1
|
Bose C, Hindle A, Lee J, Kopel J, Tonk S, Palade PT, Singhal SS, Awasthi S, Singh SP. Anticancer Activity of Ω-6 Fatty Acids through Increased 4-HNE in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246377. [PMID: 34944997 PMCID: PMC8699056 DOI: 10.3390/cancers13246377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epidemiological evidence suggests that breast cancer risk is lowered by Ω-3 and increased by Ω-6 polyunsaturated fatty acids (PUFAs). Paradoxically, the Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE) inhibits cancer cell growth. This duality prompted us to study whether arachidonic acid (AA) would enhance doxorubicin (dox) cytotoxicity towards breast cancer cells. We found that supplementing AA or inhibiting 4-HNE metabolism potentiated doxorubicin (dox) toxicity toward Her2-dependent breast cancer but spared myocardial cells. Our results suggest that Ω-6 PUFAs could improve outcomes of dox chemotherapy in Her2-overexpressing breast cancer. Abstract Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.
Collapse
Affiliation(s)
- Chhanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Ashly Hindle
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jihyun Lee
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Jonathan Kopel
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Sahil Tonk
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
| | - Philip T. Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Medical Oncology Service, Doctors Hospital, 16 Middle Rd., George Town, Grand Cayman KY1-1104, Cayman Islands, UK
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (C.B.); (A.H.); (J.L.); (J.K.); (S.T.)
- Correspondence: (S.A.); (S.P.S.); Tel.: +1-305-949-6066 (S.A.); +1-806-743-1540 (S.P.S.)
| |
Collapse
|
2
|
Haploinsufficiency Interactions between RALBP1 and p53 in ERBB2 and PyVT Models of Mouse Mammary Carcinogenesis. Cancers (Basel) 2021; 13:cancers13133329. [PMID: 34283045 PMCID: PMC8268413 DOI: 10.3390/cancers13133329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Rlip knockout has been reported to prevent cancer in highly cancer-susceptible mice lacking p53, and Rlip knockdown kills many types of cancer cells. In humans, breast cancer shows diverse characteristics, including HER2-driven subtypes and viral-driven subtypes. HER2 can be targeted; however, escape of the cancer from targeted therapies remains a problem. In this work we evaluated the capacity of Rlip knockout to prevent breast cancer in genetically engineered mouse models of HER2-driven breast cancer (Erbb2 model) and polyomavirus-driven breast cancer (PyVT model). We found that in Erbb2 mice, Rlip knockout significantly delayed oncogenesis and reduced the expression of genes associated with poor prognosis in patients. In PyVT mice, Rlip knockout did not delay oncogenesis or tumor growth, but Rlip knockdown reduced tumor metastasis to the lung. We conclude that Rlip inhibitors may significantly improve survival in HER2-positive patients, but are unlikely to offer benefits to patients with polyomavirus-associated tumors. Abstract We recently reported that loss of one or both alleles of Ralbp1, which encodes the stress-protective protein RLIP76 (Rlip), exerts a strong dominant negative effect on both the inherent cancer susceptibility and the chemically inducible cancer susceptibility of mice lacking one or both alleles of the tumor suppressor p53. In this paper, we examined whether congenital Rlip deficiency could prevent genetically-driven breast cancer in two transgenic mouse models: the MMTV-PyVT model, which expresses the polyomavirus middle T antigen (PyVT) under control of the mouse mammary tumor virus promoter (MMTV) and the MMTV-Erbb2 model which expresses MMTV-driven erythroblastic leukemia viral oncogene homolog 2 (Erbb2, HER2/Neu) and frequently acquires p53 mutations. We found that loss of either one or two Rlip alleles had a suppressive effect on carcinogenesis in Erbb2 over-expressing mice. Interestingly, Rlip deficiency did not affect tumor growth but significantly reduced the lung metastatic burden of breast cancer in the viral PyVT model, which does not depend on either Ras or loss of p53. Furthermore, spontaneous tumors of MMTV-PyVT/Rlip+/+ mice showed no regression following Rlip knockdown. Finally, mice lacking one or both Rlip alleles differentially expressed markers for apoptotic signaling, proliferation, angiogenesis, and cell cycling in PyVT and Erbb2 breast tumors. Our results support the efficacy of Rlip depletion in suppressing p53 inactivated cancers, and our findings may yield novel methods for prevention or treatment of cancer in patients with HER2 mutations or tumor HER2 expression.
