Collapse
Affiliation(s)
- Julien Damoczi
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Sophie Martou
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johann Mignolet
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pascal Hols
- Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
2
|
Bian Z, Liu W, Jin J, Hao Y, Jiang L, Xie Y, Zhang H. Rcs phosphorelay affects the sensitivity of Escherichia coli to plantaricin BM-1 by regulating biofilm formation. Front Microbiol 2022; 13:1071351. [PMID: 36504793 PMCID: PMC9729257 DOI: 10.3389/fmicb.2022.1071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that exerts significant antibacterial activity against many foodborne bacteria. Studies have shown that class IIa bacteriocins inhibit Gram-positive bacteria via the mannose phosphotransferase system; however, their mechanism of action against Gram-negative bacteria remains unknown. In this study, we explored the mechanism through which the Rcs phosphorelay affects the sensitivity of Escherichia coli K12 cells to plantaricin BM-1. Methods and Results: The minimum inhibitory concentrations of plantaricin BM-1 against E. coli K12, E. coli JW5917 (rcsC mutant), E. coli JW2204 (rcsD mutant), and E. coli JW2205 (rcsB mutant) were 1.25, 0.59, 1.31, and 1.22 mg/ml, respectively. Growth curves showed that E. coli JW5917 sensitivity to plantaricin BM-1 increased to the same level as that of E. coli K12 after complementation. Meanwhile, scanning electron microscopy and transmission electron microscopy revealed that, under the action of plantaricin BM-1, the appearance of E. coli JW5917 cells did not significantly differ from that of E. coli K12 cells; however, cell contents were significantly reduced and plasmolysis and shrinkage were observed at both ends. Crystal violet staining and laser scanning confocal microscopy showed that biofilm formation was significantly reduced after rcsC mutation, while proteomic analysis identified 382 upregulated and 260 downregulated proteins in E. coli JW5917. In particular, rcsC mutation was found to affect the expression of proteins related to biofilm formation, with growth curve assays showing that the deletion of these proteins increased E. coli sensitivity to plantaricin BM-1. Discussion: Consequently, we speculated that the Rcs phosphorelay may regulate the sensitivity of E. coli to plantaricin BM-1 by affecting biofilm formation. This finding of class IIa bacteriocin against Gram-negative bacteria mechanism provides new insights.
Collapse
Affiliation(s)
- Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| |
Collapse
|
3
|
Antoshina DV, Balandin SV, Ovchinnikova TV. Structural Features, Mechanisms of Action, and Prospects for Practical Application of Class II Bacteriocins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1387-1403. [PMID: 36509729 DOI: 10.1134/s0006297922110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteriocins are antimicrobial peptides ribosomally synthesized by both Gram-negative and Gram-positive bacteria, as well as by archaea. Bacteriocins are usually active against phylogenetically related bacteria, providing competitive advantage to their producers in the natural bacterial environment. However, some bacteriocins are known to have a broader spectrum of antibacterial activity, including activity against multidrug-resistant bacterial strains. Multitude of bacteriocins studied to date are characterized by a wide variety of chemical structures and mechanisms of action. Existing classification systems for bacteriocins take into account structural features and biosynthetic pathways of bacteriocins, as well as the phylogenetic affiliation of their producing organisms. Heat-stable bacteriocins with molecular weight of less than 10 kDa from Gram-positive and Gram-negative producers are divided into post-translationally modified (class I) and unmodified peptides (class II). In recent years there has been an increasing interest in the class II bacteriocins as potential therapeutic agents that can help to combat antibiotic-resistant infections. Advantages of unmodified peptides are relative simplicity of their biotechnological production in heterologous systems and chemical synthesis. Potential for the combined use of bacteriocins with other antimicrobial agents allowing to enhance their efficacy, low probability of cross-resistance development, and ability of probiotic strains to produce bacteriocins in situ make them promising candidate compounds for creation of new drugs. The review focuses on structural diversity of the class II bacteriocins and their practical relevance.
Collapse
Affiliation(s)
- Daria V Antoshina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey V Balandin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Tatiana V Ovchinnikova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
4
|
Banerji R, Karkee A, Saroj SD. Bacteriocins against Foodborne Pathogens (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ma Z, Zhang D, Cheng Z, Niu Y, Kong L, Lu Z, Bie X. Designed symmetrical β-hairpin peptides for treating multidrug-resistant salmonella typhimurium infections. Eur J Med Chem 2022; 243:114769. [PMID: 36137364 DOI: 10.1016/j.ejmech.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The rapid emergence and prevalence of multidrug-resistant salmonellosis lack effective therapies, which causes epidemic health problems and stimulates the development of antimicrobials with novel modes of action. In this research, 10 short symmetrical β-hairpin peptides are synthesized by combining the β-turn of Leucocin-A with recurring hydrophobic and cationic amino acid sequences. Those designed peptides exhibited potent antibacterial activities against drug-susceptible and drug-resistant Salmonella. One of the 10 peptides, WK2 ((WK)2CTKSGC(KW)2), displayed best cell selectivity towards Salmonella cells over macrophages and erythrocytes in a co-culture model. Fluorescent measurements and microscopic observations reflected that WK2 exerted its antimicrobial activity through a membrane-lytic mechanism. Moreover, the β-hairpin peptides can bind to endotoxin (LPS) and suppress the production of LPS-induced proinflammatory cytokines in RAW264.7 cells, indicating as a potent anti-inflammatory activity. The preliminary in vivo studies can also demonstrate that WK2 decreased loads of Salmonella in the liver and spleen, mitigated Salmonella-caused inflammation and maintained the integrity of intestinal mucosal surfaces. Ultimately, the results highlight that WK2 is a promising therapeutic agent to prevent multidrug-resistant S. Typhimurium infections in humans and animals.
