Del Villar K, Urano J, Guo L, Tamanoi F. A mutant form of human protein farnesyltransferase exhibits increased resistance to farnesyltransferase inhibitors.
J Biol Chem 1999;
274:27010-7. [PMID:
10480914 DOI:
10.1074/jbc.274.38.27010]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein farnesyltransferase (FTase) is a key enzyme responsible for the lipid modification of a large and important number of proteins including Ras. Recent demonstrations that inhibitors of this enzyme block the growth of a variety of human tumors point to the importance of this enzyme in human tumor formation. In this paper, we report that a mutant form of human FTase, Y361L, exhibits increased resistance to farnesyltransferase inhibitors, particularly a tricyclic compound, SCH56582, which is a competitive inhibitor of FTase with respect to the CAAX (where C is cysteine, A is an aliphatic amino acid, and X is the C-terminal residue that is preferentially serine, cysteine, methionine, glutamine or alanine) substrates. The Y361L mutant maintains FTase activity toward substrates ending with CIIS. However, the mutant also exhibits an increased affinity for peptides terminating with CIIL, a motif that is recognized by geranylgeranyltransferase I (GGTase I). The Y361L mutant also demonstrates activity with Ha-Ras and Cdc42Hs proteins, substrates of FTase and GGTase I, respectively. In addition, the Y361L mutant shows a marked sensitivity to a zinc chelator HPH-5 suggesting that the mutant has altered zinc coordination. These results demonstrate that a single amino acid change at a residue at the active site can lead to the generation of a mutant resistant to FTase inhibitors. Such a mutant may be valuable for the study of the effects of FTase inhibitors on tumor cells.
Collapse