1
|
Cummins MC, Tripathy A, Sondek J, Kuhlman B. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. Protein Sci 2023; 32:e4713. [PMID: 37368504 PMCID: PMC10360382 DOI: 10.1002/pro.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Many protein therapeutics are competitive inhibitors that function by binding to endogenous proteins and preventing them from interacting with native partners. One effective strategy for engineering competitive inhibitors is to graft structural motifs from a native partner into a host protein. Here, we develop and experimentally test a computational protocol for embedding binding motifs in de novo designed proteins. The protocol uses an "inside-out" approach: Starting with a structural model of the binding motif docked against the target protein, the de novo protein is built by growing new structural elements off the termini of the binding motif. During backbone assembly, a score function favors backbones that introduce new tertiary contacts within the designed protein and do not introduce clashes with the target binding partner. Final sequences are designed and optimized using the molecular modeling program Rosetta. To test our protocol, we designed small helical proteins to inhibit the interaction between Gαq and its effector PLC-β isozymes. Several of the designed proteins remain folded above 90°C and bind to Gαq with equilibrium dissociation constants tighter than 80 nM. In cellular assays with oncogenic variants of Gαq , the designed proteins inhibit activation of PLC-β isozymes and Dbl-family RhoGEFs. Our results demonstrate that computational protein design, in combination with motif grafting, can be used to directly generate potent inhibitors without further optimization via high throughput screening or selection.
Collapse
Affiliation(s)
- Matthew C. Cummins
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - Ashutosh Tripathy
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
| | - John Sondek
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
2
|
Weinreb V, Weinreb G, Carter CW. High-throughput thermal denaturation of tryptophanyl-tRNA synthetase combinatorial mutants reveals high-order energetic coupling determinants of conformational stability. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:044304. [PMID: 37637481 PMCID: PMC10449480 DOI: 10.1063/4.0000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Landscape descriptions provide a framework for identifying functionally significant dynamic linkages in proteins but cannot supply details. Rate measurements of combinatorial mutations can implicate dynamic linkages in catalysis. A major difficulty is filtering dynamic linkages from the vastly more numerous static interactions that stabilize domain folding. The Geobacillus stearothermophilus (TrpRS) D1 switch is such a dynamic packing motif; it links domain movement to catalysis and specificity. We describe Thermofluor and far UV circular dichroism melting curves for all 16 D1 switch variants to determine their higher-order impact on unliganded TrpRS stability. A prominent transition at intermediate temperatures in TrpRS thermal denaturation is molten globule formation. Combinatorial analysis of thermal melting transcends the protein landscape in four significant respects: (i) bioinformatic methods identify dynamic linkages from coordinates of multiple conformational states. (ii) Relative mutant melting temperatures, δTM, are proportional to free energy changes. (iii) Structural analysis of thermal melting implicates unexpected coupling between the D1 switch packing and regions of high local frustration. Those segments develop molten globular characteristics at the point of greatest complementarity to the chemical transition state and are the first TrpRS structures to melt. (iv) Residue F37 stabilizes both native and molten globular states; its higher-order interactions modify the relative intrinsic impacts of mutations to other D1 switch residues from those estimated for single point mutants. The D1 switch is a central component of an escapement mechanism essential to free energy transduction. These conclusions begin to relate the escapement mechanism to differential TrpRS conformational stabilities.
Collapse
Affiliation(s)
- Violetta Weinreb
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| | | | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA
| |
Collapse
|
3
|
Bhattacharjee R, Udgaonkar JB. Differentiating between the sequence of structural events on alternative pathways of folding of a heterodimeric protein. Protein Sci 2022; 31:e4513. [PMID: 36382901 PMCID: PMC9703597 DOI: 10.1002/pro.4513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Distinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies. A previous study had shown that the heterodimeric protein, double chain monellin (dcMN) switches between alternative folding pathways upon a change in guanidine hydrochloride (GdnHCl) concentration. In the current study, the folding of dcMN has been characterized by the pulsed hydrogen exchange (HX) labeling methodology used in conjunction with mass spectrometry. Quantification of the extent to which folding intermediates accumulate and then disappear with time of folding at both low and high GdnHCl concentrations, where the folding pathways are known to be different, shows that the folding mechanism is describable by a triangular three-state mechanism. Structural characterization of the productive folding intermediates populated on the alternative pathways has enabled the pathways to be differentiated on the basis of the progress of structure acquisition that occurs on them. The intermediates on the two pathways differ in the extent to which the α-helix and the rest of the β-sheet have acquired structure that is protective against HX. The major difference is, however, that β2 has not acquired any protective structure in the intermediate formed on one pathway, but it has acquired significant protective structure in the intermediate formed on the alternative pathway. Hence, the sequence of structural events is different on the two alternative pathways.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBengaluruKarnatakaIndia
- Indian Institute of Science Education and ResearchPuneMaharashtraIndia
| |
Collapse
|
4
|
Eldrid C, Cragnolini T, Ben-Younis A, Zou J, Raleigh DP, Thalassinos K. Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations. Anal Chem 2022; 94:16113-16121. [PMID: 36350278 PMCID: PMC9685592 DOI: 10.1021/acs.analchem.2c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.
Collapse
Affiliation(s)
- Charles Eldrid
- School
of Biological Sciences, University of Southampton, SouthamptonSO16 1BJ, U.K.
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
| | - Tristan Cragnolini
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, LondonWC1E 7HX, U.K.
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
| | - Junjie Zou
- Department
of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Daniel P. Raleigh
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
- Department
of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, Division of Bioscience, University College London, LondonWC1E 6BT, U.K.
- Institute
of Structural and Molecular Biology, Birkbeck College, University of London, LondonWC1E 7HX, U.K.
| |
Collapse
|
5
|
Phan TTN, Hvasta MG, Kudlacek ST, Thiono DJ, Tripathy A, Nicely NI, de Silva AM, Kuhlman B. A conserved set of mutations for stabilizing soluble envelope protein dimers from dengue and Zika viruses to advance the development of subunit vaccines. J Biol Chem 2022; 298:102079. [PMID: 35643320 PMCID: PMC9249817 DOI: 10.1016/j.jbc.2022.102079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue viruses (DENV serotypes 1-4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.