Collapse
Affiliation(s)
- Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dong Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Cheng
- Faculty of Cell and Molecular Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yandong Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Manganese Privation-Induced Transcriptional Upregulation of the Class IIa Bacteriocin Plantaricin 423 in Lactobacillus plantarum Strain 423. Appl Environ Microbiol 2021; 87:e0097621. [PMID: 34406833 DOI: 10.1128/aem.00976-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plantaricin 423 is produced by Lactobacillus plantarum 423 using the pla biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the pla operon carries biosynthetic genes (plaA, precursor peptide; plaB, immunity; plaC, accessory; and plaD, ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423. In this study, phylogenetic analysis of class IIa immunity proteins indicated that at least three distinct clades exist, which were then used to subgroup the class IIa operons. It became evident that the absence of classical quorum-sensing genes on mobile bacteriocin-encoding elements is a predisposition of the subgroup that includes plantaricin 423, pediocin AcH/PA-1, divercin V41, enterocin A, leucocin-A and -B, mesentericin Y105, and sakacin G. Further analysis of the subgroup suggested that the regulation of these class IIa operons is linked to transition metal homeostasis in the host. By using a fluorescent promoter-reporter system in Lactobacillus plantarum 423, transcriptional regulation of plantaricin 423 was shown to be upregulated in response to manganese privation. IMPORTANCE Lactic acid bacteria hold huge industrial application and economic value, especially bacteriocinogenic strains, which further aids in the exclusion of specific foodborne pathogens. Since bacteriocinogenic strains are sought after, it is equally important to understand the mechanism of bacteriocin regulation. This is currently an understudied aspect of class IIa operons. Our research suggests the existence of a previously undescribed mode of class IIa bacteriocin regulation, whereby bacteriocin expression is linked to management of the producer's transition metal homeostasis. This delocalized metalloregulatory model may fundamentally affect the selection of culture conditions for bacteriocin expression and change our understanding of class IIa bacteriocin gene transfer dynamics in a given microbiome.
Collapse
|
8
|
Sinelnikova A, Spoel DVD. NMR refinement and peptide folding using the GROMACS software. JOURNAL OF BIOMOLECULAR NMR 2021; 75:143-149. [PMID: 33778935 PMCID: PMC8131288 DOI: 10.1007/s10858-021-00363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/18/2021] [Indexed: 05/11/2023]
Abstract
Nuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins and nucleic acids. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the ab initio refinement of one peptide.
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
|
10
|
Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183135. [DOI: 10.1016/j.bbamem.2019.183135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
|
11
|
Vermeulen RR, Van Staden ADP, Dicks L. Heterologous Expression of the Class IIa Bacteriocins, Plantaricin 423 and Mundticin ST4SA, in Escherichia coli Using Green Fluorescent Protein as a Fusion Partner. Front Microbiol 2020; 11:1634. [PMID: 32765464 PMCID: PMC7381239 DOI: 10.3389/fmicb.2020.01634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The antilisterial class IIa bacteriocins, plantaricin 423 and mundticin ST4SA, have previously been purified from the cell-free supernatants of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA, respectively. Here, we present the fusions of mature plantaricin 423 and mundticin ST4SA to His-tagged green fluorescent protein (GFP) for respective heterologous expression in Escherichia coli. Fusion of plantaricin 423 and mundticin ST4SA to His-tagged GFP produced the fusion proteins GFP-PlaX and GFP-MunX, respectively. Both fusion proteins were autofluorescent, circumvented inclusion body formation and lowered the toxicity of class IIa bacteriocins during heterologous expression. Not only did GFP-class IIa fusion stabilize heterologous expression and boost yields, the fluorescent intensity of GFP-PlaX and GFP-MunX could be monitored quantitatively and qualitatively throughout expression and purification. This robust fluorometric property allowed rapid optimization of conditions for expression and bacteriocin liberation from GFP via the incorporated WELQut protease cleavage sequence. Incubation temperature and IPTG concentration had a significant effect on bacteriocin yield, and was optimal at 18°C and 0.1-0.2 mM, respectively. GFP-MunX was approximately produced at a yield of 153.30 mg/L culture which resulted in 12.4 mg/L active mundticin ST4SA after liberation and HPLC purification. While GFP-PlaX was produced at a yield of 121.29 mg/L culture, evidence suggests heterologous expression resulted in conformation isomers of WELQut liberated plantaricin 423.
Collapse
Affiliation(s)
| | - Anton Du Preez Van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Anton Du Preez Van Staden,
| | - Leon Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Leon Dicks,
| |
Collapse
|
12
|
Vincenzi M, Mercurio FA, Leone M. About TFE: Old and New Findings. Curr Protein Pept Sci 2019; 20:425-451. [PMID: 30767740 DOI: 10.2174/1389203720666190214152439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023]
Abstract
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides. In peptides, which are often disordered in aqueous solutions, TFE acts as secondary structure stabilizer and primarily induces an α -helical conformation. The exact mechanism through which TFE plays its stabilizing roles is still debated and direct and indirect routes, relying either on straight interaction between TFE and molecules or indirect pathways based on perturbation of solvation sphere, have been proposed. Another still unanswered question is the capacity of TFE to favor in peptides a bioactive or a native-like conformation rather than simply stimulate the raise of secondary structure elements that reflect only the inherent propensity of a specific amino-acid sequence. In protein studies, TFE destroys unique protein tertiary structure and often leads to the formation of non-native secondary structure elements, but, interestingly, gives some hints about early folding intermediates. In this review, we will summarize proposed mechanisms of TFE actions. We will also describe several examples, in which TFE has been successfully used to reveal structural properties of different molecular systems, including antimicrobial and aggregation-prone peptides, as well as globular folded and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
13
|
Navarro SA, Lanza L, Colombo NSR, de Ullivarri MF, Acuña L, Sosa-Padilla B, Picariello G, Bellomio A, Chalón MC. Obtaining an Ent35-MccV derivative with mutated hinge region that exhibits increased activity against Listeria monocytogenes and Escherichia coli. Appl Microbiol Biotechnol 2019; 103:9607-9618. [PMID: 31713671 DOI: 10.1007/s00253-019-10187-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The present paper describes the generation of derivatives from the hybrid peptide called Ent35-MccV, active against Gram-positive and Gram-negative bacteria. This peptide has a triple glycine hinge region between enterocin CRL35 and microcin V. In order to obtain variants of Ent35-MccV with greater biotechnological potential, a saturation mutagenesis was carried out in the hinge region. As a result, we obtained a bank of E. coli strains expressing different mutated hybrid bacteriocins in the central position of the hinge region. From all these variants, we found that the one bearing a tyrosine in the central region of the hinge (Ent35-GYG-MccV) is 2-fold more active against E. coli and 4-fold more active against Listeria than the original peptide Ent35-MccV. This derivative was purified and characterized. The development and evaluation of alternative hinges for Ent35-MccV represents a step forward in the bioengineering of antimicrobial peptides. This approach fosters the rational design of peptides with enhanced antimicrobial activity.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - N S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - M Fernandez de Ullivarri
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE-CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia, 5150, Salta, Argentina
| | - B Sosa-Padilla
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán, Argentina
| | - G Picariello
- Istituto di Scienze dell'Alimentazione - Consiglio Nazionale delle Ricerche (CNR), Via Roma, 64 -, 83100, Avellino, Italy
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
14
|
Virgicin, a novel lanthipeptide from Virgibacillus sp. strain AK90 exhibits inhibitory activity against Gram-positive bacteria. World J Microbiol Biotechnol 2019; 35:133. [PMID: 31432254 DOI: 10.1007/s11274-019-2707-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
There is a significant increase in the discovery of new antimicrobial compounds in recent past to combat drug resistant pathogens. Members of the genus Bacillus and related genera have been screened extensively due to their ability to produce wide range of antimicrobial compounds. In this study, we have isolated and characterized a new antimicrobial peptide from a marine bacterium identified as Virgibacillus species. The low molecular mass and stability of the antimicrobial substance pointed towards the bacteriocinogenic nature of the compound. The RAST analysis of genome sequence showed presence of a putative bacteriocin biosynthetic cluster containing genes necessary for synthesis of a lanthipeptide. Translated amino acid sequence of mature C-terminal propeptide showed identity with salivaricin A (52.2%) and lacticin A (33.3%). Accordingly, the mass (2417 Da) obtained by MALDI analysis was in agreement with posttranslational modifications of the leader peptide to yield three methyl lanthionine rings and a disulfide bond between two free cysteine residues. The lanthipeptide was named as virgicin, which selectively inhibited the growth of Gram-positive bacteria and biofilm formation by Enterococcus faecalis. Inhibition of biofilm formation by E. faecalis was also observed in in vitro model experiments using hydroxyapatite discs. Thus, virgicin appears to be a promising new bacteriocin to control oral biofilm formation by selective pathogens.