Collapse
|
3
|
Haploinsufficiency Interactions of RALBP1 and TP53 in Carcinogenesis. Cancers (Basel) 2021; 13:cancers13020255. [PMID: 33445456 PMCID: PMC7827952 DOI: 10.3390/cancers13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
|
4
|
Rlip Depletion Suppresses Growth of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061446. [PMID: 32498332 PMCID: PMC7352702 DOI: 10.3390/cancers12061446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
RLIP76 (RAL-binding protein-1, Rlip) is a stress-protective mercapturic-acid-pathway transporter protein that also plays a key role in regulating clathrin-dependent endocytosis as a Ral effector. Targeted inhibition or depletion of Rlip causes regression of xenografts of many cancers and is capable of abrogating tumor formation in p53-null mice. This is associated with the reversion of the abnormal methylomic profile of p53-null mice to wild-type. In a query of The Cancer Genome Atlas (TCGA) databases, we found that Rlip expression was associated with poor survival and with significant differences in the frequencies of PIK3CA mutation, MYC amplification, and CDKN2A/B deletion, which were the most commonly mutated, amplified, and deleted genes, respectively, among TCGA breast cancer patients. We conducted the present study to further examine the effects of Rlip inhibition and to evaluate the in vitro and in vivo efficacy in breast cancer. Using immunogold electron microscopy, we found that plasma-membrane Rlip was accessible to cell-surface antibodies in the MCF7 (ER+) breast cancer cell line. Rlip depletion resulted in decreased survival of MCF7 and MDA-MB-231 cells and increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity and DNA laddering, indicating apoptotic cell death. Additionally, in vitro knockdown of Rlip inhibited EGF endocytosis and WNT/MAPK signaling. Xenograft studies in nude mice showed regression of breast cancer via antisense-mediated depletion of Rlip mRNA as well as by anti-Rlip antibody. Finally, knockdown of Rlip by antisense locked nucleic acid oligonucleotides increased markers for apoptotic signaling and decreased markers for proliferation, angiogenesis, and cell cycling in MCF7 and MDA-MB-231luc xenografts. Our findings validate Rlip as an attractive target in breast cancer.
Collapse
|
5
|
Singhal SS, Salgia R, Singhal S, Horne D, Awasthi S. RLIP: An existential requirement for breast carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1871:281-288. [PMID: 30771458 DOI: 10.1016/j.bbcan.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/23/2023]
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. Due to its complexity in nature, effective BC treatment can encounter many challenges. The human RALBP1 gene encodes a 76-kDa splice variant protein, RLIP (ral-binding protein1, RalBP1), a stress-protective mercapturic acid pathway (MAP) transporter protein, that also plays a key role in regulating clathrin-dependent endocytosis (CDE) as a Ral effector. Growing evidence shows that targeting RLIP may be an effective strategy in cancer therapy, as RLIP is over-expressed in multiple cancers and is known to induce resistance to apoptosis and chemotherapeutic drugs. Recent studies demonstrated that RLIP is expressed in human BC tissues, as well as BC cell lines. Knockdown of RLIP resulted in apoptotic death of BC cells in vitro, and targeted inhibition and depletion of RLIP resulted in regression of BC in xenograft studies of nude mice. Signaling studies showed that RLIP depletion inhibited endocytosis and differentially regulated signaling to Akt, Myc, and ERK1/2. However, the proliferation and multi-specific transport mechanisms that promote RLIP-mediated cell death in BC are not well understood. In this review, we will discuss a missing but an essentially determining and connecting piece of the puzzle on the understanding of proliferation and transport mechanisms by focused analyses of the apoptotic, drug- and radiation-sensitivity regulated by RLIP, a stress-responsive non-ATP-binding cassette (ABC), high capacity MAP transporter, in breast cancer.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, CA 92092, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Nagaprashantha LD, Singhal J, Li H, Warden C, Liu X, Horne D, Awasthi S, Salgia R, Singhal SS. 2'-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer. Oncotarget 2018; 9:18053-18068. [PMID: 29719590 PMCID: PMC5915057 DOI: 10.18632/oncotarget.24720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women. Estrogen, epidermal growth factor receptor 2 (ERBB2, HER2), and oxidative stress represent critical mechanistic nodes associated with BC. RLIP76 is a major mercapturic acid pathway transporter whose expression is increased in BC. In the quest of a novel molecule with chemopreventive and chemotherapeutic potential, we evaluated the effects of 2'-Hydroxyflavanone (2HF) in BC. 2HF enhanced the inhibitory effects of RLIP76 depletion and also inhibited RLIP76-mediated doxorubicin transport in BC cells. RNA-sequencing revealed that 2HF induces strong reversal of the gene expression pattern in ER+MCF7, HER2+ SKBR3 and triple-negative MDA-MB-231 BC cells with minimal effects on MCF10A normal breast epithelial cells. 2HF down regulated ERα and enhanced inhibitory effects of imatinib mesylate/Gleevec in MCF7 cells. 2HF also down regulated ERα and HER2 gene networks in MCF7 and SKBR3 cells, respectively. 2HF activated TP53 and inhibited TGFβ1 canonical pathway in MCF7 and MDA-MB-231 BC cells. 2HF also regulated the expression of a number of critical prognostic genes of MammaPrint panel and their upstream targets including TP53, CDKN2A and MYC. The collective findings from this study provide a comprehensive, direct and integrated evidence for the benefits of 2HF in targeting major and clinically relevant mechanistic regulators of BC.