Collapse
Affiliation(s)
- Thanh T N Phan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew G Hvasta
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephan T Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Devina J Thiono
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathan I Nicely
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
6
|
Abstract
Salts differ in their ability to stabilize protein conformations, thereby affecting the thermodynamics and kinetics of protein folding. We developed a coarse-grained protein model that can predict salt-induced changes in protein properties by using the transfer free-energy data of various chemical groups from water to salt solutions. Using this model and molecular dynamics simulations, we probed the effect of seven different salts on the folding thermodynamics of the DNA binding domain of lac repressor protein ( lac-DBD) and N-terminal domain of ribosomal protein (NTL9). We show that a salt can act as a protein stabilizing or destabilizing agent depending on the protein sequence and folded state topology. The computed thermodynamic properties, especially the m values for various salts, which reveal the relative ability of a salt to stabilize the protein folded state, are in quantitative agreement with the experimentally measured values. The computations show that the degree of protein compaction in the denatured ensemble strongly depends on the salt identity, and for the same variation in salt concentration, the compaction in the protein dimensions varies from ∼4% to ∼30% depending on the salt. The transition-state ensemble (TSE) of lac-DBD is homogeneous and polarized, while the TSE of NTL9 is heterogeneous and diffusive. Salts induce subtle structural changes in the TSE that are in agreement with Hammond's postulate. The barrier to protein folding tends to disappear in the presence of moderate concentrations (∼3-4 m) of strongly stabilizing salts.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Aswathy N Muttathukattil
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| |
Collapse
|
7
|
Kudlacek ST, Premkumar L, Metz SW, Tripathy A, Bobkov AA, Payne AM, Graham S, Brackbill JA, Miley MJ, de Silva AM, Kuhlman B. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. J Biol Chem 2018; 293:8922-8933. [PMID: 29678884 PMCID: PMC5995514 DOI: 10.1074/jbc.ra118.002658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lakshmanane Premkumar
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stefan W Metz
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Ashutosh Tripathy
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrey A Bobkov
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Alexander Matthew Payne
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stephen Graham
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - James A Brackbill
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Michael J Miley
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Aravinda M de Silva
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
- the Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Contessoto VG, de Oliveira VM, de Carvalho SJ, Oliveira LC, Leite VBP. NTL9 Folding at Constant pH: The Importance of Electrostatic Interaction and pH Dependence. J Chem Theory Comput 2016; 12:3270-7. [PMID: 27327651 DOI: 10.1021/acs.jctc.6b00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding process of the N-terminal domain of ribosomal protein L9 (NTL9) was investigated at constant-pH computer simulations. Evaluation of the role of electrostatic interaction during folding was carried out by including a Debye-Hückel potential into a Cα structure-based model (SBM). In this study, the charges of the ionizable residues and the electrostatic potential are susceptible to the solution conditions, such as pH and ionic strength, as well as to the presence of charged groups. Simulations were performed under different pHs, and the results were validated by comparing them with experimental values of pKa and with denaturation experiment data. Also, the free energy profiles, Φ-values, and folding routes were calculated for each condition. It was shown how charges vary along the folding under different pH, which is subject to different scenarios. This study reveals how simplified models can capture essential physical features, reproducing experimental results, and presenting the role of electrostatic interactions before, during, and after the transition state.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP) , São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Vinícius M de Oliveira
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP) , São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Sidney J de Carvalho
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP) , São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Leandro C Oliveira
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP) , São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Vitor B P Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP) , São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
9
|
Sengupta R, Pantel A, Cheng X, Shkel I, Peran I, Stenzoski N, Raleigh DP, Record MT. Positioning the Intracellular Salt Potassium Glutamate in the Hofmeister Series by Chemical Unfolding Studies of NTL9. Biochemistry 2016; 55:2251-9. [PMID: 27054379 DOI: 10.1021/acs.biochem.6b00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vitro, replacing KCl with potassium glutamate (KGlu), the Escherichia coli cytoplasmic salt and osmolyte, stabilizes folded proteins and protein-nucleic acid complexes. To understand the chemical basis for these effects and rank Glu- in the Hofmeister anion series for protein unfolding, we quantify and interpret the strong stabilizing effect of KGlu on the ribosomal protein domain NTL9, relative to the effects of other stabilizers (KCl, KF, and K2SO4) and destabilizers (GuHCl and GuHSCN). GuHSCN titrations at 20 ° C, performed as a function of the concentration of KGlu or another salt and monitored by NTL9 fluorescence, are analyzed to obtain R-values quantifying the Hofmeister salt concentration (m3) dependence of the unfolding equilibrium constant K(obs) [r-value = −d ln K(obs)/dm3 = (1/RT) dΔG(obs) ° /dm3 = m-value/RT]. r-Values for both stabilizing K+ salts and destabilizing GuH+ salts are compared with predictions from model compound data. For two-salt mixtures, we find that contributions of stabilizing and destabilizing salts to observed r-values are additive and independent. At 20 ° C, we determine a KGlu r-value of 3.22 m(−1) and K2SO4, KF, KCl, GuHCl, and GuHSCN r-values of 5.38, 1.05, 0.64, −1.38, and −3.00 m(−1), respectively. The KGlu r-value represents a 25-fold (1.9 kcal) stabilization per molal KGlu added. KGlu is much more stabilizing than KF, and the stabilizing effect of KGlu is larger in magnitude than the destabilizing effect of GuHSCN. Interpretation of the data reveals good agreement between predicted and observed relative r-values and indicates the presence of significant residual structure in GuHSCN-unfolded NTL9 at 20 ° C.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Peran
- Department of Chemistry, SUNY Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Natalie Stenzoski
- Department of Chemistry, SUNY Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Daniel P Raleigh
- Department of Chemistry, SUNY Stony Brook , Stony Brook, New York 11794-3400, United States
| | | |
Collapse
|
10
|
Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, Glasebrook AL, Kuhlman B, Demarest SJ. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 2016; 7:470-82. [PMID: 25774965 DOI: 10.1080/19420862.2015.1022694] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Collapse
Key Words
- BiTE, bispecific T cell engager