Collapse
|
15
|
Ríos Colombo NS, Chalón MC, Dupuy FG, Gonzalez CF, Bellomio A. The case for class II bacteriocins: A biophysical approach using "suicide probes" in receptor-free hosts to study their mechanism of action. Biochimie 2019; 165:183-195. [PMID: 31381962 DOI: 10.1016/j.biochi.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Class II bacteriocins are unmodified membrane-active peptides that act over a narrow spectrum of target bacteria. They bind a specific receptor protein on the membrane to form a pore, leading to membrane permeabilization and cell death. However, little is known about the molecular events triggering the pore formation after the bacteriocin recognizes the receptor. It is not clear yet if the pore is the same receptor forced into an open conformation or if the pore results from the bacteriocin insertion and oligomeric assembly in the lipid bilayer. In order to reveal which model is more suitable to explain the toxicity mechanism, in this work we use chimeric peptides, resulting from the fusion of the bitopic membrane protein EtpM with different class II bacteriocins: enterocin CRL35, pediocin PA-1 and microcin V. E. coli strains lacking the specific receptors for these bacteriocins were chosen as expression hosts. As these constructs display a lethal effect when they are heterologously expressed, they are called "suicide probes". The results suggest that, indeed, the specific receptor would act as a docking molecule more than as a structural piece of the pore, as long as the bacteriocin is somehow anchored to the membrane. These set of chimeric peptides also represent an in vivo system that allows to study the interaction of the bacteriocins with real bacterial membranes, instead of model membranes. Hence, the effects of these suicide probes in membrane fluidity and transmembrane potential were also assessed, using fluorescence spectroscopy. The data show that the different suicide probes are able to increase phospholipid order and depolarize the membranes of receptor-free bacterial cells.
Collapse
Affiliation(s)
- N S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - M C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - F G Dupuy
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - C F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
16
|
Balandin SV, Sheremeteva EV, Ovchinnikova TV. Pediocin-Like Antimicrobial Peptides of Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:464-478. [PMID: 31234762 DOI: 10.1134/s000629791905002x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteriocins are bacterial antimicrobial peptides that, unlike classical peptide antibiotics, are products of ribosomal synthesis and usually have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like bacteriocins (PLBs) belong to the class IIa of the bacteriocins of Gram-positive bacteria. PLBs possess high activity against pathogenic bacteria from Listeria and Enterococcus genera. Molecular target for PLBs is a membrane protein complex - bacterial mannose-phosphotransferase. PLBs can be synthesized by components of symbiotic microflora and participate in the maintenance of homeostasis in various compartments of the digestive tract and on the surface of epithelial tissues contacting the external environment. PLBs could give a rise to a new group of antibiotics of narrow spectrum of activity.
Collapse
Affiliation(s)
- S V Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E V Sheremeteva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
17
|
Balandin SV, Finkina EI, Nurmukhamedova EKA, Tagaev AA, Umnyakova ES, Kokryakov VN, Shvets VI, Ovchinnikova TV. Biotechnological Method of Preparation and Characterization of Recombinant Antimicrobial Peptide Avicin A from Enterococcus avium. DOKL BIOCHEM BIOPHYS 2019; 484:42-44. [PMID: 31012010 DOI: 10.1134/s1607672919010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 11/23/2022]
Abstract
Avicin A is a bacteriocin from the gram-positive bacterium Enterococcus avium. It exhibits a high microbicidal activity against bacteria of the genus Listeria, a causative agent of the severe human infection listeriosis. We developed a biotechnological method for obtaining avicin A and characterized its structure and biological activity. We also proposed a possible mechanism of the antimicrobial action of avicin A.
Collapse
Affiliation(s)
- S V Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
| | - E I Finkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - E K-A Nurmukhamedova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - A A Tagaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - E S Umnyakova
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341, St. Petersburg, Russia
| | - V N Kokryakov
- Institute of Experimental Medicine, Almazov National Medical Research Center, 197341, St. Petersburg, Russia
| | - V I Shvets
- Lomonosov Institute of Fine Chemical Technology, Russian Technological University (MIREA), 117571, Moscow, Russia
| | - T V Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| |
Collapse
|
18
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
19
|
Lv E, Ding J, Qin W. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Anal Chem 2018; 90:13600-13606. [PMID: 30335975 DOI: 10.1021/acs.analchem.8b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptide-based sandwich assays are promising tools in molecular detection, but may be restricted by the availability of "pairs" of affinity peptides. Herein, a new potentiometric sandwich assay for bacteria based on peptide pairs derived from an antimicrobial peptide (AMP) ligand is demonstrated. As a model, the original AMP with a well-defined structure for Listeria monocytogenes (LM) can be split into two fragments to serve as the peptide pairs for the sandwich assay. The recognition and binding of the short peptide pairs to the target can be verified by circular dichroism, flow cytometry, fluorometry, and optical microscopy. The potentiometric magnetic bead-based sandwich assay is designed by using horseradish peroxidase as a label. The enzyme can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to induce a potential change on a polymeric membrane ion-selective electrode. Under optimal conditions, the concentration of LM can be determined potentiometrically in a linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 with a detection limit of 10 CFU mL-1 (3σ). The proposed sensing strategy expands the applications of peptides in the field of bioassays.
