1
|
Hanson DK, Buhrmaster JC, Wyllie RM, Tira GA, Faries KM, Holten D, Kirmaier C, Laible PD. Inter-cofactor protein remodeling rewires short-circuited transmembrane electron transfer. Commun Chem 2025; 8:110. [PMID: 40204852 PMCID: PMC11982316 DOI: 10.1038/s42004-025-01460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025] Open
Abstract
Intraprotein electron transfer (ET) requires explicit local control of the environment of cofactors to influence their intermolecular distances, relative orientations, and redox properties. Efficient, longer-range ET often utilizes molecular orbitals of aromatic residues present in the intervening space. Here, revitalization of a vestigial ET pathway in the bacterial photosynthetic reaction center is achieved by scanning with tryptophans to uncover markedly improved routes of electron conduction in a key stabilizing step spanning 15 Å between tetrapyrrole and quinone cofactors. This ET event is maximally enhanced by pairing one or more tryptophans with a threonine to influence quinone binding and/or redox potential. Synergistic effects of these substitutions increase the yield of that ET step to ~95%. Joining these substitutions with mutant residues that improve initial ET steps dramatically enhances transmembrane charge separation via this redesigned version of a pathway that is quantitatively inactive in the native protein-cofactor complex.
Collapse
Affiliation(s)
- Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | | | - Ryan M Wyllie
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
2
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
3
|
Samaei A, Deshmukh SS, Protheroe C, Nyéki S, Tremblay-Ethier RA, Kálmán L. Photoactivation and conformational gating for manganese binding and oxidation in bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148928. [PMID: 36216075 DOI: 10.1016/j.bbabio.2022.148928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
The influence of illumination history of native bacterial reaction centers (BRCs) on the ability of binding and photo-induced oxidation of manganous ions was investigated in the pH range between 8.0 and 9.4. Binding of manganous ions to a buried site required 6 to 11-fold longer incubation periods, depending on the pH, in dark-adapted BRCs than in BRCs that were previously illuminated prior to manganese binding. The intrinsic electron transfer from the bound manganese ion to the photo-oxidized primary electron donor was found to be limited by a 2 to 5-fold slower precursor conformational step in the dark-adapted samples for the same pH range. The conformational gating could be eliminated by photoactivation, namely if the BRCs were illuminated prior to binding. Unlike in Photosystem II, photoactivation in BRCs did not involve cluster assembly. Photoactivation with manganese already bound was only possible at elevated detergent concentration. In addition, also exclusively in dark-adapted BRCs, a marked breaking point in the Arrhenius-plot was discovered around 15 °C at pH 9.4 indicating a change in the reaction mechanism, most likely caused by the change of orientation of the 2-acetyl group of the inactive bacteriochlorophyll monomer located near the manganese binding site.
Collapse
Affiliation(s)
- Ali Samaei
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | | | - Sarah Nyéki
- Department of Physics, Concordia University, Montreal, QC, Canada
| | | | - László Kálmán
- Department of Physics, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Ptushenko VV, Krishtalik LI. Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2018; 138:167-175. [PMID: 30022339 DOI: 10.1007/s11120-018-0560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In framework of the continuum electrostatics theory, the reorganization energies of the electron transfers QA--QB (fast phase), Bph--QA, P+-QA-, and P+-QB- in the photosynthetic bacterial reaction center have been calculated. The calculations were based on the static dielectric permittivity spatial distribution derived from the data on the electrogenesis, with the corresponding characteristic times relatively close to the reaction times of QA--QB (fast phase) and Bph--QA but much shorter than those times of the latter two recombination reactions. The calculated reorganization energies were reasonably close to the experimental estimates for QA--QB (fast phase) and Bph--QA but substantially lower than those of P+-QA- and P+-QB-. A higher effective dielectric permittivity contributes to this effect, but the dominant contribution is most probably made by a non-dielectric relaxation, especially for the P+-QB- recombination influenced by the proton transfer. This situation calls for reconsidering of the current electron transfer rate estimates.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Lev I Krishtalik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Zhang X, Gunner MR. Affinity and activity of non-native quinones at the Q(B) site of bacterial photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2014; 120:181-96. [PMID: 23715773 PMCID: PMC4442677 DOI: 10.1007/s11120-013-9850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/08/2013] [Indexed: 05/11/2023]
Abstract
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (Q(A)) and secondary (Q(B)) electron acceptors. Many quinones reconstitute Q(A) function, while a few will act as Q(B). Nine quinones were tested for their ability to bind and reconstitute Q(A) and Q(B) functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the Q(B) site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the Q(B) site are 7 ± 3 times weaker than that at Q(A) site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the Q(A) site (K d ≤ 200 nM), and ≥1,000 times more weakly to the Q(B) site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at Q(A), Q(B) reduction is 260 meV, more favorable than with UQ as Q(A). Electron transfer from Me-diMeAm-NQ at the Q(A) site to NQ at the Q(B) site can be detected. In the Q(B) site, the NQ semiquinone is estimated to be ≈60-100 meV higher in energy than the UQ semiquinone, while in the Q(A) site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the Q(A) than in the Q(B) site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the Q(B) than in the Q(A) site, stabilizing forward electron transfer from Q(A) to Q(B).