Collapse
Affiliation(s)
- Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.,Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Computational Therapeutics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Charles Warden
- Department of Genomic Core, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Sciences & Biostatistics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Abstract
Mice that have homozygous deletion of the p53 tumor suppressor protein universally die of malignancy, generally before 6 months of age. We show that hemizygous deficiency of RALBP1 (RLIP76 or Rlip) confers a degree of protection from spontaneous malignancy that has never previously been observed. This discovery introduces a paradigm for p53 function, in which Rlip plays a central role as an effector that appears necessary for the cancer susceptibility of p53 null mice. Because p53 loss has a powerful effect on genomic instability that contributes to the initiation and promotion of cancers and to drug and radiation resistance in humans, our findings provide a method for prevention and therapy of p53-deficient cancer. TP53 (p53) is a tumor suppressor whose functions are lost or altered in most malignancies. p53 homozygous knockout (p53−/−) mice uniformly die of spontaneous malignancy, typically T-cell lymphoma. RALBP1 (RLIP76, Rlip) is a stress-protective, mercapturic acid pathway transporter protein that also functions as a Ral effector involved in clathrin-dependent endocytosis. In stark contrast to p53−/− mice, Rlip−/− mice are highly resistant to carcinogenesis. We report here that partial Rlip deficiency induced by weekly administration of an Rlip-specific phosphorothioate antisense oligonucleotide, R508, strongly inhibited spontaneous as well as benzo(a)pyrene-induced carcinogenesis in p53−/− mice. This treatment effectively prevented large-scale methylomic and transcriptomic abnormalities suggestive of inflammation found in cancer-bearing p53−/− mice. The remarkable efficiency with which Rlip deficiency suppresses spontaneous malignancy in p53−/− mice has not been observed with any previously reported pharmacologic or genetic intervention. These findings are supported by cross-breeding experiments demonstrating that hemizygous Rlip deficiency also reduces the spontaneous malignancy phenotype of p53+/− mice. Rlip is found on the cell surface, and antibodies directed against Rlip were found to inhibit growth and promote apoptosis of cell lines as effectively as Rlip siRNA. The work presented here investigates several features, including oxidative DNA damage of the Rlip–p53 association in malignant transformation, and offers a paradigm for the mechanisms of tumor suppression by p53 and the prospects of suppressing spontaneous malignancy in hereditary cancer syndromes such as Li-Fraumeni.
Collapse
|
8
|
Singhal J, Yadav S, Nagaprashantha LD, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53-null neuroblastomas through RLIP76. Cancer Prev Res (Phila) 2011; 4:879-89. [PMID: 21411502 DOI: 10.1158/1940-6207.capr-11-0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The search for p53-independent mechanism of cancer cell killing is highly relevant to pediatric neuroblastomas, where successful therapy is limited by its transformation into p53-mutant and a highly drug-resistant neoplasm. Our studies on the drug-resistant p53-mutant as compared with drug-resistant p53 wild-type neuroblastoma revealed a novel mechanism for resistance to apoptosis: a direct role of p53 in regulating the cellular concentration of proapoptotic alkenals by functioning as a specific and saturable allosteric inhibitor of the alkenal-glutathione conjugate transporter, RLIP76. The RLIP76-p53 complex was showed by both immunoprecipitation analyses of purified proteins and immunofluorescence analysis. Drug transport studies revealed that p53 inhibited both basal and PKCα-stimulated transport of glutathione conjugates of 4HNE (GSHNE) and doxorubicin. Drug resistance was significantly greater for p53-mutant as compared with p53 wild-type neuroblastoma cell lines, but both were susceptible to depletion of RLIP76 by antisense alone. In addition, inhibition of RLIP76 significantly enhanced the cytotoxicity of cisplatin. Taken together, these studies provide powerful evidence for a novel mechanism for drug and apoptosis resistance in p53-mutant neuroblastoma, based on a model of regulation of p53-induced apoptosis by RLIP76, where p53 is a saturable and specific allosteric inhibitor of RLIP76, and p53 loss results in overexpression of RLIP76; thus, in the absence of p53, the drug and glutathione-conjugate transport activities of RLIP76 are enhanced. Most importantly, our findings strongly indicate RLIP76 as a novel target for therapy of drug-resistant and p53-mutant neuroblastoma.
Collapse
Affiliation(s)
- Jyotsana Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
9
|
Singhal SS, Sehrawat A, Sahu M, Singhal P, Vatsyayan R, Rao Lelsani PC, Yadav S, Awasthi S. Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer 2010; 126:1327-38. [PMID: 19626587 DOI: 10.1002/ijc.24767] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RLIP76 is a stress-responsive membrane protein implicated in the regulation of multiple cellular signaling pathways. It represents the predominant glutathione-conjugate (GS-E) transporter in cells. We have shown that RLIP76 plays a crucial role in defending cancer cells from radiation and chemotherapeutic toxin-mediated apoptosis, and that its inhibition by antibodies or depletion by siRNA or antisense causes apoptosis in a number of cancer cell types. We demonstrated for the first time that the striking anti-neoplastic effects with no evident toxicity in terms of either weight loss or metabolic effects are also demonstrable for the antibody, antisense and siRNA in a renal cell xenografts model of Caki-2 cells (Singhal et al., Cancer Res., 2009, 69: 4244). Present studies were performed to determine if RLIP76 targeting is more broadly applicable in other kidney cancer cell lines, to compare the signaling effects of RLIP76 antisense with kinase inhibitors used in treatment of renal cell carcinoma, and to determine whether kinase inhibitors were substrates for transport by RLIP76. Results of these studies show that sorafenib as well as sunitinib are substrates for transport by RLIP76 thus are competitive inhibitors of GS-E transport. Furthermore, kinase inhibition in the ERK as well as PI3K pathways by RLIP76 depletion is more profound and consistent and is more widely apparent in a number of renal carcinoma cell lines. These studies offer strong support for our overall hypothesis that RLIP76 is an overarching anti-apoptosis mechanism that, if inhibited, can be more broadly effective in the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
RLIP76: a versatile transporter and an emerging target for cancer therapy. Biochem Pharmacol 2010; 79:1699-705. [PMID: 20097178 DOI: 10.1016/j.bcp.2010.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/29/2023]
Abstract
In the last few years, extensive research has been made to elucidate the functional significance of RLIP76. The resulting novel breakthroughs have helped us understand its transport and signaling functions. RLIP76 is a ubiquitously expressed, key stress-defensive, anti-apoptotic, multi-functional protein that transports glutathione-conjugates of electrophilic compounds, thus controlling the intracellular concentration of pro-apoptotic oxidized lipid byproducts and other xenobiotics such as chemotherapeutic agents. These properties place RLIP76 at a very important position in the hierarchy of the stress defense mechanism adopted by the cell. Selective over-expression of RLIP76 in malignant cells of diverse origin is one of the possible mechanisms by which these cells overcome chemotherapy and radiation induced oxidative damage. RLIP76 has also been shown to be an effective transporter of many conventional chemotherapeutic drugs. Such transport, if inhibited, can lead to increased cellular accumulation of drugs which in turn translates to enhanced drug sensitivity. Recent studies have shown that inhibition and/or depletion of RLIP76 by antibodies, siRNA, or antisense can lead to drastic and sustained regression of lung, kidney, melanoma, colon, and prostate cancer xenografts with no observed recurrence of tumors. All these findings converge on the fact that such inhibition/depletion of RLIP76 can be used clinically to terminate cancer growth and progression. In the present review, we will discuss the role of RLIP76 as a multi-drug transporter, its involvement in cancer, and the prospects of using RLIP76 inhibition as an emerging treatment for cancer.