Collapse
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| |
Collapse
|
20
|
Bédard F, Hammami R, Zirah S, Rebuffat S, Fliss I, Biron E. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Sci Rep 2018; 8:9029. [PMID: 29899567 PMCID: PMC5998028 DOI: 10.1038/s41598-018-27225-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difficulties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.8 nM), similar to the bacteriocin produced naturally by Pediococcus acidilactici. Of particular interest is that linear analogs lacking both of the disulfide bridges characterizing pediocin PA-1 were as potent. One linear analog was also a strong inhibitor of Clostridium perfringens, another important food-borne pathogen. These results are discussed in light of conformational information derived from circular dichroism, solution NMR spectroscopy and structure-activity relationship studies.
Collapse
Affiliation(s)
- François Bédard
- Faculté de pharmacie, Université Laval and Laboratoire de chimie médicinale, Centre de recherche du CHU de Québec, 2705 Boulevard Laurier, Québec, Québec, G1V 0A6, Canada
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Riadh Hammami
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Séverine Zirah
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Sorbonne Universités, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Sylvie Rebuffat
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Sorbonne Universités, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Ismail Fliss
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Eric Biron
- Faculté de pharmacie, Université Laval and Laboratoire de chimie médicinale, Centre de recherche du CHU de Québec, 2705 Boulevard Laurier, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
21
|
Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 2017; 64:345-351. [PMID: 28983718 DOI: 10.1007/s00294-017-0757-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/26/2023]
Abstract
This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.
Collapse
|
22
|
Balay DR, Dangeti RV, Kaur K, McMullen LM. Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms. Int J Food Microbiol 2017; 255:25-31. [DOI: 10.1016/j.ijfoodmicro.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
|
23
|
Barraza DE, Ríos Colombo NS, Galván AE, Acuña L, Minahk CJ, Bellomio A, Chalón MC. New insights into enterocin CRL35: mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol 2017; 105:922-933. [PMID: 28692133 DOI: 10.1111/mmi.13746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 11/30/2022]
Abstract
The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM, E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor.
Collapse
Affiliation(s)
- Daniela E Barraza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Natalia S Ríos Colombo
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Adriana E Galván
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Augusto Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, T4000ILI San Miguel de Tucumán, Argentina
| |
Collapse
|
24
|
Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE. Review: Bacteriocins of Lactic Acid Bacteria. FOOD SCI TECHNOL INT 2016. [DOI: 10.1106/r8de-p6hu-clxp-5ryt] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few years, a large number of new bacteriocins produced by lactic acid bacteria (LAB) have been identified and characterized. LAB-bacteriocins comprise a heterogeneous group of physicochemically diverse ribosomally-synthesized peptides or proteins showing a narrow or broad antimicrobial activity spectrum against Gram-positive bacteria. Bacteriocins are classified into separate groups such as the lantibiotics (Class I); the small (<10 kDa) heat-stable postranslationally unmodified non-lantibiotics (Class II), further subdivided in the pediocin-like and anti Listeria bacteriocins (subclass IIa), the two-peptide bacteriocins (subclass IIb), and the sec-dependent bacteriocins (subclass IIc); and the large (>30 kDa) heat-labile non-lantibiotics (Class III). Most bacteriocins characterized to date belong to Class II and are synthesized as precursor peptides (preprobacteriocins) containing an N-terminal double-glycine leader peptide, which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ABC-transporter and its accessory protein. However, the recently identified sec-dependent bacteriocins contain an N-terminal signal peptide that directs bacteriocin secretion through the general secretory pathway (GSP). Most LAB-bacteriocins act on sensitive cells by destabilization and permeabilization of the cytoplasmic membrane through the formation of transitory poration complexes or ionic channels that cause the reduction or dissipation of the proton motive force (PMF). Bacteriocin producing LAB strains protect themselves against the toxicity of their own bacteriocins by the expression of a specific immunity protein which is generally encoded in the bacteriocin operon. Bacteriocin production in LAB is frequently regulated by a three-component signal transduction system consisting of an induction factor (IF), and histidine protein kinase (HPK) and a response regulator (RR). This paper presents an updated review on the general knowledge about physicochemical properties, molecular mode of action, biosynthesis, regulation and genetics of LAB-bacteriocins.
Collapse
Affiliation(s)
- L. M. Cintas
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - M. P. Casaus
- Carrefour, Departamento de Marcas Propias, Área de Calidad, Campezo 16, 28022 Madrid
| | - C. Herranz
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - I. F. Nes
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, P.O. Box 5051, N-1432 Ås, Norway
| | - P. E. Hernández
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
25
|
Owen MC, Strodel B, Csizmadia IG, Viskolcz B. Radical Formation Initiates Solvent-Dependent Unfolding and β-sheet Formation in a Model Helical Peptide. J Phys Chem B 2016; 120:4878-89. [PMID: 27169334 DOI: 10.1021/acs.jpcb.6b00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of Cα-centered radical formation on the stability of a model helical peptide, N-Ac-KK(AL)10KK-NH2. Three, 100 ns molecular dynamics simulations using the OPLS-AA force field were carried out on each α-helical peptide in six distinct binary TIP4P water/2,2,2-trifluoroethanol (TFE) mixtures. The α-helicity was at a maximum in 20% TFE, which was inversely proportional to the number of H-bonds between water molecules and the peptide backbone. The radial distribution of TFE around the peptide backbone was highest in 20% TFE, which enhanced helix stability. The Cα-centered radical initiated the formation of a turn within 5 ns, which was a smaller kink at high TFE concentrations, and a loop at lower TFE concentrations. The highest helicity of the peptide radical was measured in 100% TFE. The formation of hydrogen bonds between the peptide backbone and water destabilized the helix, whereas the clustering of TFE molecules around the radical center stabilized the helix. Following radical termination, the once helical structure converted to a β-sheet rich state in 100% water only, and this transition did not occur in the nonradical control peptide. This study gives evidence on how the formation of peptide radicals can initiate α-helical to β-sheet transitions under oxidative stress conditions.