Collapse
Affiliation(s)
| | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940
| |
Collapse
|
7
|
Zhu J, van Stokkum IHM, Paparelli L, Jones MR, Groot ML. Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides. Biophys J 2014; 104:2493-502. [PMID: 23746522 DOI: 10.1016/j.bpj.2013.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/16/2022] Open
Abstract
A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA⁻ band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Physics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Kitoh-Nishioka H, Ando K. Fragment Molecular Orbital Study on Electron Tunneling Mechanisms in Bacterial Photosynthetic Reaction Center. J Phys Chem B 2012; 116:12933-45. [DOI: 10.1021/jp3062948] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- Department of Chemistry, Graduate
School of Science, Kyoto University, Sakyo-ku,
Kyoto 606-8502, Japan
| | - Koji Ando
- Department of Chemistry, Graduate
School of Science, Kyoto University, Sakyo-ku,
Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Koslowski T, Burggraf F, Krapf S, Steinbrecher T, Wittekindt C. Recent progress in biological charge transfer: theory and simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1955-7. [PMID: 22395149 DOI: 10.1016/j.bbabio.2012.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/19/2022]
Abstract
In this contribution, we discuss three recent developments in atomistic biological charge transfer theory. First, in the context of Marcus' classical theory of charge transfer, key quantities of the theory such as driving forces and reorganization enthalpies are now accessible by thermodynamic integration schemes within standard molecular dynamics simulations at high accuracy. Second, direct simulations of charge transfer enable the computation of fast charge transfer reaction rates without having to resort to Marcus' theory. Finally, exploring the electronic structure beyond that of hitherto presumed centers of localization helps to identify new stepping stones of charge transfer reactions. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Thorsten Koslowski
- Institut für Physikalische Chemie, Universität Freiburg, Freiburg im Breisgau, Germany.
| | | | | | | | | |
Collapse
|
10
|
Burggraf F, Koslowski T. The simulation of interquinone charge transfer in a bacterial photoreaction center highlights the central role of a hydrogen-bonded non-heme iron complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:53-8. [DOI: 10.1016/j.bbabio.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
|
11
|
Deshmukh SS, Williams JC, Allen JP, Kálmán L. Light-Induced Conformational Changes in Photosynthetic Reaction Centers: Dielectric Relaxation in the Vicinity of the Dimer. Biochemistry 2010; 50:340-8. [DOI: 10.1021/bi101496c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sasmit S. Deshmukh
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - JoAnn C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
12
|
Histidine is involved in coupling proton uptake to electron transfer in photosynthetic proteins. Eur J Cell Biol 2010; 89:983-9. [DOI: 10.1016/j.ejcb.2010.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
The local electric field within phospholipid membranes modulates the charge transfer reactions in reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1039-49. [DOI: 10.1016/j.bbabio.2009.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
|
14
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Huang L, Wiederrecht GP, Utschig LM, Schlesselman SL, Xydis C, Laible PD, Hanson DK, Tiede DM. Correlating Ultrafast Function with Structure in Single Crystals of the Photosynthetic Reaction Center. Biochemistry 2008; 47:11387-9. [DOI: 10.1021/bi801026g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libai Huang
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Gary P. Wiederrecht
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Sandra L. Schlesselman
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Christina Xydis
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Philip D. Laible
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - Deborah K. Hanson
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Center for Nanoscale Materials, and Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4831
| |
Collapse
|
17
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
18
|
Knox PP, Krasilnikov PM, Mamonov PA, Seifullina NK, Uchoa AF, Baptista MS. Stabilization of the electron in the quinone acceptor part of the Rhodobacter sphaeroides reaction centers. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Wraight CA, Vakkasoglu AS, Poluektov Y, Mattis AJ, Nihan D, Lipshutz BH. The 2-methoxy group of ubiquinone is essential for function of the acceptor quinones in reaction centers from Rba. sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:631-6. [DOI: 10.1016/j.bbabio.2008.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
|
20
|
The fe2+ site of photosynthetic reaction centers probed by multiple scattering x-ray absorption fine structure spectroscopy: improving structure resolution in dry matrices. Biophys J 2008; 95:814-22. [PMID: 18456824 DOI: 10.1529/biophysj.108.132654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on the x-ray absorption fine structure of the Fe(2+) site in photosynthetic reaction centers from Rhodobacter sphaeroides. Crystallographic studies show that Fe(2+) is ligated with four N(epsilon) atoms from four histidine (His) residues and two O(epsilon) atoms from a Glu residue. By considering multiple scattering contributions to the x-ray absorption fine structure function, we improved the structural resolution of the site: His residues were split into two groups, characterized by different Fe-N(epsilon) distances, and two distinct Fe-O(epsilon) bond lengths resolved. The effect of the environment was studied by embedding the reaction centers into a polyvinyl alcohol film and into a dehydrated trehalose matrix. Incorporation into trehalose caused elongation in one of the two Fe-N(epsilon) distances, and in one Fe-O(epsilon) bond length, compared with the polyvinyl alcohol film. The asymmetry detected in the cluster of His residues and its response to incorporation into trehalose are ascribed to the hydrogen bonds between two His residues and the quinone acceptors. The structural distortions observed in the trehalose matrix indicate a strong interaction between the reaction-centers surface and the water-trehalose matrix, which propagates deeply into the interior of the protein. The absence of matrix effects on the Debye-Waller factors is brought back to the static heterogeneity and rigidity of the ligand cluster.