- BsAb, bispecific antibody
- CD, circular dichroism
- DSC, differential scanning calorimetry
- Fab interface design
- Fab, antigen binding antibody fragment
- Fv, variable domains antibody fragment
- HC, antibody heavy chain
- IgG-Fab
- LC, antibody light chain
- LCMS, liquid chromatography with in-line mass spectrometry
- SEC-LC, size exclusion chromatography with in-line static light scattering
- T cell
- Tm, temperature at the midpoint of thermal unfolding
- bispecific antibody
- mAb, monoclonal antibody
- scFv, single chain Fv
- tandem Fab
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim H, Kim S, Jung Y, Han J, Yun JH, Chang I, Lee W. Probing the Folding-Unfolding Transition of a Thermophilic Protein, MTH1880. PLoS One 2016; 11:e0145853. [PMID: 26766214 PMCID: PMC4713090 DOI: 10.1371/journal.pone.0145853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
The folding mechanism of typical proteins has been studied widely, while our understanding of the origin of the high stability of thermophilic proteins is still elusive. Of particular interest is how an atypical thermophilic protein with a novel fold maintains its structure and stability under extreme conditions. Folding-unfolding transitions of MTH1880, a thermophilic protein from Methanobacterium thermoautotrophicum, induced by heat, urea, and GdnHCl, were investigated using spectroscopic techniques including circular dichorism, fluorescence, NMR combined with molecular dynamics (MD) simulations. Our results suggest that MTH1880 undergoes a two-state N to D transition and it is extremely stable against temperature and denaturants. The reversibility of refolding was confirmed by spectroscopic methods and size exclusion chromatography. We found that the hyper-stability of the thermophilic MTH1880 protein originates from an extensive network of both electrostatic and hydrophobic interactions coordinated by the central β-sheet. Spectroscopic measurements, in combination with computational simulations, have helped to clarify the thermodynamic and structural basis for hyper-stability of the novel thermophilic protein MTH1880.
Collapse
Affiliation(s)
- Heeyoun Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Sangyeol Kim
- Department of Physics, Pusan National University, Busan, 609–735, Korea
- Center for Proteome Biophysics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711–873, Korea
| | - Youngjin Jung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Jeongmin Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Ji-Hye Yun
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| | - Iksoo Chang
- Center for Proteome Biophysics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711–873, Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 711–873, Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–740, Korea
| |
Collapse
|
12
|
Yaşar F, Jiang P, Hansmann UHE. Multicanonical Molecular Dynamics Simulations of the N-terminal Domain of Protein L9. EUROPHYSICS LETTERS 2014; 105:30008. [PMID: 25253918 PMCID: PMC4169893 DOI: 10.1209/0295-5075/105/30008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe multicanonical molecular dynamic simulations of the N-terminal domain of the protein L9. Analyzing free energy landscapes and thermal ordering, we propose a possible folding mechanism for the protein. By comparing our results with that of molecular dynamics runs of the protein at constant temperature, we find that multicanonical molecular dynamics leads to orders of magnitude higher sampling of folding transitions.
Collapse
Affiliation(s)
- Fatih Yaşar
- Department of Physics Engineering, Hacettepe University, Ankara, 06800, TURKEY
| | - Ping Jiang
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| |
Collapse
|
13
|
Freiburger LA, Auclair K, Mittermaier AK. Van't Hoff global analyses of variable temperature isothermal titration calorimetry data. THERMOCHIMICA ACTA 2012; 527:148-157. [PMID: 28018008 PMCID: PMC5179259 DOI: 10.1016/j.tca.2011.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA , and enthalpy changes, ΔHA . A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme.
Collapse
Affiliation(s)
- Lee A. Freiburger
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 2K6
| | - Anthony K. Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 2K6
| |
Collapse
|
14
|
Choi JH, Raleigh D, Cho M. Azido Homoalanine is a Useful Infrared Probe for Monitoring Local Electrostatistics and Sidechain Solvation in Proteins. J Phys Chem Lett 2011; 2:2158-2162. [PMID: 22389750 PMCID: PMC3290331 DOI: 10.1021/jz200980g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of IR probes to monitor protein structure, deduce local electric field, and investigate the mechanism of enzyme catalysis and protein folding has attracted increasing attention. Here, the azidohomoalanine (Aha) is considered as a useful IR probe. The intricate details of the distinct effects of backbone peptide bonds and H-bonded water molecules on the azido stretch mode of the IR probe Aha were revealed by carrying out QM/MM MD simulations of two variants of the protein NTL9, NTL9-Met1Aha and NTL9-Ile4Aha and comparing the resulting simulated IR spectra with experiments.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Daniel Raleigh
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-701, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
- Corresponding Author:
| |
Collapse
|
15
|
Taskent-Sezgin H, Chung J, Banerjee PS, Nagarajan S, Dyer RB, Carrico I, Raleigh DP. Azidohomoalanine: a conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angew Chem Int Ed Engl 2011; 49:7473-5. [PMID: 20815000 DOI: 10.1002/anie.201003325] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Humeyra Taskent-Sezgin
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Earl LA, Bi S, Baum LG. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 2010; 21:6-12. [PMID: 20864568 DOI: 10.1093/glycob/cwq144] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Galectins regulate cellular functions by binding to glycan ligands on cell surface glycoprotein receptors. Prototype galectins, such as galectin-1, are one carbohydrate recognition domain (CRD) monomers that noncovalently dimerize, whereas tandem-repeat galectins, such as galectin-9, have two non-identical CRDs connected by a linker domain. Dimerization of prototype galectins, or both CRDs in tandem-repeat galectins, is typically required for the crosslinking of glycoprotein receptors and subsequent cellular signaling. Several studies have found that tandem-repeat galectins are more potent than prototype galectins in triggering many cell responses, including cell death. These differences could be due to CRD specificity, the presence or absence of a linker domain between CRDs, or both. To interrogate the basis for the increased potency of tandem-repeat galectins compared with prototype galectins in triggering cell death, we created three tandem-repeat galectin constructs with different linker regions joining identical galectin-1 CRDs, so that any differences we observed would be due to the contribution of the linker region rather than due to CRD specificity. We found that random-coil or rigid α-helical linkers that permit separation of the two galectin-1 CRDs facilitated the formation of higher-order galectin multimers and that these galectins were more potent in binding to glycan ligands and cell surface glycoprotein receptors, as well as triggering T cell death, compared with native galectin-1 or a construct with a short rigid linker. Thus, the increased potency of tandem-repeat galectins compared with prototype galectins is likely due to the ability of the linker domain to permit intermolecular CRD interactions, resulting in the formation of higher-order multimers with increased valency, rather than differences in CRD specificity.