Collapse
Affiliation(s)
- Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Imre G Csizmadia
- Department of Chemistry, University of Toronto , Toronto, ON Canada M5S 3H6.,Institute of Chemistry, Faculty of Material Science, University of Miskolc , Egyetemváros 1, H-3529 Miskolc, Hungary.,Drug Discovery Research Center , 6720 Szeged, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, Faculty of Material Science, University of Miskolc , Egyetemváros 1, H-3529 Miskolc, Hungary.,Drug Discovery Research Center , 6720 Szeged, Hungary
| |
Collapse
|
26
|
Acedo JZ, van Belkum MJ, Lohans CT, Towle KM, Miskolzie M, Vederas JC. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity. Biochemistry 2016; 55:733-42. [PMID: 26771761 DOI: 10.1021/acs.biochem.5b01306] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Christopher T Lohans
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Kaitlyn M Towle
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
27
|
Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, Franco OL, Patil PB, Korpole S. Characterization of the Antimicrobial Peptide Penisin, a Class Ia Novel Lantibiotic from Paenibacillus sp. Strain A3. Antimicrob Agents Chemother 2016; 60:580-91. [PMID: 26574006 PMCID: PMC4704198 DOI: 10.1128/aac.01813-15] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022] Open
Abstract
Attempts to isolate novel antimicrobial peptides from microbial sources have been on the rise recently, despite their low efficacy in therapeutic applications. Here, we report identification and characterization of a new efficient antimicrobial peptide from a bacterial strain designated A3 that exhibited highest identity with Paenibacillus ehimensis. Upon purification and subsequent molecular characterization of the antimicrobial peptide, referred to as penisin, we found the peptide to be a bacteriocin-like peptide. Consistent with these results, RAST analysis of the entire genome sequence revealed the presence of a lantibiotic gene cluster containing genes necessary for synthesis and maturation of a lantibiotic. While circular dichroism and one-dimension nuclear magnetic resonance experiments confirmed a random coil structure of the peptide, similar to other known lantibiotics, additional biochemical evidence suggests posttranslational modifications of the core peptide yield six thioether cross-links. The deduced amino acid sequence of the putative biosynthetic gene penA showed approximately 74% similarity with elgicin A and 50% similarity with the lantibiotic paenicidin A. Penisin effectively killed methicillin-resistant Staphylococcus aureus (MRSA) and did not exhibit hemolysis activity. Unlike other lantibiotics, it effectively inhibited the growth of Gram-negative bacteria. Furthermore, 80 mg/kg of body weight of penisin significantly reduced bacterial burden in a mouse thigh infection model and protected BALB/c mice in a bacteremia model entailing infection with Staphylococcus aureus MTCC 96, suggesting that it could be a promising new antimicrobial peptide.
Collapse
Affiliation(s)
| | - Vasvi Chaudhry
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Garima Mittal
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Luciano M Liao
- Institute of Chemistry, Federal University of Goiás, Goiânia, Brazil
| | - Carolina O Matos
- Institute of Chemistry, Federal University of Goiás, Goiânia, Brazil
| | - Neeraj Khatri
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Octavio L Franco
- Centro de Analises Proteomicas e Bioquimicas, Pós-graduacão em Ciências Genomicas e Biotecnologia, Brasília, Brazil S-Inova, Programa de Pós-Graduacão em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Prabhu B Patil
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Suresh Korpole
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
28
|
Arbulu S, Lohans CT, van Belkum MJ, Cintas LM, Herranz C, Vederas JC, Hernández PE. Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by Enterococcus faecium M3K31. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10689-10695. [PMID: 26585399 DOI: 10.1021/acs.jafc.5b03882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The solution structure of enterocin HF (EntHF), a class IIa bacteriocin of 43 amino acids produced by Enterococcus faecium M3K31, was evaluated by CD and NMR spectroscopy. Purified EntHF was unstructured in water, but CD analysis supports that EntHF adopts an α-helical conformation when exposed to increasing concentrations of trifluoroethanol. Furthermore, NMR spectroscopy indicates that this bacteriocin adopts an antiparallel β-sheet structure in the N-terminal region (residues 1-17), followed by a well-defined central α-helix (residues 19-30) and a more disordered C-terminal end (residues 31-43). EntHF could be structurally organized into three flexible regions that might act in a coordinated manner. This is in agreement with the absence of long-range nuclear Overhauser effect signals between the β-sheet domain and the C-terminal end of the bacteriocin. The 3D structure recorded for EntHF fits emerging facts regarding target recognition and mode of action of class IIa bacteriocins.
Collapse
Affiliation(s)
- Sara Arbulu
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Christopher T Lohans
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Luis M Cintas
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Carmen Herranz
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
29
|
Liu Y, Eichler J, Pischetsrieder M. Virtual screening of a milk peptide database for the identification of food-derived antimicrobial peptides. Mol Nutr Food Res 2015. [PMID: 26202586 DOI: 10.1002/mnfr.201500182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SCOPE Milk provides a wide range of bioactive substances, such as antimicrobial peptides and proteins. Our study aimed to identify novel antimicrobial peptides naturally present in milk. METHODS AND RESULTS The components of an endogenous bovine milk peptide database were virtually screened for charge, amphipathy, and predicted secondary structure. Thus, 23 of 248 screened peptides were identified as candidates for antimicrobial effects. After commercial synthesis, their antimicrobial activities were determined against Escherichia coli NEB5α, E. coli ATCC25922, and Bacillus subtilis ATCC6051. In the tested concentration range (<2 mM), bacteriostatic activity of 14 peptides was detected including nine peptides inhibiting both Gram-positive and Gram-negative bacteria. The most effective fragment was TKLTEEEKNRLNFLKKISQRYQKFΑLPQYLK corresponding to αS2 -casein151-181 , with minimum inhibitory concentration (MIC) of 4.0 μM against B. subtilis ATCC6051, and minimum inhibitory concentrations of 16.2 μM against both E. coli strains. Circular dichroism spectroscopy revealed conformational changes of most active peptides in a membrane-mimic environment, transitioning from an unordered to α-helical structure. CONCLUSION Screening of food peptide databases by prediction tools is an efficient method to identify novel antimicrobial food-derived peptides. Milk-derived antimicrobial peptides may have potential use as functional food ingredients and help to understand the molecular mechanisms of anti-infective milk effects.