Collapse
|
11
|
Sitterberg J, Gaspar MM, Ehrhardt C, Bakowsky U. Atomic force microscopy for the characterization of proteoliposomes. Methods Mol Biol 2010; 606:351-361. [PMID: 20013407 DOI: 10.1007/978-1-60761-447-0_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atomic Force Microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In the study presented here, the surface morphology ofP-selectin and Transferrin modified proteoliposomes were investigated in air and under water. The proteins were visualized without pre-functionalization or staining.
Collapse
Affiliation(s)
- Johannes Sitterberg
- Department of Pharmaceutical Technology and Biopharmacy, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
12
|
Takano M, Kimura E, Suzuki S, Nagai J, Yumoto R. Human Erythrocyte Nucleoside Transporter ENT1 Functions at Ice-cold Temperatures. Drug Metab Pharmacokinet 2010; 25:351-60. [DOI: 10.2133/dmpk.dmpk-09-rg-099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Vatsyayan R, Chaudhary P, Lelsani PCR, Singhal P, Awasthi YC, Awasthi S, Singhal SS. Role of RLIP76 in doxorubicin resistance in lung cancer. Int J Oncol 2009; 34:1505-11. [PMID: 19424567 DOI: 10.3892/ijo_00000279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is still a major cause of cancer deaths in spite of considerable efforts in its systemic therapy. Chemotherapy, along with local irradiation is frequently employed but as a palliative therapy. Inherent and acquired resistance in NSCLC and SCLC towards chemotherapeutic agents further makes chemotherapy an incommodious problem. The resistance mechanisms responsible for inherent DOX-resistance of NSCLC and acquired DOX-resistance in SCLC have been the subject of numerous investigations. This review will focus on the recent studies done for understanding the mechanism(s) of inherent and acquired resistance in NSCLC and SCLC and how these can be exploited for the future development of more effective novel biologic agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Awasthi YC, Chaudhary P, Vatsyayan R, Sharma A, Awasthi S, Sharma R. Physiological and pharmacological significance of glutathione-conjugate transport. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:540-551. [PMID: 20183533 DOI: 10.1080/10937400903358975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transport of the glutathione conjugates (GS-E) of electrophilic compounds generated during biotransformation of drugs and environmental pollutants is central to the mechanisms of defense against oxidative/electrophilic stress. In recent years emphasis has been placed on ATP-binding cassette (ABC) transport proteins in the transport of GS-E and their involvement in the detoxification mechanisms, including drug resistance. Recent studies, however, suggested that the majority of GS-E transport in human and rodent cells is mediated by a non-ABC, multifunctional stress-response protein, RLIP76 or RalBP1 (ral-binding GTPase activating protein 1), which also functions as an effector in the Ral-Ras-Rho signaling pathway. In this review, after briefly describing the major discoveries in the field of glutathione (GSH)-conjugate transport, recent findings are presented on the role of RLIP76 in ATP-dependent transport of GS-E, and the relevance of this transport process to the mechanisms of toxicity of xenobiotics, radiation, and endogenous electrophilic toxicants is described. Furthermore, recent studies suggesting a link between RLIP76 mediated GS-E transport and cell cycle signaling are presented.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Singhal SS, Singhal J, Yadav S, Sahu M, Awasthi YC, Awasthi S. RLIP76: a target for kidney cancer therapy. Cancer Res 2009; 69:4244-51. [PMID: 19417134 DOI: 10.1158/0008-5472.can-08-3521] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RLIP76 is a multifunctional transporter protein that serves as an energy-dependent efflux mechanism for endogenously generated toxic metabolites as well as exogenous toxins, including chemotherapy drugs. Our recent studies in cultured cells, syngeneic animal tumor model, and in xenograft model have shown that RLIP76 serves a major cancer-specific antiapoptotic role in a wide variety of histologic types of cancer, including leukemia, melanoma, colon, lung, prostate, and ovarian cancer. Results of present studies in cell culture and xenograft model of Caki-2 cells show that RLIP76 is an important anticancer for kidney cancer because inhibition of RLIP76 function by antibody or its depletion by small interfering RNA or antisense DNA caused marked and sustained regression of established human kidney xenografts of Caki-2 cells in nude mouse.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Singhal SS, Yadav S, Roth C, Singhal J. RLIP76: A novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol 2008; 77:761-9. [PMID: 18983828 DOI: 10.1016/j.bcp.2008.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/17/2022]
Abstract
RLIP76, a stress-responsive, multi-functional protein with multi-specific transport activity towards glutathione-conjugates (GS-E) and chemotherapeutic agents, is frequently over-expressed in malignant cells. Our recent studies suggest that it plays a prominent anti-apoptotic role selectively in cancer cells. We have previously shown that RLIP76 accounts for up to 80% of the transport of GS-E and blocking the RLIP76-mediated transport of GS-E in cells results in the accumulation of pro-apoptotic endogenous electrophiles and on-set of apoptosis. Here we demonstrate that when RLIP76 mediate transport of GS-E is abrogated either by anti-RLIP76 IgG or accumulation of 4-hydroxynonenal (4-HNE) and its GSH-conjugate (GS-HNE) occurs and a massive apoptosis is observed in cells, indicate that the inhibition of RLIP76 transport activity at the cell surface is sufficient for observed anti-tumor activity. RLIP76 is linked with certain cellular functions including membrane plasticity and movement (as a primary 'effector' in the Ral pathway, perhaps functioning as a GTPase activating protein, or GAP), and as a component of clathrin-coated pit-mediated receptor-ligand endocytosis-a process that mediates movement of membrane vesicles.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