Collapse
Affiliation(s)
- Lesley A Earl
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
17
|
Taskent-Sezgin H, Chung J, Banerjee PS, Nagarajan S, Dyer RB, Carrico I, Raleigh DP. Azidohomoalanine: A Conformationally Sensitive IR Probe of Protein Folding, Protein Structure, and Electrostatics. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Shen JK. Uncovering specific electrostatic interactions in the denatured states of proteins. Biophys J 2010; 99:924-32. [PMID: 20682271 PMCID: PMC2913194 DOI: 10.1016/j.bpj.2010.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/01/2022] Open
Abstract
The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pK(a)s allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pK(a) for Asp(8) in the denatured state of wild-type, which is due to a nonnative interaction between Asp(8) and Lys(12). Interestingly, the simulation also shows a nonnative interaction between Asp(8) and Glu(48) in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape.
Collapse
Affiliation(s)
- Jana K Shen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
19
|
Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS, Glaser SM. Stability engineering of scFvs for the development of bispecific and multivalent antibodies. Protein Eng Des Sel 2010; 23:549-57. [PMID: 20457695 DOI: 10.1093/protein/gzq028] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Single-chain Fvs (scFvs) are commonly used building blocks for creating engineered diagnostic and therapeutic antibody molecules. Bispecific antibodies (BsAbs) hold particular interest due to their ability to simultaneously bind and engage two distinct targets. We describe a technology for producing stable, scalable IgG-like bispecific and multivalent antibodies based on methods for rapidly engineering thermally stable scFvs. Focused libraries of mutant scFvs were designed using a combination of sequence-based statistical analyses and structure-, and knowledge-based methods. Libraries encoding these designs were expressed in E. coli and culture supernatants-containing soluble scFvs screened in a high-throughput assay incorporating a thermal challenge prior to an antigen-binding assay. Thermally stable scFvs were identified that retain full antigen-binding affinity. Single mutations were found that increased the measured T(m) of either the V(H) or V(L) domain by as much as 14 degrees C relative to the wild-type scFv. Combinations of mutations further increased the T(m) by as much as an additional 12 degrees C. Introduction of a stability-engineered scFv as part of an IgG-like BsAb enabled scalable production and purification of BsAb with favorable biophysical properties.
Collapse
Affiliation(s)
- Brian R Miller
- Biogen Idec, Inc., 5200 Research Place, San Diego, CA 92122, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Taskent H, Cho JH, Raleigh DP. Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects. J Mol Biol 2008; 378:699-706. [PMID: 18384809 DOI: 10.1016/j.jmb.2008.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 02/14/2008] [Indexed: 10/22/2022]
Abstract
Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed alpha-beta protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 degrees C. Plots of the log of the observed first-order rate constant versus denaturant concentration, "chevron plots," displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford beta parameter, beta(T), shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of Delta G versus Delta G degrees, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.
Collapse
Affiliation(s)
- Humeyra Taskent
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
21
|
Wang T, Zhou Z, Bunagan MR, Du D, Bai Y, Gai F. Probing the folding intermediate of Rd-apocyt b562 by protein engineering and infrared T-jump. Protein Sci 2007; 16:1176-83. [PMID: 17473017 PMCID: PMC2206668 DOI: 10.1110/ps.062505607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Small proteins often fold in an apparent two-state manner with the absence of detectable early-folding intermediates. Recently, using native-state hydrogen exchange, intermediates that exist after the rate-limiting transition state have been identified for several proteins. However, little is known about the folding kinetics from these post-transition intermediates to their corresponding native states. Herein, we have used protein engineering and a laser-induced temperature-jump (T-jump) technique to investigate this issue and have applied it to Rd-apocyt b(562) , a four-helix bundle protein. Previously, it has been shown that Rd-apocyt b(562) folds via an on-pathway hidden intermediate, which has only the N-terminal helix unfolded. In the present study, a double mutation (V16G/I17A) in the N-terminal helix of Rd-apocyt b(562) was made to further increase the relative population of this intermediate state at high temperature by selectively destabilizing the native state. In the circular dichroism thermal melting experiment, this mutant showed apparent two-state folding behavior. However, in the T-jump experiment, two kinetic phases were observed. Therefore, these results are in agreement with the idea that a folding intermediate is populated on the folding pathway of Rd-apocyt b(562) . Moreover, it was found that the exponential growth rate of the native state from this intermediate state is roughly (25 microsec)(-1) at 65 degrees C.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sato S, Raleigh DP. Kinetic isotope effects reveal the presence of significant secondary structure in the transition state for the folding of the N-terminal domain of L9. J Mol Biol 2007; 370:349-55. [PMID: 17512540 DOI: 10.1016/j.jmb.2007.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Our present understanding of the nature of the transition state for protein folding depends predominantly on studies where individual side-chain contributions are mapped out by mutational analysis (phi value analysis). This approach, although extremely powerful, does not in general provide direct information about the formation of backbone hydrogen bonds. Here, we report the results of amide H/D isotope effect studies that probe the development of hydrogen bonded interactions in the transition state for the folding of a small alpha-beta protein, the N-terminal domain of L9. Replacement of amide protons by deuterons in a solvent of constant isotopic composition destabilized the domain, decreasing both its T(m) and Delta G(0) of unfolding. The folding rate also decreased. The parameter Phi(H/D), defined as the ratio of the effect of isotopic substitution upon the activation free energy to the equilibrium free energy was determined to be 0.6 in a D(2)O background and 0.75 in a H(2)O background, indicating that significant intraprotein hydrogen bond interactions are developed in the transition state for the folding of NTL9. The value is in remarkably good agreement with more traditional measures of the position of the transition state, which report on the relative burial of surface area. The results provide a picture of a compact folding transition state containing significant secondary structure. Indirect analysis argues that the bulk of the kinetic isotope effect arises from the beta-sheet-rich region of the protein, and suggests that the development of intraprotein hydrogen bonds in this region plays a critical role in the folding of NTL9.