Collapse
Affiliation(s)
- Yufang Liu
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil-Fischer-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jutta Eichler
- Medicinal Chemistry Unit, Department of Chemistry and Pharmacy, Emil-Fischer-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil-Fischer-Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
30
|
Oppegård C, Fimland G, Anonsen JH, Nissen-Meyer J. The Pediocin PA-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin PA-1. Biochemistry 2015; 54:2967-74. [PMID: 25961806 DOI: 10.1021/acs.biochem.5b00164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides, in contrast to proteins, are generally not large enough to form stable and well-defined three-dimensional structures. However, peptides are still able to form correct disulfide bonds. Using pediocin-like bacteriocins, we have examined how this may be achieved. Some pediocin-like bacteriocins, such as pediocin PA-1 and sakacin P[N24C+44C], have four cysteines. There are three possible ways by which the four cysteines may combine to form two disulfide bonds, and the three variants are expected to be produced in approximately equal amounts if their formation is random. Pediocin PA-1 and sakacin P[N24C+44C] with correct disulfide bonds were the main products when they were secreted by the pediocin PA-1 ABC transporter and accessory protein, but when they were secreted by the corresponding secretion machinery for sakacin A, a pediocin-like bacteriocin with one disulfide bond (two cysteines), peptides with all three possible disulfide bonds were produced in approximately equal amounts. All five cysteines in the pediocin PA-1 ABC transporter and the two cysteines (that form a CxxC motif) in the accessory protein were individually replaced with serines to examine their involvement in disulfide bond formation in pediocin PA-1. The Cys86Ser mutation in the accessory protein caused a 2-fold decrease in the amount of pediocin PA-1 with correct disulfide bonds, while the Cys83Ser mutation nearly abolished the production of pediocin PA-1 and resulted in the production of all three disufide bond variants in equal amounts. The Cys19Ser mutation in the ABC transporter completely abolished secretion of pediocin PA-1, suggesting that Cys19 is in the proteolytic active site and involved in cleaving the prebacteriocin. Replacing the other four cysteines in the ABC transporter with serines caused a slight reduction in the overall amount of secreted pediocin PA-1, but the relative amount with the correct disulfide bonds remained large. These results indicate that the pediocin PA-1 accessory protein has a chaperone-like activity in that it ensures the formation of the correct disulfide bond in pediocin PA-1.
Collapse
Affiliation(s)
- Camilla Oppegård
- †Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Gunnar Fimland
- ‡Xellia Pharmaceuticals AS, P.O. Box 158, Skøyen, 0212 Oslo, Norway
| | - Jan Haug Anonsen
- †Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Jon Nissen-Meyer
- †Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
31
|
Azmi S, Jiang K, Stiles M, Thundat T, Kaur K. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements. ACS COMBINATORIAL SCIENCE 2015; 17:156-63. [PMID: 25548942 DOI: 10.1021/co500079k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.
Collapse
Affiliation(s)
- Sarfuddin Azmi
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Keren Jiang
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | | | - Thomas Thundat
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kamaljit Kaur
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Chapman
University School of Pharmacy (CUSP), Harry and Diane Rinker Health
Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
32
|
Dimov S, Ivanova P, Harizanova N, Ivanova I. Bioactive Peptides used by Bacteria in the Concur-Rence for the Ecological Niche: General Classification and Mode of Action (Overview). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Wang L, Wang D, Li F. Insight into the structures of the second and fifth transmembrane domains of Slc11a1 in membrane mimics. J Pept Sci 2014; 20:165-72. [DOI: 10.1002/psc.2593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/29/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Li Wang
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| | - Dan Wang
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials; Jilin University; Changchun 130012 China
| |
Collapse
|
34
|
Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:28-44. [PMID: 23818338 DOI: 10.1002/jsfa.6293] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.
Collapse
Affiliation(s)
- Abigail B Snyder
- Department of Food Science, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
35
|
Song DF, Li X, Zhang YH, Zhu MY, Gu Q. Mutational analysis of positively charged residues in the N-terminal region of the class IIa bacteriocin pediocin PA-1. Lett Appl Microbiol 2013; 58:356-61. [PMID: 24261867 DOI: 10.1111/lam.12197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED The significance of positively charged residues for the target cell binding of pediocin PA-1 bacteriocins was studied by site-directed mutagenesis. Most of the charged residues are located in the N-terminal half of the peptide, which is thought to mediate the initial binding of these bacteriocins to their target cells through electrostatic interactions. Mutated peptides in which the positively charged residues were substituted or increased in number were constructed, and some of these peptides exhibited a twofold increase in the bacteriostatic activity. The greatest enhancement was achieved by introduced the positive charges at position 13, their results show the benefits of introducing an additional cationic residue within this patch in the middle of the N-terminal half of pediocin PA-1 bacteriocins. Thus, the presence of additional cationic residues in the N-terminal half influenced the electrostatic binding of this bacteriocin to its target cells and increased the potency of the peptide on the potency of Micrococcus luteus and Staphylococcus aureus. SIGNIFICANCE AND IMPACT OF THE STUDY No previous work has systematically examined the N-terminal cationic residues of the pediocin PA-1 for their functional importance or redundancy. In this study, we examined the structure-function relationships of pediocin PA-1 by site-directed mutagenesis. Mutated peptides in which the positively charged residues were substituted and increased in number exhibited a twofold increase in the bacteriostatic activity. This study demonstrated the importance of the cationic patch in the N-terminal half of pediocin PA-1. The cationic residues influenced the electrostatic binding of the bacteriocin to the target cells and had a greater effect on the potency of the peptide towards Micrococcus luteus and Staphylococcus aureus.
Collapse
Affiliation(s)
- D F Song
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
36
|
Bodapati KC, Soudy R, Etayash H, Stiles M, Kaur K. Design, synthesis and evaluation of antimicrobial activity of N-terminal modified Leucocin A analogues. Bioorg Med Chem 2013; 21:3715-22. [DOI: 10.1016/j.bmc.2013.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/05/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
37
|
Lohans CT, Towle KM, Miskolzie M, McKay RT, van Belkum MJ, McMullen LM, Vederas JC. Solution structures of the linear leaderless bacteriocins enterocin 7A and 7B resemble carnocyclin A, a circular antimicrobial peptide. Biochemistry 2013; 52:3987-94. [PMID: 23725536 DOI: 10.1021/bi400359z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leaderless bacteriocins are a class of ribosomally synthesized antimicrobial peptides that are produced by certain Gram-positive bacteria without an N-terminal leader section. These bacteriocins are of great interest due to their potent inhibition of many Gram-positive organisms, including food-borne pathogens such as Listeria and Clostridium spp. We now report the NMR solution structures of enterocins 7A and 7B, leaderless bacteriocins recently isolated from Enterococcus faecalis 710C. These are the first three-dimensional structures to be reported for bacteriocins of this class. Unlike most other linear Gram-positive bacteriocins, enterocins 7A and 7B are highly structured in aqueous conditions. Both peptides are primarily α-helical, adopting a similar overall fold. The structures can be divided into three separate α-helical regions: the N- and C-termini are both α-helical, separated by a central kinked α-helix. The overall structures bear an unexpected resemblance to carnocyclin A, a 60-residue peptide that is cyclized via an amide bond between the C- and N-termini and has a saposin fold. Because of synergism observed for other two-peptide leaderless bacteriocins, it was of interest to probe possible binding interactions between enterocins 7A and 7B. However, despite synergistic activity observed between these peptides, no significant binding interaction was observed based on NMR and isothermal calorimetry.