17
|
Warnke MM, Wanigasekara E, Singhal SS, Singhal J, Awasthi S, Armstrong DW. The determination of glutathione-4-hydroxynonenal (GSHNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Anal Bioanal Chem 2008; 392:1325-33. [PMID: 18815773 DOI: 10.1007/s00216-008-2383-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 11/25/2022]
Abstract
Glutathione (GSH) conjugation of 4-hydroxy-2(E)-nonenal (HNE) is an efficient means of cellular detoxification. HNE is a byproduct of lipid peroxidation which has shown toxicity but also signaling roles. E-1-hydroxynon-2-en-4-one (HNO) is another byproduct of lipid peroxidation which has the same molecular weight as HNE. This study presents the LC-MS detection of GS-HNE, HNE, and HNO in tissue samples without derivatization and with minimal sample preparation. Tissue samples were taken from wild-type mice and knock-out mice, which have been bred without the RLIP76 transfer protein. Extraction procedures were developed to determine GS-HNE and HNE levels in the mouse liver tissue. A gradient elution LC-MS method was developed for GS-HNE analysis using electrospray ionization and selected ion monitoring (SIM). The HNE/HNO method involves isocratic elution due to instability issues. Higher levels of GSHNE, HNE, and HNO were found in the knock-out animals, due to the absence of the RLIP76 transport mechanism.
Collapse
Affiliation(s)
- Molly M Warnke
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|
18
|
Awasthi S, Singhal SS, Awasthi YC, Martin B, Woo JH, Cunningham CC, Frankel AE. RLIP76 and Cancer. Clin Cancer Res 2008; 14:4372-7. [PMID: 18628450 DOI: 10.1158/1078-0432.ccr-08-0145] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RLIP76 is a multifunctional membrane protein that transports glutathione conjugates of electrophilic compounds and other xenobiotics including chemotherapy agents out of cells. The protein is overexpressed in lung carcinomas, ovarian carcinomas, and melanomas. The protein also binds Ral and participates in mitotic spindle function, clathrin-dependent endocytosis, and triggers GTPase-activating protein activity. It is found throughout the cell, in membrane, cytosol, and the nucleus, and is known to shift between these compartments in response to stress. Loss of RLIP76 by antibody or antisense therapy is associated with increased sensitivity to radiation and chemotherapy. Conversely, liposomally delivered RLIP may treat poisoning and wounds.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Singhal SS, Yadav S, Drake K, Singhal J, Awasthi S. Hsf-1 and POB1 induce drug sensitivity and apoptosis by inhibiting Ralbp1. J Biol Chem 2008; 283:19714-29. [PMID: 18474607 PMCID: PMC2443664 DOI: 10.1074/jbc.m708703200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/01/2008] [Indexed: 11/06/2022] Open
Abstract
Hsf-1 (heat shock factor-1) is a transcription factor that is known to regulate cellular heat shock response through its binding with the multispecific transporter protein, Ralbp1. Results of present studies demonstrate that Hsf-1 causes specific and saturable inhibition of the transport activity of Ralbp1 and that the combination of Hsf-1 and POB1 causes nearly complete inhibition through specific bindings with Ralbp1. Augmentation of cellular levels of Hsf-1 and POB1 caused dramatic apoptosis in non-small cell lung cancer cell line H358 through Ralbp1 inhibition. These findings indicate a novel model for mutual regulation of Hsf-1 and Ralbp1 through Ralbp1-mediated sequestration of Hsf-1 in the cellular cytoskeleton and Hsf-1-mediated inhibition of the transport activity of membrane-bound Ralbp1.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107-2699, USA
| | | | | | | | | |
Collapse
|
20
|
Herlevsen MC, Theodorescu D. Mass spectroscopic phosphoprotein mapping of Ral binding protein 1 (RalBP1/Rip1/RLIP76). Biochem Biophys Res Commun 2007; 362:56-62. [PMID: 17706599 PMCID: PMC2679903 DOI: 10.1016/j.bbrc.2007.07.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 02/06/2023]
Abstract
RalBP1, a multifunctional protein implicated in cancer cell proliferation, radiation and chemoresistance, and ligand dependent receptor internalization, is upregulated in bladder cancer and is a downstream effector of RalB, a GTPase associated with metastasis. RalBP1 can be regulated by phosphorylation by protein kinase C (PKC). No studies have comprehensively mapped RalBP1 phosphorylation sites or whether RalB affects these. We identified 14 phosphorylation sites of RalBP1 in human bladder carcinoma UMUC-3 and embryonic kidney derived 293T cells. The phosphorylated residues are concentrated at the N-terminus. Ten of the first 100 amino acids of the primary structure were phosphorylated. Nine were serine residues, and one a threonine. We evaluated the effect of RalB overexpression on RalBP1 phosphorylation and found the largest change in phosphorylation status at S463 and S645. Further characterization of these sites will provide novel insights on RalBP1 biology, its functional relationship to RalB and possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mikael C Herlevsen