Collapse
|
21
|
Charge stabilization in reaction center protein investigated by optical heterodyne detected transient grating spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1167-74. [DOI: 10.1007/s00249-008-0294-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/14/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
22
|
Tandori J, Miksovska J, Valerio-Lepiniec M, Schiffer M, Maróti P, Hanson DK, Sebban P. Proton Uptake of Rhodobacter capsulatus Reaction Center Mutants Modified in the Primary Quinone Environment ¶dagger;. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750126puorcr2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Paddock ML, Flores M, Isaacson R, Chang C, Abresch EC, Selvaduray P, Okamura MY. Trapped conformational states of semiquinone (D+*QB-*) formed by B-branch electron transfer at low temperature in Rhodobacter sphaeroides reaction centers. Biochemistry 2006; 45:14032-42. [PMID: 17115698 PMCID: PMC2259235 DOI: 10.1021/bi060854h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction center (RC) from Rhodobacter sphaeroides captures light energy by electron transfer between quinones QA and QB, involving a conformational gating step. In this work, conformational states of D+*QB-* were trapped (80 K) and studied using EPR spectroscopy in native and mutant RCs that lack QA in which QB was reduced by the bacteriopheophytin along the B-branch. In mutant RCs frozen in the dark, a light induced EPR signal due to D+*QB-* formed in 30% of the sample with low quantum yield (0.2%-20%) and decayed in 6 s. A small signal with similar characteristics was also observed in native RCs. In contrast, the EPR signal due to D+*QB-* in mutant RCs illuminated while freezing formed in approximately 95% of the sample did not decay (tau >107 s) at 80 K (also observed in the native RC). In all samples, the observed g-values were the same (g = 2.0026), indicating that all active QB-*'s were located in a proximal conformation coupled with the nonheme Fe2+. We propose that before electron transfer at 80 K, the majority (approximately 70%) of QB, structurally located in the distal site, was not stably reducible, whereas the minority (approximately 30%) of active configurations was in the proximal site. The large difference in the lifetimes of the unrelaxed and relaxed D+*QB-* states is attributed to the relaxation of protein residues and internal water molecules that stabilize D+*QB-*. These results demonstrate energetically significant conformational changes involved in stabilizing the D+*QB-* state. The unrelaxed and relaxed states can be considered to be the initial and final states along the reaction coordinate for conformationally gated electron transfer.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Sai PSM, Kless H, Scherz A. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 2006; 442:827-30. [PMID: 16862124 DOI: 10.1038/nature04947] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 06/02/2006] [Indexed: 11/08/2022]
Abstract
Adjustment of catalytic activity in response to diverse ambient temperatures is fundamental to life on Earth. A crucial example of this is photosynthesis, where solar energy is converted into electrochemical potential that drives oxygen and biomass generation at temperatures ranging from those of frigid Antarctica to those of scalding hot springs. The energy conversion proceeds by concerted mobilization of electrons and protons on photoexcitation of reaction centre protein complexes. Following physicochemical paradigms, the rates of imperative steps in this process were predicted to increase exponentially with rising temperatures, resulting in different yields of solar energy conversion at the distinct growth temperatures of photosynthetic mesophiles and extremophiles. In contrast, here we show a meticulous adjustment of energy conversion rate, resulting in similar yields from mesophiles and thermophiles. The key molecular players in the temperature adjustment process consist of a cluster of hitherto unrecognized protein cavities and an adjacent packing motif that jointly impart local flexibility crucial to the reaction centre proteins. Mutations within the packing motif of mesophiles that increase the bulkiness of the amino-acid side chains, and thus reduce the size of the cavities, promote thermophilic behaviour. This novel biomechanical mechanism accounts for the slowing of the catalytic reaction above physiological temperatures in contradiction to the classical Arrhenius paradigm. The mechanism provides new guidelines for manipulating the acclimatization of enzymes to the ambient temperatures of diverse habitats. More generally, it reveals novel protein elements that are of potential significance for modulating structure-activity relationships in membrane and globular proteins alike.
Collapse
Affiliation(s)
- Oksana Shlyk-Kerner
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
25
|
Takahashi E, Wraight CA. Small weak acids reactivate proton transfer in reaction centers from Rhodobacter sphaeroides mutated at AspL210 and AspM17. J Biol Chem 2005; 281:4413-22. [PMID: 16354664 DOI: 10.1074/jbc.m511359200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In reaction centers of Rhodobacter sphaeroides, site-directed mutagenesis has implicated several acidic residues in the delivery of protons to the secondary quinone (Q(B)) during reduction to quinol. In a double mutant (Asp(L210) --> Asn + Asp(M17) --> Asn) that is severely impaired in proton transfer capability over a wide pH range, proton transfer was "rescued" by added weak acids. For low pK(a) acids the total concentration of salt required near neutral pH was high. The ionic strength effect of added salts stimulated the rate of proton-coupled electron transfer at pH < 7, but decreased it at pH > 7.5, indicating an effective isoelectric point between these limits. In this region, a substantial rate enhancement by weak acids was clearly evident. A Brønsted plot of activity versus pK(a) of the rescuing acids was linear, with a slope of -1, and extrapolated to a diffusion-limited rate at pK(a)(app) approximately 1. However, the maximum rate at saturating concentrations of acid did not correlate with pK(a), indicating that the acid and anion species compete for binding, both with weak affinity. This model predicts that pK(a)(app) corresponds to a true pK(a) = 4-5, similar to that for a carboxylic acid or Q(B)(-), itself. Only rather small, neutral acids were active, indicating a need to access a small internal volume, suggested to be a proton channel to the Q(B) domain. However, the on-rates were near the diffusion limit. The implications for intraprotein proton transfer pathway design are discussed.
Collapse
Affiliation(s)
- Eiji Takahashi
- Department of Biochemistry and Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | |
Collapse
|
26
|
Knox PP, Baptista MS, Uchoa AF, Zakharova NI. Effects of Oxygen, Heavy Water, and Glycerol on Electron Transfer in the Acceptor Part of Rhodobacter sphaeroides Reaction Centers. BIOCHEMISTRY (MOSCOW) 2005; 70:1268-73. [PMID: 16336188 DOI: 10.1007/s10541-005-0258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The kinetics of electron transfer between primary and secondary quinone acceptors of the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides wild type was studied at the wavelengths 400 and 450 nm. It was shown that removing of molecular oxygen from RC preparations slowed down the fast phase of the process from 4-4.5 microsec to tens of microseconds. Similar effects were observed after the incubation of RC in heavy water for 72 h or glycerol addition (90% v/v) to RC preparations. The observed effects are interpreted in terms of the influence of these agents on the hydrogen bond system of the RC. The state of this system can determine the formation of different RC conformations that are characterized by different rates of electron transfer between quinone acceptors.