Collapse
Affiliation(s)
- Christopher T Lohans
- Department of Chemistry, and §Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | |
Collapse
|
38
|
Etayash H, Norman L, Thundat T, Kaur K. Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4048-4056. [PMID: 23445325 DOI: 10.1021/la3041743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Specificity of the class IIa bacteriocin Leucocin A (LeuA), an antimicrobial peptide active against Gram-positive bacteria, including Listeria monocytogenes , is known to be dictated by the C-terminal amphipathic helical region, including the extended hairpin-like structure. However, its specificity when attached to a substrate has not been investigated. Exploiting properties of LeuA, we have synthesized two LeuA derivatives, which span the amphipathic helical region of the wild-type LeuA, consisting of 14- (14AA LeuA, CWGEAFSAGVHRLA) and 24-amino acid residues (24AA LeuA, CSVNWGEAFSAGVHRLANGGNGFW). The peptides were purified to >95% purity, as shown by analytical RP-HPLC and mass spectrometry. By including an N-terminal cysteine group, the tailored peptide fragments were readily immobilized at the gold interfaces. The resulting thickness and molecular orientation, determined by ellipsometry and grazing angle infrared spectroscopy, respectively, indicated that the peptides were covalently immobilized in a random helical orientation. The bacterial specificity of the anchored peptide fragments was tested against Gram-positive and Gram-negative bacteria. Our results showed that the adsorbed 14AA LeuA exhibited no specificity toward the bacterial strains, whereas the surface-immobilized 24AA LeuA displayed significant binding toward Gram-positive bacteria with various binding affinities from one strain to another. The 14AA LeuA did not show binding as this fragment is most likely too short in length for recognition by the membrane-bound receptor on the target bacterial cell membrane. These results support the potential use of class IIa bacteriocins as molecular recognition elements in biosensing platforms.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
39
|
Cui Y, Zhang C, Wang Y, Shi J, Zhang L, Ding Z, Qu X, Cui H. Class IIa bacteriocins: diversity and new developments. Int J Mol Sci 2012; 13:16668-707. [PMID: 23222636 PMCID: PMC3546714 DOI: 10.3390/ijms131216668] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 11/12/2012] [Indexed: 12/02/2022] Open
Abstract
Class IIa bacteriocins are heat-stable, unmodified peptides with a conserved amino acids sequence YGNGV on their N-terminal domains, and have received much attention due to their generally recognized as safe (GRAS) status, their high biological activity, and their excellent heat stability. They are promising and attractive agents that could function as biopreservatives in the food industry. This review summarizes the new developments in the area of class IIa bacteriocins and aims to provide uptodate information that can be used in designing future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (Y.C.); (C.Z.); (Z.D.)
| | - Chao Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (Y.C.); (C.Z.); (Z.D.)
| | - Yunfeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; E-Mail:
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada; E-Mail:
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (Y.C.); (C.Z.); (Z.D.)
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China; E-Mails: (Y.C.); (C.Z.); (Z.D.)
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; E-Mail:
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; E-Mail:
| |
Collapse
|
40
|
Li M, Zhu L, Zhou CY, Sun S, Fan YJ, Zhuang ZM. Molecular characterization and expression of a novel big defensin (Sb-BDef1) from ark shell, Scapharca broughtonii. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1167-1173. [PMID: 23000749 DOI: 10.1016/j.fsi.2012.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Big defensins, endogenous cysteine-rich antimicrobial peptides (AMPs) with antimicrobial activity and immunomodulatory property, play crucial roles in host defense against various microbial pathogens. A novel big defensin (Sb-BDef1) of ark shell Scapharca broughtonii was identified by expressed sequence tag (EST) and RACE techniques. The Sb-BDef1 cDNA contained an open reading frame (ORF) of 336-bp encoding a polypeptide of 111 amino acids with a putative signal peptide of 21 amino acid residues, followed by a putative propeptide of 11 residues and a putative mature peptide of 79 residues. The mature peptide shared the common features of big defensins, including a high hydrophobic residues region (59%) in the N-terminus, a defensin domain in the C-terminus, which perfectly corresponds to the six conserved disulfide-bonded cysteine residues involved in the formation of the internal disulfide bridges (C1-C5, C2-C4 and C3-C6) in all big defensins from mollusk, horseshoe crab and amphioxus. Quantitative real-time PCR analysis revealed that the expression of Sb-BDef1 transcript was detected in all the tissues examined from normal ark shells, and the temporal expression of Sb-BDef1 mRNA was remarkably up-regulated at 8, 16 h in hemocytes, and at 16, 24 h in hepatopancreas after Vibrio anguillarum-challenge, respectively. These results suggested that Sb-BDef1 was a constitutive and inducible acute-phase protein and should be involved in immune response of Gram-negative microbial infection in ark shell S. broughtonii.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Hassan M, Kjos M, Nes I, Diep D, Lotfipour F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 2012; 113:723-36. [DOI: 10.1111/j.1365-2672.2012.05338.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/18/2012] [Accepted: 05/02/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | - M. Kjos
- Departments of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas; Norway
| | - I.F. Nes
- Departments of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas; Norway
| | - D.B. Diep
- Departments of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; Aas; Norway
| | | |
Collapse
|
42
|
Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology (Reading) 2011; 157:3256-3267. [DOI: 10.1099/mic.0.052571-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.
Collapse
Affiliation(s)
- Morten Kjos
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Mona Opsata
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dagim J. Birri
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Helge Holo
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Luis M. Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Pablo E. Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Ingolf F. Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B. Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
43
|
Development of Class IIa Bacteriocins as Therapeutic Agents. Int J Microbiol 2011; 2012:386410. [PMID: 22187559 PMCID: PMC3236453 DOI: 10.1155/2012/386410] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/08/2011] [Indexed: 12/02/2022] Open
Abstract
Class IIa bacteriocins have been primarily explored as natural food preservatives, but there is much interest in exploring the application of these peptides as therapeutic antimicrobial agents. Bacteriocins of this class possess antimicrobial activity against several important human pathogens. Therefore, the therapeutic development of these bacteriocins will be reviewed. Biological and chemical modifications to both stabilize and increase the potency of bacteriocins are discussed, as well as the optimization of their production and purification. The suitability of bacteriocins as pharmaceuticals is explored through determinations of cytotoxicity, effects on the natural microbiota, and in vivo efficacy in mouse models. Recent results suggest that class IIa bacteriocins show promise as a class of therapeutic agents.