Collapse
Affiliation(s)
- Satoshi Sato
- Okayama Research Park Incubation Center, 5303 Haga Okayama 701-1223, Japan.
| | | |
Collapse
|
23
|
Watters AL, Deka P, Corrent C, Callender D, Varani G, Sosnick T, Baker D. The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection. Cell 2007; 128:613-24. [PMID: 17289578 DOI: 10.1016/j.cell.2006.12.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/17/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
To illuminate the evolutionary pressure acting on the folding free energy landscapes of naturally occurring proteins, we have systematically characterized the folding free energy landscape of Top7, a computationally designed protein lacking an evolutionary history. Stopped-flow kinetics, circular dichroism, and NMR experiments reveal that there are at least three distinct phases in the folding of Top7, that a nonnative conformation is stable at equilibrium, and that multiple fragments of Top7 are stable in isolation. These results indicate that the folding of Top7 is significantly less cooperative than the folding of similarly sized naturally occurring proteins, suggesting that the cooperative folding and smooth free energy landscapes observed for small naturally occurring proteins are not general properties of polypeptide chains that fold to unique stable structures but are instead a product of natural selection.
Collapse
Affiliation(s)
- Alexander L Watters
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
LeMaster DM, Hernández G. Residue cluster additivity of thermodynamic stability in the hydrophobic core of mesophile vs. hyperthermophile rubredoxins. Biophys Chem 2007; 125:483-9. [PMID: 17118523 DOI: 10.1016/j.bpc.2006.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 10/27/2006] [Accepted: 10/27/2006] [Indexed: 11/23/2022]
Abstract
The branched sidechain residues 24 and 33 in the hydrophobic core of rubredoxin differ between the Clostridium pasteurianum (Cp) and Pyrococcus furiosus (Pf) sequences. Their X-ray structures indicate that these two sidechains are in van der Waals contact with each other, while neither appears to significantly interact with the other nonconserved residues. The simultaneous interchange of residues 24 and 33 between the Cp and Pf rubredoxin sequences yield a complementary pair of hybrid proteins for which the sum of their thermodynamic stabilities equals that of the parental rubredoxins. The 1.2 kcal/mol change arising from this two residues interchange accounts for 21% of the differential thermodynamic stability between the mesophile and hyperthermophile proteins. The additional interchange of the sole nonconserved aromatic residue in the hydrophobic core yields a 0.78 kcal/mol deviation from thermodynamic additivity.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, New York 12201-0509, USA
| | | |
Collapse
|
25
|
Uzawa T, Kimura T, Ishimori K, Morishima I, Matsui T, Ikeda-Saito M, Takahashi S, Akiyama S, Fujisawa T. Time-resolved Small-angle X-ray Scattering Investigation of the Folding Dynamics of Heme Oxygenase: Implication of the Scaling Relationship for the Submillisecond Intermediates of Protein Folding. J Mol Biol 2006; 357:997-1008. [PMID: 16460755 DOI: 10.1016/j.jmb.2005.12.089] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/29/2005] [Accepted: 12/29/2005] [Indexed: 11/29/2022]
Abstract
Polypeptide collapse is generally observed as the initial folding dynamics of proteins with more than 100 residues, and is suggested to be caused by the coil-globule transition explained by Flory's theory of polymers. To support the suggestion by establishing a scaling behavior between radius of gyration (Rg) and chain length for the initial folding intermediates, the folding dynamics of heme oxygenase (HO) was characterized by time-resolved, small-angle X-ray scattering. HO is a highly helical protein without disulfide bridges, and is the largest protein (263 residues) characterized by the method. The folding process of HO was found to contain a transient oligomerization; however, the conformation within 10 ms was demonstrated to be monomeric and to possess Rg of 26.1(+/-1.1) A. Together with the corresponding data for proteins with different chain lengths, the seven Rg values demonstrated the scaling relationship to chain length with a scaling exponent of 0.35+/-0.11, which is close to the theoretical value of 1/3 predicted for globules in solutions where monomer-monomer interactions are favored over monomer-solvent interactions (poor solvent). The finding indicated that the initial folding dynamics of proteins bears the signature of the coil-globule transition, and offers a clue to explain the folding mechanisms of proteins with different chain lengths.
Collapse
Affiliation(s)
- Takanori Uzawa
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Anil B, Craig-Schapiro R, Raleigh DP. Design of a Hyperstable Protein by Rational Consideration of Unfolded State Interactions. J Am Chem Soc 2006; 128:3144-5. [PMID: 16522085 DOI: 10.1021/ja057874b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stabilization of proteins is a long-sought objective. Targeting the unfolded state interactions of a protein is not a method used for this purpose, although many proteins are known to contain such interactions. The N-terminal domain of ribosomal protein L9 (NTL9) has a lysine residue at position 12, which makes strong non-native interactions in the unfolded state. Substitution of a d-alanine for G34 in NTL9 is known to stabilize the protein by reducing the entropy of the unfolded state. Here we combine these two mutations to design a hyperstable protein. The structure of the variant is the same as that of wild-type as judged by 2D NMR. The variant is hyperstable as judged by denaturation experiments, where complete thermal unfolding of the protein does not occur in native buffer.