Collapse
Affiliation(s)
- P P Knox
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
27
|
Mulkidjanian AY, Kozlova MA, Cherepanov DA. Ubiquinone reduction in the photosynthetic reaction centre of Rhodobacter sphaeroides: interplay between electron transfer, proton binding and flips of the quinone ring. Biochem Soc Trans 2005; 33:845-50. [PMID: 16042612 DOI: 10.1042/bst0330845] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review is focused on reactions that gate (control) the electron transfer between the primary quinone QA and secondary quinone QB in the photosynthetic reaction centre of Rhodobacter sphaeroides. The results on electron and proton transfer are discussed in relation to structural information and to the steered molecular dynamics simulations of the QB ring flip in its binding pocket. Depending on the initial position of QB in the pocket and on certain conditions, the rate of electron transfer is suggested to be limited either by the quinone ring flip or by the charge-compensating proton equilibration between the surface and the buried QB site.
Collapse
Affiliation(s)
- A Y Mulkidjanian
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.
| | | | | |
Collapse
|
28
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
29
|
Jasaitis A, Rappaport F, Pilet E, Liebl U, Vos MH. Activationless electron transfer through the hydrophobic core of cytochrome c oxidase. Proc Natl Acad Sci U S A 2005; 102:10882-6. [PMID: 16037213 PMCID: PMC1182432 DOI: 10.1073/pnas.0503001102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electron transfer (ET) within proteins occurs by means of chains of redox intermediates that favor directional and efficient electron delivery to an acceptor. Individual ET steps are energetically characterized by the electronic coupling V, driving force DeltaG, and reorganization energy lambda. lambda reflects the nuclear rearrangement of the redox partners and their environment associated with the reactions; lambda approximately 700-1,100 meV (1 eV = 1.602 x 10(-19) J) has been considered as a typical value for intraprotein ET. In nonphotosynthetic systems, functional ET is difficult to assess directly. However, using femtosecond flash photolysis of the CO-poised membrane protein cytochrome c oxidase, the intrinsic rate constant of the low-DeltaG electron injection from heme a into the heme a(3)-Cu(B) active site was recently established at (1.4 ns)(-1). Here, we determine the temperature dependence of both the rate constant and DeltaG of this reaction and establish that this reaction is activationless. Using a quantum mechanical form of nonadiabatic ET theory and common assumptions for the coupled vibrational modes, we deduce that lambda is <200 meV. It is demonstrated that the previously accepted value of 760 meV actually originates from the temperature dependence of Cu(B)-CO bond breaking. We discuss that low-DeltaG, low-lambda reactions are common for efficiently channeling electrons through chains that are buried inside membrane proteins.
Collapse
Affiliation(s)
- Audrius Jasaitis
- Laboratory for Optical Biosciences, INSERM U696, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7645, Ecole Polytechnique-Ecole Nationale Supérieure de Techniques Avancées, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
30
|
Cordone L, Cottone G, Giuffrida S, Palazzo G, Venturoli G, Viappiani C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:252-81. [PMID: 15886079 DOI: 10.1016/j.bbapap.2005.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.
Collapse
Affiliation(s)
- Lorenzo Cordone
- Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Utschig LM, Astashkin AV, Raitsimring AM, Thurnauer MC, Poluektov OG. Pulsed EPR/ENDOR Characterization of the Cu2+ Surface Site in Photosynthetic Bacterial Reaction Centers. J Phys Chem B 2004. [DOI: 10.1021/jp037730o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. M. Utschig
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - A. V. Astashkin
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - A. M. Raitsimring
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - M. C. Thurnauer
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| | - O. G. Poluektov
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
32
|
Francia F, Palazzo G, Mallardi A, Cordone L, Venturoli G. Residual water modulates QA- -to-QB electron transfer in bacterial reaction centers embedded in trehalose amorphous matrices. Biophys J 2004; 85:2760-75. [PMID: 14507738 PMCID: PMC1303499 DOI: 10.1016/s0006-3495(03)74698-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The role of protein dynamics in the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), was studied at room temperature in isolated reaction centers (RC) from the photosynthetic bacterium Rhodobacter sphaeroides by incorporating the protein in trehalose water systems of different trehalose/water ratios. The effects of dehydration on the reaction kinetics were examined by analyzing charge recombination after different regimes of RC photoexcitation (single laser pulse, double flash, and continuous light) as well as by monitoring flash-induced electrochromic effects in the near infrared spectral region. Independent approaches show that dehydration of RC-containing matrices causes reversible, inhomogeneous inhibition of Q(A)(-)-to-Q(B) electron transfer, involving two subpopulations of RCs. In one of these populations (i.e., active), the electron transfer to Q(B) is slowed but still successfully competing with P(+)Q(A)(-) recombination, even in the driest samples; in the other (i.e., inactive), electron transfer to Q(B) after a laser pulse is hindered, inasmuch as only recombination of the P(+)Q(A)(-) state is observed. Small residual water variations ( approximately 7 wt %) modulate fully the relative fraction of the two populations, with the active one decreasing to zero in the driest samples. Analysis of charge recombination after continuous illumination indicates that, in the inactive subpopulation, the conformational changes that rate-limit electron transfer can be slowed by >4 orders of magnitude. The reported effects are consistent with conformational gating of the reaction and demonstrate that the conformational dynamics controlling electron transfer to Q(B) is strongly enslaved to the structure and dynamics of the surrounding medium. Comparing the effects of dehydration on P(+)Q(A)(-)-->PQ(A) recombination and Q(A)(-)Q(B)-->Q(A)Q(B)(-) electron transfer suggests that conformational changes gating the latter process are distinct from those stabilizing the primary charge-separated state.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica, Dipartimento di Biologia, Università di Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
33
|
Breton J, Wakeham MC, Fyfe PK, Jones MR, Nabedryk E. Characterization of the bonding interactions of QB upon photoreduction via A-branch or B-branch electron transfer in mutant reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:127-38. [PMID: 15178474 DOI: 10.1016/j.bbabio.2004.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
34
|
