1
|
Cantu F, Cao S, Hernandez C, Dhungel P, Spradlin J, Yang Z. Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs. PLoS Pathog 2020; 16:e1008926. [PMID: 33031446 PMCID: PMC7575113 DOI: 10.1371/journal.ppat.1008926] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Cellular decapping enzymes negatively regulate gene expression by removing the methylguanosine cap at the 5’ end of eukaryotic mRNA, rendering mRNA susceptible to degradation and repressing mRNA translation. Vaccinia virus (VACV), the prototype poxvirus, encodes two decapping enzymes, D9 and D10, that induce the degradation of both cellular and viral mRNAs. Using a genome-wide survey of translation efficiency, we analyzed vaccinia virus mRNAs in cells infected with wild type VACV and mutant VACVs with inactivated decapping enzymes. We found that VACV decapping enzymes are required for selective translation of viral post-replicative mRNAs (transcribed after viral DNA replication) independent of PKR- and RNase L-mediated translation repression. Further molecular characterization demonstrated that VACV decapping enzymes are necessary for efficient translation of mRNA with a 5'-poly(A) leader, which are present in all viral post-replicative mRNAs. Inactivation of D10 alone in VACV significantly impairs poly(A)-leader-mediated translation. Remarkably, D10 stimulates mRNA translation in the absence of VACV infection with a preference for RNA containing a 5’-poly(A) leader. We further revealed that VACV decapping enzymes are needed for 5’-poly(A) leader-mediated cap-independent translation enhancement during infection. Our findings identified a mechanism by which VACV mRNAs are selectively translated through subverting viral decapping enzymes to stimulate 5’-poly(A) leader-mediated translation. Decapping enzymes are encoded in eukaryotic cells and some viruses. Previous studies indicated that decapping enzymes are negative gene expression regulators by accelerating mRNA degradation and repressing translation. Surprisingly however, in this study we found that vaccinia virus (VACV) encoded-decapping enzymes, D9 and D10, are required to promote selective synthesis of viral proteins, although they are known to promote both cellular and viral mRNA degradation. We further showed that the unusual 5'-UTR of VACV mRNA, the 5'-poly(A) leader, confers an advantage to mRNA translation promoted by the decapping enzymes during vaccinia virus infection. Moreover, D9 and D10 are necessary for stimulating poly(A)-leader-mediated cap-independent translation enhancement during VACV infection. In the absence of VACV infection, D10 alone stimulates mRNA translation in a decapping activity-dependent manner, with a preference for mRNA that contains a poly(A) leader. The stimulation of mRNA translation by D10 is unique among decapping enzymes. Therefore, we identified a new mechanism to selectively synthesize VACV proteins through a coordination of viral mRNA 5’-UTR and virus-encoded decapping enzymes.
Collapse
Affiliation(s)
- Fernando Cantu
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Candy Hernandez
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Pragyesh Dhungel
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Joshua Spradlin
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
2
|
Transcript Slippage and Recoding. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Piacente S, Christen L, Dickerman B, Mohamed MR, Niles EG. Determinants of vaccinia virus early gene transcription termination. Virology 2008; 376:211-24. [PMID: 18433825 DOI: 10.1016/j.virol.2008.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/06/2008] [Accepted: 03/13/2008] [Indexed: 02/07/2023]
Abstract
Vaccinia virus early gene transcription requires the vaccinia termination factor, VTF, nucleoside triphosphate phosphohydrolase I, NPH I, ATP, the virion RNA polymerase, and the motif, UUUUUNU, in the nascent RNA, found within 30 to 50 bases from the poly A addition site, in vivo. In this study, the relationships among the vaccinia early gene transcription termination efficiency, termination motif specificity, and the elongation rate were investigated. A low transcription elongation rate maximizes termination efficiency and minimizes specificity for the UUUUUNU motif. Positioning the termination motif over a 63 base area upstream from the RNA polymerase allowed efficient transcript release, demonstrating a remarkable plasticity in the transcription termination complex. Efficient transcript release was observed during ongoing transcription, independent of VTF or UUUUUNU, but requiring both NPH I and either ATP or dATP. This argues for a two step model: the specifying step, requiring both VTF and UUUUUNU, and the energy-dependent step employing NPH I and ATP. Evaluation of NPH I mutants for the ability to stimulate transcription elongation demonstrated that ATPase activity and a stable interaction between NPH I and the Rap94 subunit of the viral RNA polymerase are required. These observations demonstrate that NPH I is a component of the elongating RNA polymerase, which is catalytically active during transcription elongation.