Collapse
Affiliation(s)
- Burcu Anil
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | |
Collapse
|
27
|
Bi Y, Tang Y, Raleigh DP, Cho JH. Efficient high level expression of peptides and proteins as fusion proteins with the N-terminal domain of L9: application to the villin headpiece helical subdomain. Protein Expr Purif 2005; 47:234-40. [PMID: 16325421 DOI: 10.1016/j.pep.2005.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/19/2005] [Accepted: 10/23/2005] [Indexed: 01/22/2023]
Abstract
The efficient expression of small to midsize polypeptides and small marginally stable proteins can be difficult. A new protein fusion system is developed to allow the expression of peptides and small proteins. The polypeptide of interest is linked via a Factor Xa cleavage sequence to the C-terminus of the N-terminal domain of the ribosomal protein L9 (NTL9). NTL9 is a small (56 residue) basic protein. The C-terminus of the protein is part of an alpha-helix which extends away from the globular structure thus additional domains can be fused without altering the fold of NTL9. NTL9 expresses at high levels, is extremely soluble, and remains fully folded over a wide temperature and pH range. The protein has a high net positive charge, facilitating purification of fusion proteins by ion exchange chromatography. NTL9 fusions can also be easily purified by reverse phase HPLC. As a test case we demonstrate the high level expression of a small, 36 residue, three helix bundle, the villin headpiece subdomain. This protein is widely used as a model system for folding studies and the development of a simple expression system should facilitate experimental studies of the subdomain. The yield of purified fusion protein is 70 mg/L of culture and the yield of purified villin headpiece subdomain is 24 mg/L of culture. We also demonstrate the use of the fusion system to express a smaller marginally folded peptide fragment of the villin headpiece domain.
Collapse
Affiliation(s)
- Yuan Bi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
28
|
Anil B, Sato S, Cho JH, Raleigh DP. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing. J Mol Biol 2005; 354:693-705. [PMID: 16246369 DOI: 10.1016/j.jmb.2005.08.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/15/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Developing a detailed understanding of the structure and energetics of protein folding transition states is a key step in describing the folding process. The phi-value analysis approach allows the energetic contribution of side-chains to be mapped out by comparing wild-type with individual mutants where conservative changes are introduced. Studies where multiple substitutions are made at individual sites are much rarer but are potentially very useful for understanding the contribution of each element of a side-chain to transition state formation, and for distinguishing the relative importance of specific packing versus hydrophobic interactions. We have made a series of conservative mutations at multiple buried sites in the N-terminal domain of L9 in order to assess the relative importance of specific side-chain packing versus less specific hydrophobic stabilization of the transition state. A total of 28 variants were prepared using both naturally occurring and non-naturally occurring amino acids at six sites. Analysis of the mutants by NMR and CD showed no perturbation of the structure. There is no correlation between changes in hydrophobicity and changes in stability. In contrast, there is excellent linear correlation between the hydrophobicity of a side-chain and the log of the folding rate, ln(k(f)). The correlation between ln(k(f)) and the change in hydrophobicity holds even for substitutions that change the shape and/or size of a side-chain significantly. For most sites, the correlation with the logarithm of the unfolding rate, ln(k(u)), is much worse. Mutants with more hydrophobic amino acid substitutions fold faster, and those with less hydrophobic amino acid substitutions fold slower. The results show that hydrophobic interactions amongst core residues are an important driving force for forming the transition state, and are more important than specific tight packing interactions. Finally, a number of substitutions lead to negative phi-values and the origin of these effects are described.
Collapse
Affiliation(s)
- Burcu Anil
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
29
|
Ferguson N, Sharpe TD, Schartau PJ, Sato S, Allen MD, Johnson CM, Rutherford TJ, Fersht AR. Ultra-fast Barrier-limited Folding in the Peripheral Subunit-binding Domain Family. J Mol Biol 2005; 353:427-46. [PMID: 16168437 DOI: 10.1016/j.jmb.2005.08.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/16/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
We have determined the solution structures, equilibrium properties and ultra-fast folding kinetics for three bacterial homologues of the peripheral subunit-binding domain (PSBD) family. The mesophilic homologue, BBL, was less stable than the thermophilic and hyper-thermophilic variants (E3BD and POB, respectively). The broad unfolding transitions of each PSBD, when probed by different techniques, were essentially superimposable, consistent with co-operative denaturation. Temperature-jump and continuous-flow fluorescence methods were used to measure the folding kinetics for E3BD, POB and BBL. E3BD folded fairly rapidly at 298K (folding half-time approximately 25 micros) and BBL and POB folded even faster (folding half-times approximately 3-5 micros). The variations in equilibrium and kinetic behaviour observed for the PSBD family resembles that of the homeodomain family, where the folding pattern changes from apparent two-state transitions to multi-state kinetics as the denatured state becomes more structured. The faster folding of POB may be a consequence of its higher propensity to form helical structure in the region corresponding to the folding nucleus of E3BD. The ultra-fast folding of BBL appears to be a consequence of residual structure in the denatured ensemble, as with engrailed homeodomain. We discuss issues concerning "one-state", downhill folding, and find no evidence for, and strong evidence against, it occurring in these PSBDs. The shorter construct used previously for BBL was destabilized significantly and the stability further perturbed by the introduction of fluorescent probes. Thermal titrations for 11 side-chains scattered around the protein, when probed by (13)C-NMR experiments, could be fit globally to a common co-operative transition.