Collapse
|
44
|
Sit CS, Lohans CT, van Belkum MJ, Campbell CD, Miskolzie M, Vederas JC. Substitution of a conserved disulfide in the type IIa bacteriocin, leucocin A, with L-leucine and L-serine residues: effects on activity and three-dimensional structure. Chembiochem 2011; 13:35-8. [PMID: 22121114 DOI: 10.1002/cbic.201100634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Clarissa S Sit
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Venugopal H, Edwards PJB, Schwalbe M, Claridge JK, Libich DS, Stepper J, Loo T, Patchett ML, Norris GE, Pascal SM. Structural, Dynamic, and Chemical Characterization of a Novel S-Glycosylated Bacteriocin. Biochemistry 2011; 50:2748-55. [DOI: 10.1021/bi200217u] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hariprasad Venugopal
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Martin Schwalbe
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jolyon K. Claridge
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David S. Libich
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Judith Stepper
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Trevor Loo
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Mark L. Patchett
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Gillian E. Norris
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Steven M. Pascal
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
46
|
Soliman W, Wang L, Bhattacharjee S, Kaur K. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. J Med Chem 2011; 54:2399-408. [PMID: 21388140 DOI: 10.1021/jm101540e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.
Collapse
Affiliation(s)
- Wael Soliman
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8, Canada
| | | | | | | |
Collapse
|
47
|
Mutational analysis of residues in the helical region of the class IIa bacteriocin pediocin PA-1. Appl Environ Microbiol 2011; 77:1966-72. [PMID: 21257813 DOI: 10.1128/aem.02488-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 15-mer fragment that is derived from the helical region in the C-terminal half of pediocin PA-1 inhibited the activity of pediocin PA-1. Of 13 other pediocin-like (hybrid) bacteriocins, only the hybrid bacteriocin Sak/Ped was markedly inhibited by the 15-mer fragment. Sak/Ped was the only one of these bacteriocins that had a sequence (in the C-terminal helix-containing half) identical to that of the 15-mer fragment, indicating that the fragment inhibits pediocin-like bacteriocins in a sequence-dependent manner. By replacing (one at a time) all 15 residues in the fragment with Ala or Leu, five residues (K1, A2, T4, N8, and A15) were identified as being especially important for the inhibitory action of the fragment. The results suggest that the corresponding residues (K20, A21, T23, N27, and A34, respectively) in pediocin PA-1 might be involved in interactions between pediocin PA-1 and its receptor. To characterize the environment surrounding these five residues when pediocin PA-1 interacts with target cells, these residues were replaced (one at a time) with a hydrophobic large (Leu) residue, a hydrophilic charged (Asp or Arg) residue, and a small (Ala or Gly) residue. The results revealed that residues A21 and A34 are in a spatially constrained environment, since the replacement with a small (Gly) residue was the only substitution that did not markedly reduce the bacteriocin activity. The positive charge in K20 and the polar amide group in N27 appeared to interact with electronegative groups, since the replacement of these two residues with a positive (Arg) residue was well tolerated, while replacement with a negative (Asp) residue was detrimental to the bacteriocin activity. K20 was in a less constrained environment than N27, since the replacement of K20 with a large hydrophobic (Leu) residue was tolerated fairly well and to a greater extent than N27. T23 seemed to be in an environment that was not restricted with respect to size, polarity, and charge, since replacements with large (Leu) and small (Ala) hydrophobic residues and a hydrophilic negative (Asp) residue were tolerated fairly well (2- to 6-fold reduction in activity). Moreover, the replacement of T23 with a large positive (Arg) residue resulted in wild-type or better-than-wild-type activity.
Collapse
|
48
|
|
49
|
An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 2010; 192:5906-13. [PMID: 20870773 DOI: 10.1128/jb.00777-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class IIa bacteriocins target a phylogenetically defined subgroup of mannose-phosphotransferase systems (man-PTS) on sensitive cells. By the use of man-PTS genes of the sensitive Listeria monocytogenes (mpt) and the nonsensitive Lactococcus lactis (ptn) species to rationally design a series of man-PTS chimeras and site-directed mutations, we identified an extracellular loop of the membrane-located protein MptC that was responsible for specific target recognition by the class IIa bacteriocins.
Collapse
|
50
|
Neira JL, Contreras LM, de los Paños OR, Sánchez-Hidalgo M, Martínez-Bueno M, Maqueda M, Rico M. Structural characterisation of the natively unfolded enterocin EJ97. Protein Eng Des Sel 2010; 23:507-18. [PMID: 20385607 DOI: 10.1093/protein/gzq020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriocins belong to the wide variety of antimicrobial ribosomal peptides synthesised by bacteria. Enterococci are Gram-positive, catalase-negative bacteria that produce lactic acid as the major end product of glucose fermentation. Many enterococcal strains produce bacteriocins, named enterocins. We describe in this work, the structural characterisation of the 44 residues-long enterocin EJ97, produced by Enterococcus faecalis EJ97. To this end, we have used a combined theoretical and experimental approach. First, we have characterised experimentally the conformational properties of EJ97 in solution under different conditions by using a number of spectroscopic techniques, namely fluorescence, CD, FTIR and NMR. Then, we have used several bioinformatic tools as an aid to complement the experimental information about the conformational properties of EJ97. We have shown that EJ97 is monomeric in aqueous solution and that it appears to be chiefly unfolded, save some flickering helical- or turn-like structures, probably stabilised by hydrophobic clustering. Accordingly, EJ97 does not show a cooperative sigmoidal transition when heated or upon addition of GdmCl. These conformational features are essentially pH-independent, as shown by NMR assignments at pHs 5.9 and 7.0. The computational results were puzzling, since some algorithms revealed the natively unfolded character of EJ97 (FoldIndex, the mean scaled hydropathy), whereas some others suggested the presence of ordered structure in its central region (PONDR, RONN and IUPRED). A future challenge is to produce much more experimental results to aid the development of accurate software tools for predicting disorder in proteins.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Edificio Torregaitán, 50009 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|