Collapse
Affiliation(s)
- Sarah Piacente
- Department of Microbiology and Immunology, SUNY School of Medicine and Biomedical Sciences, Buffalo, NY, 14214-3200, USA
| | | | | | | | | |
Collapse
|
4
|
Wierzchoslawski R, Urbanowicz A, Dzianott A, Figlerowicz M, Bujarski JJ. Characterization of a novel 5' subgenomic RNA3a derived from RNA3 of Brome mosaic bromovirus. J Virol 2006; 80:12357-66. [PMID: 17005659 PMCID: PMC1676258 DOI: 10.1128/jvi.01207-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The synthesis of 3' subgenomic RNA4 (sgRNA4) by initiation from an internal sg promoter in the RNA3 segment was first described for Brome mosaic bromovirus (BMV), a model tripartite positive-sense RNA virus (W. A. Miller, T. W. Dreher, and T. C. Hall, Nature 313:68-70, 1985). In this work, we describe a novel 5' sgRNA of BMV (sgRNA3a) that we propose arises by premature internal termination and that encapsidates in BMV virions. Cloning and sequencing revealed that, unlike any other BMV RNA segment, sgRNA3a carries a 3' oligo(A) tail, in which respect it resembles cellular mRNAs. Indeed, both the accumulation of sgRNA3a in polysomes and the synthesis of movement protein 3a in in vitro systems suggest active functions of sgRNA3a during protein synthesis. Moreover, when copied in the BMV replicase in vitro reaction, the minus-strand RNA3 template generated the sgRNA3a product, likely by premature termination at the minus-strand oligo(U) tract. Deletion of the oligo(A) tract in BMV RNA3 inhibited synthesis of sgRNA3a during infection. We propose a model in which the synthesis of RNA3 is terminated prematurely near the sg promoter. The discovery of 5' sgRNA3a sheds new light on strategies viruses can use to separate replication from the translation functions of their genomic RNAs.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center and the Department of Biological Sciences, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
6
|
Gowda S, Ayllón MA, Satyanarayana T, Bar-Joseph M, Dawson WO. Transcription strategy in a Closterovirus: a novel 5'-proximal controller element of Citrus Tristeza Virus produces 5'- and 3'-terminal subgenomic RNAs and differs from 3' open reading frame controller elements. J Virol 2003; 77:340-52. [PMID: 12477839 PMCID: PMC140645 DOI: 10.1128/jvi.77.1.340-352.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrus tristeza virus (CTV) produces more than thirty 3'- or 5'-terminal subgenomic RNAs (sgRNAs) that accumulate to various extents during replication in protoplasts and plants. Among the most unusual species are two abundant populations of small 5'-terminal sgRNAs of approximately 800 nucleotides (nt) termed low-molecular-weight tristeza (LMT1 and LMT2) RNAs. Remarkably, CTV replicons with all 10 3' genes deleted produce only the larger LMT1 RNAs. These 5'-terminal positive-sense sgRNAs do not have corresponding negative strands and were hypothesized to be produced by premature termination during plus-strand genomic RNA synthesis. We characterized a cis-acting element that controls the production of the LMT1 RNAs. Since manipulation of this cis-acting element in its native position (the L-ProI region of replicase) was not possible because the mutations negatively affect replication, a region (5'TR) surrounding the putative termination sites (nt approximately 550 to 1000) was duplicated in the 3' end of a CTV replicon to allow characterization. The duplicated sequence continued to produce a 5'-terminal plus-strand sgRNA, here much larger ( approximately 11 kb), apparently by termination. Surprisingly, a new 3'-terminal sgRNA was observed from the duplicated 5'TR. A large 3'-terminal sgRNA resulting from the putative promoter activity of the native 5'TR was not observed, possibly because of the down-regulation of a promoter approximately 19 kb from the 3' terminus. However, we were able to observe a sgRNA produced from the native 5'TR of a small defective RNA, which placed the native 5'TR closer to the 3' terminus, demonstrating sgRNA promoter activity of the native 5'TR. Deletion mutagenesis mapped the promoter and the terminator activities of the 5'TR (in the 3' position