Chen LX, Utschig LM, Schlesselman SL, Tiede DM. Temperature and Light-Induced Structural Changes in Photosynthetic Reaction Center Proteins Probed by X-ray Absorption Fine Structure. J Phys Chem B 2004. [DOI: 10.1021/jp036220r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin X. Chen
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lisa M. Utschig
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - David M. Tiede
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
35
|
Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL. Length, time, and energy scales of photosystems. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:71-109. [PMID: 12629967 DOI: 10.1016/s0065-3233(03)63004-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The design of photosynthetic systems reflects the length scales of the fundamental physical processes. Energy transfer is rapid at the few angstrom scale and continues to be rapid even at the 50-A scale of the membrane thickness. Electron tunneling is nearly as rapid at the shortest distances, but becomes physiologically too slow well before 20 A. Diffusion, which starts out at a relatively slow nanosecond time scale, has the most modest slowing with distance and is physiologically competent at all biologically relevant distances. Proton transfer always operates on the shortest angstrom scale. The structural consequences of these distance dependencies are that energy transfer networks can extend over large, multisubunit and multicomplex distances and take leaps of 20 A before entering the domain of charge separating centers. Electron transfer systems are effectively limited to individual distances of 15 A or less and span the 50 A dimensions of the bioenergetic membrane by use of redox chains. Diffusion processes are generally used to cover the intercomplex electron transfer distances of 50 A and greater and tend to compensate for the lack of directionality by restricting the diffusional space to the membrane or the membrane surface, and by multiplying the diffusing species through the use of pools. Proton transfer reactions act over distances larger than a few angstroms through the use of clusters or relays, which sometimes rely on water molecules and which may only be dynamically assembled. Proteins appear to place a premium on robustness of design, which is relatively easily achieved in the long-distance physical processes of energy transfer and electron tunneling. By placing cofactors close enough, the physical process is relatively rapid compared to decay processes. Thus suboptimal conditions such as cofactor orientation, energy level, or redox potential level can be tolerated and generally do not have to be finely tuned. The most fragile regions of design tend to come in areas of complex formation and catalysis involving proton management, where relatively small changes in distance or mutations can lead to a dramatic decrease in turnover, which may already be limiting the overall speed of energy conversion in these proteins. Light-activated systems also face a challenge to robust function from the ever-present dangers of high redox potential chemistry. This can turn the protein matrix and wandering oxygen molecules into unintentional redox partners, which in the case of PSII requires the frequent, costly replacement of protein subunits.
Collapse
Affiliation(s)
- Christopher C Moser
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
36
|
Remy A, Gerwert K. Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Mol Biol 2003; 10:637-44. [PMID: 12872158 DOI: 10.1038/nsb954] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 06/11/2003] [Indexed: 11/09/2022]
Abstract
Light energy is transformed into chemical energy in photosynthesis by coupling a light-induced electron transfer to proton uptake. The resulting proton gradient drives ATP synthesis. In this study, we monitored the light-induced reactions in a 100-kDa photosynthetic protein from 30 ns to 35 s by FTIR difference spectroscopy. The results provide detailed mechanistic insights into the electron and proton transfer reactions of the QA to QB transition: reduction of QA in picoseconds induces protonation of histidines, probably of His126 and His128 in the H subunit at the entrance of the proton uptake channel, and of Asp210 in the L subunit inside the channel at 12 micros and 150 micros. This seems to be a prerequisite for the reduction of QB, mainly at 150 micros. QA- is reoxidized at 1.1 ms, and a proton is transferred from Asp210 to Glu212 in the L subunit, the proton donor to QB-. Notably, our data indicate that QB is not reduced directly by QA- but presumably through an intermediary electron donor.
Collapse
Affiliation(s)
- André Remy
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Postfach 102148, 44780 Bochum, Germany
| | | |
Collapse
|
37
|
Taly A, Sebban P, Smith JC, Ullmann GM. The position of QB in the photosynthetic reaction center depends on pH: a theoretical analysis of the proton uptake upon QB reduction. Biophys J 2003; 84:2090-8. [PMID: 12609910 PMCID: PMC1302777 DOI: 10.1016/s0006-3495(03)75016-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 09/26/2002] [Indexed: 11/20/2022] Open
Abstract
Electrostatics-based calculations have been performed to examine the proton uptake upon reduction of the terminal electron acceptor Q(B) in the photosynthetic reaction center of Rhodobacter sphaeroides as a function of pH and the associated conformational equilibrium. Two crystal structures of the reaction center were considered: one structure was determined in the dark and the other under illumination. In the two structures, the Q(B) was found in two different positions, proximal or distal to the nonheme iron. Because Q(B) was found mainly in the distal position in the dark and only in the proximal position under illumination, the two positions have been attributed mostly to the oxidized and the reduced forms of Q(B), respectively. We calculated the proton uptake upon Q(B) reduction by four different models. In the first model, Q(B) is allowed to equilibrate between the two positions with either oxidation state. This equilibrium was allowed to vary with pH. In the other three models the distribution of Q(B) between the proximal position and the distal position was pH-independent, with Q(B) occupying only the distal position or only the proximal position or populating the two positions with a fixed ratio. Only the first model, which includes the pH-dependent conformational equilibrium, reproduces both the experimentally measured pH dependence of the proton uptake and the crystallographically observed conformational equilibrium at pH 8. From this model, we find that Q(B) occupies only the distal position below pH 6.5 and only the proximal position above pH 9.0 in both oxidation states. Between these pH values both positions are partially occupied. The reduced Q(B) has a higher occupancy in the proximal position than the oxidized Q(B). In summary, the present results indicate that the conformational equilibrium of Q(B) depends not only on the redox state of Q(B), but also on the pH value of the solution.