Collapse
Affiliation(s)
- Neil Ferguson
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeeb M, Balbach J. NMR Spectroscopic Characterization of Millisecond Protein Folding by Transverse Relaxation Dispersion Measurements. J Am Chem Soc 2005; 127:13207-12. [PMID: 16173748 DOI: 10.1021/ja051141+] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cold shock protein CspB adopts its native and functional tertiary structure on the millisecond time scale. We employed transverse relaxation NMR methods, which allow a quantitative measurement of the cooperativity of this fast folding reaction on a residue basis. Thereby, chemical exchange contributions to the transverse relaxation rate (R(2)) were observed for every residue of CspB verifying the potential of this method to identify not only local dynamics but also to characterize global events. Toward this end, the homogeneity of the transition state of folding was probed by comparing Chevron plots (i.e., dependence of the apparent folding rate on the denaturant concentration) determined by stopped-flow fluorescence with Chevron plots of six residues acquired by R(2) dispersion experiments. The coinciding results obtained for probes at different locations in the three-dimensional structure of CspB indicate the ability and significance of transverse relaxation NMR to determine Chevron plots on a residue-by-residue basis providing detailed insights on the nature of the transition state of folding.
Collapse
Affiliation(s)
- Markus Zeeb
- Laboratorium für Biochemie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
31
|
LeMaster DM, Hernández G. Additivity in Both Thermodynamic Stability and Thermal Transition Temperature for Rubredoxin Chimeras via Hybrid Native Partitioning. Structure 2005; 13:1153-63. [PMID: 16084387 DOI: 10.1016/j.str.2005.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/17/2005] [Accepted: 05/06/2005] [Indexed: 11/23/2022]
Abstract
Given any operational definition of pairwise interaction, the set of residues that differ between two structurally homologous proteins can be uniquely partitioned into subsets of clusters for which no such interactions occur between clusters. Although hybrid protein sequences that preserve such clustering are consistent with tertiary structures composed of only parental native-like interactions, the stability of such predicted structures will depend upon the physical robustness of the assumed interaction potential. A simple distance cutoff criterion was applied to the most thermostable protein known to predict such a seven-residue cluster in the metal binding site region of Pyrococcus furiosus rubredoxin and a mesophile homolog. Both conformational stability and thermal transition temperature measurements demonstrate that 39% of the differential stability arises from these seven residues.
Collapse
Affiliation(s)
- David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, USA
| | | |
Collapse
|
32
|
Wong HJ, Stathopulos PB, Bonner JM, Sawyer M, Meiering EM. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin. J Mol Biol 2005; 344:1089-107. [PMID: 15544814 DOI: 10.1016/j.jmb.2004.09.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 08/17/2004] [Accepted: 09/29/2004] [Indexed: 11/21/2022]
Abstract
Extensive measurements and analysis of thermodynamic stability and kinetics of urea-induced unfolding and folding of hisactophilin are reported for 5-50 degrees C, at pH 6.7. Under these conditions hisactophilin has moderate thermodynamic stability, and equilibrium and kinetic data are well fit by a two-state transition between the native and the denatured states. Equilibrium and kinetic m values decrease with increasing temperature, and decrease with increasing denaturant concentration. The betaF values at different temperatures and urea concentrations are quite constant, however, at about 0.7. This suggests that the transition state for hisactophilin unfolding is native-like and changes little with changing solution conditions, consistent with a narrow free energy profile for the transition state. The activation enthalpy and entropy of unfolding are unusually low for hisactophilin, as is also the case for the corresponding equilibrium parameters. Conventional Arrhenius and Eyring plots for both folding and unfolding are markedly non-linear, but these plots become linear for constant DeltaG/T contours. The Gibbs free energy changes for structural changes in hisactophilin have a non-linear denaturant dependence that is comparable to non-linearities observed for many other proteins. These non-linearities can be fit for many proteins using a variation of the Tanford model, incorporating empirical quadratic denaturant dependencies for Gibbs free energies of transfer of amino acid constituents from water to urea, and changes in fractional solvent accessible surface area of protein constituents based on the known protein structures. Noteworthy exceptions that are not well fit include amyloidogenic proteins and large proteins, which may form intermediates. The model is easily implemented and should be widely applicable to analysis of urea-induced structural transitions in proteins.
Collapse
Affiliation(s)
- Hannah J Wong
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Waterloo, ESC 326, Waterloo, Ont., N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
33
|
Kamagata K, Arai M, Kuwajima K. Unification of the Folding Mechanisms of Non-two-state and Two-state Proteins. J Mol Biol 2004; 339:951-65. [PMID: 15165862 DOI: 10.1016/j.jmb.2004.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/01/2004] [Accepted: 04/01/2004] [Indexed: 11/15/2022]
Abstract
We have collected the kinetic folding data for non-two-state and two-state globular proteins reported in the literature, and investigated the relationships between the folding kinetics and the native three-dimensional structure of these proteins. The rate constants of formation of both the intermediate and the native state of non-two-state folders were found to be significantly correlated with protein chain length and native backbone topology, which is represented by the absolute contact order and sequence-distant native pairs. The folding rate of two-state folders, which is known to be correlated with the native backbone topology, apparently does not correlate significantly with protein chain length. On the basis of a comparison of the folding rates of the non-two-state and two-state folders, it was found that they are similarly dependent on the parameters that reflect the native backbone topology. This suggests that the mechanisms behind non-two-state and two-state folding are essentially identical. The present results lead us to propose a unified mechanism of protein folding, in which folding occurs in a hierarchical manner, reflecting the hierarchy of the native three-dimensional structure, as embodied in the case of non-two-state folding with an accumulation of the intermediate. Apparently, two-state folding is merely a simplified version of hierarchical folding caused either by an alteration in the rate-limiting step of folding or by destabilization of the intermediate.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
34
|