in the CTV replicon) to a 57-nt region, which was folded by the MFOLD computer program into two stem-loops. Mutations in the putative stem-loop structures equally reduced or prevented production of both the 3'- and 5'-terminal sgRNAs. These mutations, when introduced in frame in the native 5'TR, similarly abolished the synthesis of the LMT1 RNAs and presumably the large 3'-terminal sgRNA while having no impact on replication, demonstrating that neither 5'- nor 3'-terminal sgRNA is necessary for replication of the replicon or full-length CTV in protoplasts. Differences between the 5'TR, which produced two plus-strand sgRNAs, and the cis-acting elements controlling the 3' open reading frames, which produced additional minus-strand sgRNAs corresponding to the 3'-terminal mRNAs, suggest that the different sgRNA controller elements had different origins in the modular evolution of closteroviruses.
Collapse
Affiliation(s)
- Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred 33850, USA
| | | | | | | | | |
Collapse
|
7
|
Olsthoorn RCL, Bruyere A, Dzianott A, Bujarski JJ. RNA recombination in brome mosaic virus: effects of strand-specific stem-loop inserts. J Virol 2002; 76:12654-62. [PMID: 12438591 PMCID: PMC136678 DOI: 10.1128/jvi.76.24.12654-12662.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.
Collapse
Affiliation(s)
- R C L Olsthoorn
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2861, USA
| | | | | | | |
Collapse
|
8
|
Fabre E, Dujon B, Richard GF. Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Res 2002; 30:3540-7. [PMID: 12177295 PMCID: PMC134249 DOI: 10.1093/nar/gkf483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trinucleotide repeats are involved in several neurological disorders in humans. DNA sequences containing CAG/CTG repeats are prone to slippage during replication and double-strand break repair. The effects of trinucleotide repeats on transcription and on nuclear export were analyzed in vivo in yeast. Transcription of a CAG/CTG trinucleotide repeat in the 3'-untranslated region of a URA3 reporter gene leads to transcription of messenger RNAs several kilobases longer than the expected size. These long mRNAs form more readily when CAG rather than CTG repeats are transcribed. CAG- or CUG-containing transcripts show a non-homogeneous cellular localization. We propose that long mRNAs result from transcription slippage, and discuss the possible implications for human diseases.
Collapse
Affiliation(s)
- Emmanuelle Fabre
- Unité de Génétique Moléculaire des Levures (URA 2171 CNRS and UFR 927 Université Pierre et Marie Curie) Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | |
Collapse
|
9
|
Bruyere A, Wantroba M, Flasinski S, Dzianott A, Bujarski JJ. Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J Virol 2000; 74:4214-9. [PMID: 10756034 PMCID: PMC111936 DOI: 10.1128/jvi.74.9.4214-4219.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic bromovirus (BMV), a tripartite plus-sense RNA virus, has been used as a model system to study homologous RNA recombination among molecules of the same RNA component. Pairs of BMV RNA3 variants carrying marker mutations at different locations were coinoculated on a local lesion host, and the progeny RNA3 in a large number of lesions was analyzed. The majority of doubly infected lesions accumulated the RNA3 recombinants. The distribution of the recombinant types was relatively even, indicating that both RNA3 counterparts could serve as donor or as acceptor molecules. The frequency of crossovers between one pair of RNA3 variants, which possessed closely located markers, was similar to that of another pair of RNA3 variants with more distant markers, suggesting the existence of an internal recombination hot spot. The majority of crossovers were precise, but some recombinants had minor sequence modifications, possibly marking the sites of imprecise homologous crossovers. Our results suggest discontinuous RNA replication, with the replicase changing among the homologous RNA templates and generating RNA diversity. This approach can be easily extended to other RNA viruses for identification of homologous recombination hot spots.