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | - Dan Theodorescu
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| |
Collapse
|
21
|
Yadav S, Zajac E, Singhal SS, Awasthi S. Linking stress-signaling, glutathione metabolism, signaling pathways and xenobiotic transporters. Cancer Metastasis Rev 2007; 26:59-69. [PMID: 17260165 DOI: 10.1007/s10555-007-9043-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multi-specific drug-transport mechanisms are intricately involved in mediating a pleiotropic drug-resistance in cancer cells by mediating drug-accumulation defects in cells in which they are over-expressed. The existence and over-expression in drug-resistant neoplasms of transporter proteins belonging to ATP-binding cassette (ABC) family indicate that these myriad transporters contribute to the multidrug-resistance phenomena by removing or sequestering of toxins and metabolites. Another prominent mechanism of multispecific drug-resistance involves glutathione and glutathione linked enzymes, particularly those of the mercapturic acid pathway, which are involved in metabolism and excretion of both endogenous and exogenous electrophilic toxins. A key step in the mercapturic acid pathway, efflux of the glutathione-electrophile conjugate has recently been shown to be catalyzed largely by the stress-responsive protein RLIP76, a splice variant peptide endowed by the human gene RALBP1. The known involvement of RLIP76 in membrane signaling pathways and endocytosis has resulted in a new paradigm for transport and metabolism related drug-resistance in which RLIP76 plays a central role. Our recent studies demonstrating a key anti-apoptotic and stress-responsive role of RLIP76, and the demonstration of dramatic response in malignancies to RLIP76 depletion indicate that targeting this mercapturic acid pathway transporter may be a highly effective and multifaceted antineoplastic strategy.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX 76019-0065, USA
| | | | | | | |
Collapse
|
22
|
Nadkar A, Pungaliya C, Drake K, Zajac E, Singhal SS, Awasthi S. Therapeutic resistance in lung cancer. Expert Opin Drug Metab Toxicol 2006; 2:753-77. [PMID: 17014393 DOI: 10.1517/17425255.2.5.753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress over the last 25 years in the systemic therapy of lung cancer, intrinsic and acquired resistance to chemotherapeutic agents and radiation remains a vexing problem. The number of mechanisms of therapeutic resistance in lung cancer has expanded considerably over the past three decades, and the crucial role of stress resistance pathways is increasingly recognised as a cause of intrinsic and acquired chemo- and radiotherapy resistance. This paper reviews recent evidence for stress defence proteins, particularly RALBP1/RLIP76, in mediating intrinsic and acquired chemotherapy and radiation resistance in human lung cancer.
Collapse
Affiliation(s)
- Aalok Nadkar
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, CPB # 351, 76019-0065, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Awasthi YC, Ansari GAS, Awasthi S. Regulation of 4‐Hydroxynonenal Mediated Signaling By Glutathione S‐Transferases. Methods Enzymol 2005; 401:379-407. [PMID: 16399399 DOI: 10.1016/s0076-6879(05)01024-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
4-Hydroxy-trans-2-nonenal (HNE) was initially considered to be merely a toxic end product of lipid peroxidation that contributed to oxidative stress-related pathogenesis. However, in recent years its physiological role as an important "signaling molecule" has been established. HNE can modulate various signaling pathways in a concentration-dependent manner. Glutathione S-transferases (GSTs) are major determinants of the intracellular concentration of HNE, because these enzymes account for the metabolism of most cellular HNE through its conjugation to glutathione. Evidence is emerging that GSTs are involved in the regulation of the HNE-mediated signaling processes. Against the backdrop of our current understanding on the formation, metabolism, and role of HNE in signaling processes, the physiological role of GSTs in regulation of HNE-mediated signaling processes is critically evaluated in this chapter. Available evidence strongly suggests that besides their well-established pharmacological role of detoxifying xenobiotics, GSTs also play an important physiological role in the regulation of cellular signaling processes.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, USA
| | | | | |
Collapse
|
24
|
Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 2004; 6:289-300. [PMID: 15025930 DOI: 10.1089/152308604322899350] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been known that glutathione S-transferases (GSTs) can reduce lipid hydroperoxides through their Se-independent glutathione peroxidase activity and that these enzymes can also detoxify lipid peroxidation end products such as 4-hydroxynonenal (4-HNE). In this article, recent studies suggesting that the Alpha class GSTs provide a formidable defense against oxidative stress are critically evaluated and the role of these enzymes in the regulation of oxidative stress-mediated signaling is reviewed. Available evidence from earlier studies together with results of recent studies in our laboratories strongly suggests that lipid peroxidation products, particularly hydroperoxides and 4-HNE, are involved in the mechanisms of stress-mediated signaling and that it can be modulated by the Alpha class GSTs through the regulation of the intracellular concentrations of 4-HNE.