Collapse
Affiliation(s)
- Antoine Taly
- Biocomputing Group, IWR, INF 368, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Taly A, Baciou L, Sebban P. The DMPC lipid phase transition influences differently the first and the second electron transfer reactions in bacterial reaction centers. FEBS Lett 2002; 532:91-6. [PMID: 12459469 DOI: 10.1016/s0014-5793(02)03635-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides were incorporated in dimyristoylphosphatidylcholine (DMPC) liposomes. The first and second electron transfer rates (k(AB)(1) and k(AB)(2), respectively) between the first and the second quinone electron acceptors have been measured as a function of temperature, across the phase transition of DMPC (23 degrees C). The Eyring plots of k(AB)(1) display straight lines. In contrast, the Eyring plots for k(AB)(2) in proteoliposomes show a break at about 23.5 degrees C. This physical discrimination between the two electron transfer reactions demonstrates that the stiffness of the lipid environment of the RCs and/or the protein-protein interactions influence the parameters governing k(AB)(2), but not the gating process limiting k(AB)(1).
Collapse
Affiliation(s)
- Antoine Taly
- Centre de Génétique Moléculaire, Bâtiment 24, CNRS, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
39
|
Tandori J, Maroti P, Alexov E, Sebban P, Baciou L. Key role of proline L209 in connecting the distant quinone pockets in the reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A 2002; 99:6702-6. [PMID: 11983861 PMCID: PMC124466 DOI: 10.1073/pnas.092327799] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic bacterial reaction centers convert light excitation into chemical free energy. The initial electron transfer leads to the consecutive semireductions of the primary (Q(A)) and secondary (Q(B)) quinone acceptors. The Q(A)(-) and Q(B)(-) formations induce proton uptake from the bulk. Their magnitudes (H(+)/Q(A)(-) and H(+)/Q(B)(-), respectively) probe the electrostatic interactions within the complex. The pH dependence of H(+)/Q(A)(-) and H(+)/Q(B)(-) were studied in five single mutants modified at the L209 site (L209P-->F,Y,W,E,T). This residue is situated at the border of a continuous chain of water molecules connecting Q(B) to the bulk. In the wild type (WT), a proton uptake band is present at high pH in the H(+)/Q(A)(-) and H(+)/Q(B)(-) curves and is commonly attributed to a cluster of acidic groups situated nearby Q(B). In the H(+)/Q(A)(-) curves of the L209 variants, this band is systematically absent but remains in the H(+)/Q(B)(-) curves. Moreover, notable increase of H(+)/Q(B)(-) is observed in the L209 mutants at neutral pH as compared with the WT. The large effects observed in all L209 mutants are not associated with significant structural changes (Kuglstatter, A., Ermler, U., Michel, H., Baciou, L. & Fritzsch, G. Biochemistry (2001) 40, 4253-4260). Our data suggest that, in the L209 mutants, the Q(B) cluster does not respond to the Q(A)(-) formation as observed in the WT. We propose that, in the mutants, removal of the rigid proline L209 breaks a necessary hydrogen bonding connection between the quinone sites. These findings suggest an important role for structural rigidity in ensuring a functional interaction between quinone binding sites.
Collapse
Affiliation(s)
- J Tandori
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
40
|
Hucke O, Schmid R, Labahn A. Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides. Binding mode of vitamin K derivatives. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1096-108. [PMID: 11856340 DOI: 10.1046/j.0014-2956.2001.02699.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The functional replacement of the primary ubiquinone (QA) in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides with synthetic vitamin K derivatives has provided a powerful tool to investigate the electron transfer mechanism. To investigate the binding mode of these quinones to the QA binding site we have determined the binding free energy and charge recombination rate from QA(-) to D+ (kAD) of 29 different 1,4-naphthoquinone derivatives with systematically altered structures. The most striking result was that none of the eight tested compounds carrying methyl groups in both positions 5 and 8 of the aromatic ring exhibited functional binding. To understand the binding properties of these quinones on a molecular level, the structures of the reaction center-naphthoquinone complexes were predicted with ligand docking calculations. All protein--ligand structures show hydrogen bonds between the carbonyl oxygens of the quinone and AlaM260 and HisM219 as found for the native ubiquinone-10 in the X-ray structure. The center-to-center distance between the naphthoquinones at QA and the native ubiquinone-10 at QB (the secondary electron acceptor) is essentially the same, compared to the native structure. A detailed analysis of the docking calculations reveals that 5,8-disubstitution prohibits binding due to steric clashes of the 5-methyl group with the backbone atoms of AlaM260 and AlaM249. The experimentally determined binding free energies were reproduced with an rmsd of approximately 4 kJ x mol(-1) in most cases providing a valuable tool for the design of new artificial electron acceptors and inhibitors.
Collapse
Affiliation(s)
- Oliver Hucke
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | | |
Collapse
|
41
|
Tandori J, Miksovska J, Valerio-Lepiniec M, Schiffer M, Maróti P, Hanson DK, Sebban P. Proton uptake of rhodobacter capsulatus reaction center mutants modified in the primary quinone environment. Photochem Photobiol 2002; 75:126-33. [PMID: 11883600 DOI: 10.1562/0031-8655(2002)075<0126:puorcr>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Flash-induced absorbance spectroscopy was used to analyze the proton uptake and electron transfer properties of photosynthetic reaction centers (RC) of Rhodobacter capsulatus that have been genetically modified near the primary quinone electron acceptor (Q(A)). M246Ala and M247Ala, which are symmetry-related to the positions of two acidic groups, L212Glu and L213Asp, in the secondary quinone electron acceptor (QB) protein environment, have been mutated to Glu and Asp, respectively. The pH dependence of the stoichiometry of proton uptake upon formation of the P+Q(A)- (H+/P+Q(A)-) and PQ(A) (H+/Q(A)-) (P is the primary electron donor, a noncovalently linked bacteriochlorophyll dimer) states have been measured in the M246Ala --> Glu and the M247Ala --> Asp mutant RC, in the M246Ala-M247Ala --> Glu-Asp double mutant and in the wild type (WT). Our results show that the introduction of an acidic group (Glu or Asp) in the QA protein region induces notable additional proton uptake over a large pH region (approximately 6-9), which reflects a delocalized response of the protein to the formation of Q(A)-. This may indicate the existence of a widely spread proton reservoir in the cytoplasmic region of the protein. Interestingly, the pH titration curves of the proton release caused by the formation of P+ (H+/P+: difference between H+/P+Q(A)- and H+/PQ(A)- curves) are nearly superimposable in the WT and the M246Ala --> Glu mutant RC, but substantial additional proton release is detected between pH 7 and 9 in the M247Ala --> Asp mutant RC. This effect can be accounted for by an increased proton release by the P+ environment in the M247Ala --> Asp mutant. The M247Ala --> Asp mutation reveals the existence of an energetic and conformational coupling between donor and acceptor sides of the RC at a distance of nearly 30A.