Collapse
Affiliation(s)
- A Bruyere
- Plant Molecular Biology Center and Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | | | |
Collapse
|
10
|
Hausmann S, Garcin D, Morel AS, Kolakofsky D. Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J Virol 1999; 73:343-51. [PMID: 9847338 PMCID: PMC103839 DOI: 10.1128/jvi.73.1.343-351.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Editing of paramyxovirus P gene mRNAs occurs cotranscriptionally and functions to fuse an alternate downstream open reading frame to the N-terminal half of the P protein. G residues are inserted into a short G run contained within a larger purine run (AnGn) in this process, by a mechanism whereby the transcribing polymerase stutters (i.e., reads the same template cytosine more than once). Although Sendai virus (SeV) and bovine parainfluenza virus type 3 (bPIV3) are closely related, the G insertions in their P mRNAs are distributed differently. SeV predominantly inserts a single G residue within the G run of the sequence 5' AACAAAAAAGGG, whereas bPIV3 inserts one to six G's at roughly equal frequency within the sequence 5' AUUAAAAAAGGGG (differences are underlined). We have examined how the cis-acting editing sequence determines the number of G's inserted, both in a transfected cell system using minigenome analogues and by generating recombinant viruses. We found that the presence of four rather than three G's in the purine run did not affect the distribution of G insertions. However, when the underlined AC of the SeV sequence was replaced by the UU found in bPIV3, the editing phenotype from both the minigenome and the recombinant virus resembled that found in natural bPIV3 infections (i.e., a significant fraction of the mRNAs contained two to six G insertions). The two nucleotides located just upstream of the polypurine tract are thus key determinants of the editing phenotype of these viruses. Moreover, the minimum number of A residues that will promote SeV editing phenotype is six but can be reduced to five when the upstream AC is replaced by UU. A model for how the upstream dinucleotide controls the insertion phenotype is presented.
Collapse
Affiliation(s)
- S Hausmann
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
11
|
Deng L, Shuman S. Vaccinia NPH-I, a DExH-box ATPase, is the energy coupling factor for mRNA transcription termination. Genes Dev 1998; 12:538-46. [PMID: 9472022 PMCID: PMC316528 DOI: 10.1101/gad.12.4.538] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 12/11/1997] [Indexed: 02/06/2023]
Abstract
Vaccinia virus RNA polymerase terminates transcription in response to a specific signal UUUUUNU in the nascent RNA. Transduction of this signal to the elongating polymerase requires a trans-acting viral termination factor (VTF/capping enzyme), and is coupled to the hydrolysis of ATP. Recent studies suggest that ATP hydrolysis is catalyzed by a novel termination protein (factor X), which is tightly associated with the elongation complex. Here, we identify factor X as NPH-I (nucleoside triphosphate phosphohydrolase-I), a virus-encoded DNA-dependent ATPase of the DExH-box family. We report that NPH-I serves two roles in transcription (1) it acts in concert with VTF/CE to catalyze release of UUUUUNU-containing nascent RNA from the elongation complex, and (2) it acts by itself as a polymerase elongation factor to facilitate readthrough of intrinsic pause sites. A mutation (K61A) in the GxGKT motif of NPH-I abolishes ATP hydrolysis and eliminates the termination and elongation factor activities. Related DExH proteins may have similar roles at postinitiation steps during cellular mRNA synthesis.
Collapse
Affiliation(s)
- L Deng
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|