Collapse
Affiliation(s)
- Rajendra Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | | | | | | |
Collapse
|
25
|
Awasthi S, Singhal SS, Sharma R, Zimniak P, Awasthi YC. Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RALBP1): a novel link between G-protein and tyrosine kinase signaling and drug resistance. Int J Cancer 2003; 106:635-46. [PMID: 12866021 DOI: 10.1002/ijc.11260] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our studies have shown that RLIP76 (RALBP1), a 76 kDa Ral-binding, Rho/Rac-GAP and Ral effector protein, is a novel multispecific transporter of xenobiotics as well as GS-Es. Like previously characterized ABC transporters, it mediates ATP-dependent transport of structurally unrelated amphiphilic xenobiotics and displays inherent ATPase activity, which is stimulated by its substrate allocrites. It does not have significant sequence homology with ABC transporters and differs from the ABC transporters in several other important aspects, including (i) lack of any close homologs in humans, (ii) lack of a classical Walker domain, (iii) integral membrane association without clearly defined transmembrane domains and (iv) its role as a direct link to Ras/Ral/Rho and EGF-R signaling through its multifunctional nature, including GAP activity, regulation of exocytosis as well as clathrin-coated pit-mediated receptor endocytosis. Its multifunctional nature derives from the presence of multiple motifs, including a Rho/Rac GAP domain, a Ral effector domain binding motif, 2 distinct ATP-binding domains, a H(+)-ATPase domain, PKC and tyrosine kinase phosphorylation sites and the ability to undergo fragmentation into multiple smaller peptides which participate as components of macromolecular functional complexes. One of the physiologic functions of RLIP76 is regulation of intracellular concentration of the electrophilic intermediates of oxidative lipid metabolism by mediating efflux of GS-E formed from oxidative degradation of arachidonic acid, including leukotrienes and the 4HNE-GSH conjugate. RLIP76-mediated transport of amphiphilic chemotherapeutic agents such as anthracyclines and vinca alkaloids as well as GS-E produced during oxidative metabolism places this multifunctional protein in a central role as a resistance mechanism for preventing apoptosis caused by chemotherapeutic agents and a variety of external/internal stressors, including oxidative stress, heat shock and radiation.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | | | |
Collapse
|
26
|
Awasthi S, Sharma R, Singhal SS, Zimniak P, Awasthi YC. RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab Dispos 2002; 30:1300-10. [PMID: 12433796 DOI: 10.1124/dmd.30.12.1300] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport of xenobiotics and their metabolites by ATP-binding cassette (ABC) transporters particularly P-glycoprotein (Pgp) and the multidrug resistance associated protein (MRP1) has been extensively studied during last decade. Our recent studies demonstrate that RLIP76, a previously known GTPase-activating protein catalyzes ATP-dependent, uphill transport of anionic glutathione conjugates as well as of weakly cationic anthracyclines including doxorubicin (Adriamycin), a widely used drug in cancer chemotherapy. RLIP76 has inherent ATPase activity, which is stimulated by doxorubicin and glutathione conjugates. RLIP76 does not meet the criteria for classical ABC proteins such as MRP1 or Pgp, but similar to ABC proteins, it has two ATP-binding sequences, (69)GKKKGK(74) and (418)GGIKDLSK(425). Mutations in these sequences abrogate its ATP-binding, ATPase activity, and transport function. Purified RLIP76 when reconstituted in proteoliposomes mediates ATP-dependent saturable transport of doxorubicin and glutathione conjugates. Transfection of K562 cells with RLIP76 confers these cells resistance to doxorubicin and 4-hydroxynonenal. Cells enriched with RLIP76 also acquire resistance to radiation toxicity. RLIP76 also catalyzes the transport of physiologic ligands such as leukotrienes (LTC4) and the conjugate of 4-hydroxynonenal and glutathione. In some cells (e.g., erythrocytes and lung cancer cells), the majority of transport activity for Adriamycin and glutathione conjugates including LTC4 is accounted for by RLIP76. These studies strongly suggest that RLIP76-mediated transport of organic ions has physiological and toxicological relevance and that it may play an important role in the mechanism of drug resistance.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas
| | | | | | | | | |
Collapse
|
27
|