Collapse
|
42
|
Cherepanov DA, Krishtalik LI, Mulkidjanian AY. Photosynthetic electron transfer controlled by protein relaxation: analysis by Langevin stochastic approach. Biophys J 2001; 80:1033-49. [PMID: 11222272 PMCID: PMC1301303 DOI: 10.1016/s0006-3495(01)76084-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Relaxation processes in proteins range in time from picoseconds to seconds. Correspondingly, biological electron transfer (ET) could be controlled by slow protein relaxation. We used the Langevin stochastic approach to describe this type of ET dynamics. Two different types of kinetic behavior were revealed, namely: oscillating ET (that could occur at picoseconds) and monotonically relaxing ET. On a longer time scale, the ET dynamics can include two different kinetic components. The faster one reflects the initial, nonadiabatic ET, whereas the slower one is governed by the medium relaxation. We derived a simple relation between the relative extents of these components, the change in the free energy (DeltaG), and the energy of the slow reorganization Lambda. The rate of ET was found to be determined by slow relaxation at -DeltaG < or = Lambda. The application of the developed approach to experimental data on ET in the bacterial photosynthetic reaction centers allowed a quantitative description of the oscillating features in the primary charge separation and yielded values of Lambda for the slower low-exothermic ET reactions. In all cases but one, the obtained estimates of Lambda varied in the range of 70-100 meV. Because the vast majority of the biological ET reactions are only slightly exothermic (DeltaG > or = -100 meV), the relaxationally controlled ET is likely to prevail in proteins.
Collapse
Affiliation(s)
- D A Cherepanov
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
43
|
Cherepanov DA, Bibikov SI, Bibikova MV, Bloch DA, Drachev LA, Gopta OA, Oesterhelt D, Semenov AY, Mulkidjanian AY. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:10-34. [PMID: 10924896 DOI: 10.1016/s0005-2728(00)00110-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After the light-induced charge separation in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides, the electron reaches, via the tightly bound ubiquinone QA, the loosely bound ubiquinone Q(B) After two subsequent flashes of light, Q(B) is reduced to ubiquinol Q(B)H2, with a semiquinone anion Q-(B) formed as an intermediate after the first flash. We studied Q(B)H2 formation in chromatophores from Rb. sphaeroides mutants that carried Arg-->Ile substitution at sites 207 and 217 in the L-subunit. While Arg-L207 is 17 A away from Q(B), Arg-L217 is closer (9 A) and contacts the Q(B)-binding pocket. From the pH dependence of the charge recombination in the RC after the first flash, we estimated deltaG(AB), the free energy difference between the Q-(A)Q(B) and Q(A)Q-(B) states, and pK212, the apparent pK of Glu-L212, a residue that is only 4 A away from Q(B). As expected, the replacement of positively charged arginines by neutral isoleucines destabilized the Q-(B) state in the L217RI mutant to a larger extent than in the L207RI one. Also as expected, pK212 increased by approximately 0.4 pH units in the L207RI mutant. The value of pK212 in the L217RI mutant decreased by 0.3 pH units, contrary to expectations. The rate of the Q-(A)Q-(B)-->Q(A)Q(B)H2 transition upon the second flash, as monitored by electrometry via the accompanying changes in the membrane potential, was two times faster in the L207RI mutant than in the wild-type, but remained essentially unchanged in the L217RI mutant. To rationalize these findings, we developed and analyzed a kinetic model of the Q-(A)Q-(B)-->Q(A)Q(B)H2 transition. The model properly described the available experimental data and provided a set of quantitative kinetic and thermodynamic parameters of the Q(B) turnover. The non-electrostatic, 'chemical' affinity of the QB site to protons proved to be as important for the attracting protons from the bulk, as the appropriate electrostatic potential. The mutation-caused changes in the chemical proton affinity could be estimated from the difference between the experimentally established pK2J2 shifts and the expected changes in the electrostatic potential at Glu-L212, calculable from the X-ray structure of the RC. Based on functional studies, structural data and kinetic modeling, we suggest a mechanistic scheme of the QB turnover. The detachment of the formed ubiquinol from its proximal position next to Glu-L212 is considered as the rate-limiting step of the reaction cycle.
Collapse
Affiliation(s)
- D A Cherepanov
- Institute of Electrochemistry, Russian Academy of Sciences, Moscow
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Turzó K, Laczkó G, Filus Z, Maróti P. Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys J 2000; 79:14-25. [PMID: 10866934 PMCID: PMC1300912 DOI: 10.1016/s0006-3495(00)76270-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer.
Collapse
Affiliation(s)
- K Turzó
- Department of Biophysics, University of Szeged, Szeged H-6722, Hungary
| | | | | | | |
Collapse
|
45
|
Brandsburg-Zabary S, Fried O, Marantz Y, Nachliel E, Gutman M. Biophysical aspects of intra-protein proton transfer. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:120-34. [PMID: 10812028 DOI: 10.1016/s0005-2728(00)00063-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The passage of proton trough proteins is common to all membranal energy conserving enzymes. While the routes differ among the various proteins, the mechanism of proton propagation is based on the same chemical-physical principles. The proton progresses through a sequence of dissociation association steps where the protein and water molecules function as a solvent that lowers the energy penalty associated with the generation of ions in the protein. The propagation of the proton in the protein is a random walk, between the temporary proton binding sites that make the conducting path, that is biased by the intra-protein electrostatic potential. Kinetic measurements of proton transfer reactions, in the sub-ns up to micros time frame, allow to monitor the dynamics of the partial reactions of an overall proton transfer through a protein.
Collapse
Affiliation(s)
- S Brandsburg-Zabary
- Laser Laboratory for Fast reactions in Biology, Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
46
|
Gunner MR, Alexov E. A pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:63-87. [PMID: 10812025 DOI: 10.1016/s0005-2728(00)00060-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coupled motion of electrons and protons occurs in many proteins. Using appropriate tools for calculation, the three-dimensional protein structure can show how each protein modulates the observed electron and proton transfer reactions. Some of the assumptions and limitations involved in calculations that rely on continuum electrostatics to calculate the energy of charges in proteins are outlined. Approaches that mix molecular mechanics and continuum electrostatics are described. Three examples of the analysis of reactions in photosynthetic reaction centers are given: comparison of the electrochemistry of hemes in different sites; analysis of the role of the protein in stabilizing the early charge separated state in photosynthesis; and calculation of the proton uptake and protein motion coupled to the electron transfer from the primary (Q(A)) to secondary (Q(B)) quinone. Different mechanisms for stabilizing intra-protein charged cofactors are highlighted in each reaction.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA
| | | |
Collapse
|
47
|
Okamura MY, Paddock ML, Graige MS, Feher G. Proton and electron transfer in bacterial reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:148-63. [PMID: 10812030 DOI: 10.1016/s0005-2728(00)00065-7] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The bacterial reaction center couples light-induced electron transfer to proton pumping across the membrane by reactions of a quinone molecule Q(B) that binds two electrons and two protons at the active site. This article reviews recent experimental work on the mechanism of the proton-coupled electron transfer and the pathways for proton transfer to the Q(B) site. The mechanism of the first electron transfer, k((1))(AB), Q(-)(A)Q(B)-->Q(A)Q(-)(B), was shown to be rate limited by conformational gating. The mechanism of the second electron transfer, k((2))(AB), was shown to involve rapid reversible proton transfer to the semiquinone followed by rate-limiting electron transfer, H(+)+Q(-)(A)Q(-)(B) ifQ(-)(A)Q(B)H-->Q(A)(Q(B)H)(-). The pathways for transfer of the first and second protons were elucidated by high-resolution X-ray crystallography as well as kinetic studies showing changes in the rate of proton transfer due to site directed mutations and metal ion binding.
Collapse
Affiliation(s)
- M Y Okamura
- University of California, San Diego, La Jolla, CA 92093-0319, USA
| | | | | | | |
Collapse
|
48
|
Christophorov L, Holzwarth A, Kharkyanen V, van Mourik F. Structure–function self-organization in nonequilibrium macromolecular systems. Chem Phys 2000. [DOI: 10.1016/s0301-0104(00)00089-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Kuglstatter A, Miksovska J, Sebban P, Fritzsch G. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides reconstituted with anthraquinone as primary quinone Q(A). FEBS Lett 2000; 472:114-6. [PMID: 10781816 DOI: 10.1016/s0014-5793(00)01447-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the photosynthetic reaction centre (RC) from the purple bacterium Rhodobacter sphaeroides, the primary quinone, a ubiquinone-10 (Q(A)), has been substituted by anthraquinone. Three-dimensional crystals have been grown from the modified RC and its structure has been determined by X-ray crystallography to 2.4 A resolution. The bindings of the head-group from ubiquinone-10 and of the anthraquinone ring are very similar. In particular, both rings are parallel to each other and the hydrogen bonds connecting the native ubiquinone-10 molecule to AlaM260 and HisM219 are conserved in the anthraquinone containing RC. The space of the phytyl tail missing in the anthraquinone exchanged RC is occupied by the alkyl chain of a detergent molecule. Other structural changes of the Q(A)-binding site are within the limit of resolution. Our structural data bring strong credit to the very large amount of spectroscopic data previously achieved in anthraquinone-replaced RCs and which have participated in the determination of the energetics of the quinone system in bacterial RCs.
Collapse
Affiliation(s)
- A Kuglstatter
- Max-Planck-Institut für Biophysik, Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
50
|
Axelrod HL, Abresch EC, Paddock ML, Okamura MY, Feher G. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proc Natl Acad Sci U S A 2000; 97:1542-7. [PMID: 10677497 PMCID: PMC26471 DOI: 10.1073/pnas.97.4.1542] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/1999] [Indexed: 11/18/2022] Open
Abstract
The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, Q(B), within the RC. The binding of Cd(2+) or Zn(2+) has been previously shown to inhibit the rate of reduction and protonation of Q(B). We report here on the metal binding site, determined by x-ray diffraction at 2.5-A resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd(2+) and Zn(2+) complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from Q(A)(-) to Q(B) was measured in the Cd(2+)-soaked crystal and found to be the same as in solution in the presence of Cd(2+). In addition to the changes in the kinetics, a structural effect of Cd(2+) on Glu-H173 was observed. This residue was well resolved in the x-ray structure-i.e., ordered-with Cd(2+) bound to the RC, in contrast to its disordered state in the absence of Cd(2+), which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of Q(B). The position of the Cd(2+) and Zn(2+) localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to Q(B) are proposed.
Collapse
Affiliation(s)
- H L Axelrod
- Department of Physics 0319, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|