Cheng JZ, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC. Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 2001; 276:41213-23. [PMID: 11522795 DOI: 10.1074/jbc.m106838200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To explore the role of lipid peroxidation (LPO) products in the initial phase of stress mediated signaling, we studied the effect of mild, transient oxidative or heat stress on parameters that regulate the cellular concentration of 4-hydroxynonenal (4-HNE). When K562 cells were exposed to mild heat shock (42 degrees C, 30 min) or oxidative stress (50 microM H2O2, 20 min) and allowed to recover for 2 h, there was a severalfold induction of hGST5.8, which catalyzes the formation of glutathione-4-HNE conjugate (GS-HNE), and RLIP76, which mediates the transport of GS-HNE from cells (Awasthi, S., Cheng, J., Singhal, S. S., Saini, M. K., Pandya, U., Pikula, S., Bandorowicz-Pikula, J., Singh, S. V., Zimniak, P., and Awasthi, Y. C. (2000) Biochemistry 39, 9327-9334). Enhanced LPO was observed in stressed cells, but the major antioxidant enzymes and HSP70 remained unaffected. The stressed cells showed higher GS-HNE-conjugating activity and increased efflux of GS-HNE. Stress-pre-conditioned cells with induced hGST5.8 and RLIP76 acquired resistance to 4-HNE and H2O2-mediated apoptosis by suppressing a sustained activation of c-Jun N-terminal kinase and caspase 3. The protective effect of stress pre-conditioning against apoptosis was abrogated by coating the cells with anti-RLIP76 IgG, which inhibited the efflux of GS-HNE from cells, indicating that the cells acquired resistance to apoptosis by metabolizing and excluding 4-HNE at a higher rate. Induction of hGST5.8 and RLIP76 by mild, transient stress and the resulting resistance of stress-pre-conditioned cells to apoptosis appears to be a general phenomenon since it was not limited to K562 cells but was also evident in lung cancer cells, H-69, H-226, human leukemia cells, HL-60, and human retinal pigmented epithelial cells. These results strongly suggest a role of LPO products, particularly 4-HNE, in the initial phase of stress mediated signaling.
Collapse
Affiliation(s)
- J Z Cheng
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-1067, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sharma R, Singhal SS, Cheng J, Yang Y, Sharma A, Zimniak P, Awasthi S, Awasthi YC. RLIP76 is the major ATP-dependent transporter of glutathione-conjugates and doxorubicin in human erythrocytes. Arch Biochem Biophys 2001; 391:171-9. [PMID: 11437348 DOI: 10.1006/abbi.2001.2395] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.
Collapse
Affiliation(s)
- R Sharma
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao T, Singhal SS, Piper JT, Cheng J, Pandya U, Clark-Wronski J, Awasthi S, Awasthi YC. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Arch Biochem Biophys 1999; 367:216-24. [PMID: 10395737 DOI: 10.1006/abbi.1999.1277] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.
Collapse
Affiliation(s)
- T Zhao
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zimniak P, Pikula S, Bandorowicz-Pikula J, Awasthi YC. Mechanisms for xenobiotic transport in biological membranes. Toxicol Lett 1999; 106:107-18. [PMID: 10403654 DOI: 10.1016/s0378-4274(99)00061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- P Zimniak
- Department of Internal Medicine, University of Arkansas for Medical Sciences, and McClellan VA Hospital Medical Research, Little Rock, USA
| | | | | | | |
Collapse
|
31
|
Awasthi S, Singhal SS, Pandya U, Gopal S, Zimniak P, Singh SV, Awasthi YC. ATP-Dependent colchicine transport by human erythrocyte glutathione conjugate transporter. Toxicol Appl Pharmacol 1999; 155:215-26. [PMID: 10079207 DOI: 10.1006/taap.1998.8617] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated mutually inhibitory ATP-dependent transport of dinitrophenyl-S-glutathione (DNP-SG) and doxorubicin by DNP-SG ATPase purified from human erythrocyte membranes (S. Awasthi et al., 1998a,b). Our previous studies indicate a broad substrate specificity for this transport mechanism, including some P-glycoprotein substrates. Present studies were carried out to determine whether colchicine (COL), a classical P-glycoprotein substrate, could be transported by purified human erythrocyte DNP-SG ATPase reconstituted in artificial liposomes. We also investigated whether leukotriene C4 (LTC4), an endogenous proinflammatory glutathione-conjugate derived from arachidonic acid, would inhibit colchicine transport. Uptake of COL was compared in proteoliposomes reconstituted with the purified DNP-SG ATPase as well as control liposomes in the presence or absence of ATP. Increased colchicine uptake was observed upon addition of ATP to proteoliposomes, but not control liposomes. Uptake was linear with respect to the amount of vesicle protein used. Sensitivity to osmolarity was consistent with intravesicular COL accumulation. The ATP-dependent colchicine uptake was sensitive to temperature in a manner consistent with a protein-mediated transport process with activation energy of 7.3 kcal/mol. Time-dependent COL uptake by proteoliposomes in the presence of ATP was consistent with a single compartment model with an apparent rate constant of 0.21 +/- 0.02 min-1. Kinetic studies indicated a saturable behavior with respect to ATP (Km 2.3 +/- 0.7 mM) and colchicine (Km 4.3 +/- 0.2 microM). LTC4 was found to be a competitive inhibitor of COL transport (Kis 16.4 microM). Since DNP-SG ATPase is present in many tissues, it may play an important role in determining colchicine accumulation in cells. Increased LTC4 would tend to increase cellular COL accumulation.
Collapse
Affiliation(s)
- S Awasthi
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, 77555-1067, USA.
| | | | | | | | | | | | | |
Collapse
|