Wang M, Tang Y, Sato S, Vugmeyster L, McKnight CJ, Raleigh DP. Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale. J Am Chem Soc 2003; 125:6032-3. [PMID: 12785814 DOI: 10.1021/ja028752b] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is considerable interest in small proteins that fold very rapidly. These proteins have become attractive targets for both theoretical and computational studies. The independently folded 36-residue villin headpiece subdomain has been the subject of a number of such studies and is predicted to fold quickly. We demonstrate using dynamic NMR line-shape analysis that the protein folds on the time scale of 10 mus. Folding rates were directly estimated between 56 and 78 degrees C using resolved protein resonances from three different residues at both 500 and 700 MHz. The rates estimated using different residues and different field strengths agree well with each other. The estimated folding rate lies between 0.5 and 2.0 x 105 s-1 over this temperature range. The folding rate depends only weakly on temperature.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | | | | | | | | | |
Collapse
|
35
|
Horng JC, Moroz V, Raleigh DP. Rapid cooperative two-state folding of a miniature alpha-beta protein and design of a thermostable variant. J Mol Biol 2003; 326:1261-70. [PMID: 12589767 DOI: 10.1016/s0022-2836(03)00028-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a great deal of interest in developing small stably folded miniature proteins. A limited number of these molecules have been described, however they typically have not been characterized in depth. In particular, almost no detailed studies of the thermodynamics and folding kinetics of these proteins have been reported. Here we describe detailed studies of the thermodynamics and kinetics of folding of a 39 residue mixed alpha-beta protein (NTL9(1-39)) derived from the N-terminal domain of the ribosomal protein L9. The protein folds cooperatively and rapidly in a two-state fashion to a native state typical of those found for normal globular proteins. At pH 5.4 in 20mM sodium acetate, 100mM NaCl the temperature of maximum stability is 6 degrees C, the t(m) is 65.3 degrees C, deltaH degrees (t(m)) is between 24.6 kcalmol(-1) and 26.3 kcalmol(-1), and deltaC(p) degrees is 0.38 kcalmol(-1)deg(-1). The thermodynamic parameters are in the range expected on the basis of per residue values determined from databases of globular proteins. H/2H exchange measurements reveal a set of amides that exchange via global unfolding, exactly as expected for a normal cooperatively folded globular protein. Kinetic measurements show that folding is two-state folding. The folding rate is 640 s(-1) and the value of deltaG degrees calculated from the folding and unfolding rates is in excellent agreement with the equilibrium value. A designed thermostable variant, generated by mutating K12 to M, was characterized and found to have a t(m) of 82 degrees C. Equilibrium and kinetic measurements demonstrate that its folding is cooperative and two-state.
Collapse
Affiliation(s)
- Jia-Cherng Horng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
36
|
Abstract
An explosion of in vitro experimental data on the folding of proteins has revealed many examples of folding in the millisecond or faster timescale, often occurring in the absence of stable intermediate states. We review experimental methods for measuring fast protein folding kinetics, and then discuss various analytical models used to interpret these data. Finally, we classify general mechanisms that have been proposed to explain fast protein folding into two catagories, heterogeneous and homogeneous, reflecting the nature of the transition state. One heterogeneous mechanism, the diffusion-collision mechanism, can be used to interpret experimental data for a number of proteins.
Collapse
Affiliation(s)
- Jeffrey K Myers
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
37
|
Sato S, Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318:571-82. [PMID: 12051860 DOI: 10.1016/s0022-2836(02)00015-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
38
|
Ye Y, Lee HW, Yang W, Shealy SJ, Wilkins AL, Liu ZR, Torshin I, Harrison R, Wohlhueter R, Yang JJ. Metal binding affinity and structural properties of an isolated EF-loop in a scaffold protein. Protein Eng Des Sel 2001; 14:1001-13. [PMID: 11809931 DOI: 10.1093/protein/14.12.1001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To establish an approach to obtain the site-specific calcium binding affinity of EF-hand proteins, we have successfully designed a series of model proteins, each containing the EF-hand calcium-binding loop 3 of calmodulin, but with increasing numbers of Gly residues linking the loop to domain 1 of CD2. Structural analyses, using different spectroscopic methods, have shown that the host protein is able to retain its native structure after insertion of the 12-residue calcium-binding loop and retains a native thermal stability and thermal unfolding behavior. In addition, calcium binding to the engineered CD2 variants does not result in a significant change from native CD2 conformation. The CD2 variant with two Gly linkers has been shown to have the strongest metal binding affinity to Ca(II) and La(III). These experimental results are consistent with our molecular modeling studies, which suggest that this protein with the engineered EF-loop has a calmodulin-like calcium binding geometry and backbone conformation. The addition of two Gly linkers increases the flexibility of the inserted EF-loop 3 from calmodulin, which is essential for the proper binding of metal ions.
Collapse
Affiliation(s)
- Y Ye
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sato S, Xiang S, Raleigh DP. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. J Mol Biol 2001; 312:569-77. [PMID: 11563917 DOI: 10.1006/jmbi.2001.4968] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is currently a great deal of interest in proteins that fold in a single highly cooperative step. Particular attention has been focused on elucidating the factors that govern folding rates of simple proteins. Recently, the topology of the native state has been proposed to be the most important determinant of their folding rates. Here we report a comparative study of the folding of three topologically equivalent proteins that adapt a particularly simple alpha/beta fold. The folding kinetics of the N-terminal domain of RNase HI and the N-terminal domain of the ribosomal protein L9 from Escherichia coli (eNTL9) were compared to the previously characterized N-terminal domain of L9 from Bacillus stearothermophilus (bNTL9). This 6.2 kDa protein, which is one of simplest examples of the ABCalphaD motif, folds via a two-state mechanism on the millisecond to submillisecond time scale. The RNase HI domain and bNTL9 have very similar tertiary structures but there is little similarity in primary sequence. bNTL9 and eNTL9 share the same biological function and a similar primary sequence but differ significantly in stability. Fluorescence-detected stopped-flow experiments showed that the three proteins fold in a two-state fashion. The folding rates in the absence of denaturant were found to be very different, ranging form 21 s(-1) to 790 s(-1) at 10 degrees C. The diverse folding rates appear to reflect large differences in the stability of the proteins. When compared at an isostability point, the folding rates converged to a similar value and there is a strong linear correlation between the log of the folding rate and stability for this set of proteins. These observations are consistent with the idea that stability can play an important role in dictating relative folding rates among topologically equivalent proteins.
Collapse
Affiliation(s)
- S Sato
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
40
|
Sato S, Sayid CJ, Raleigh DP. The failure of simple empirical relationships to predict the viscosity of mixed aqueous solutions of guanidine hydrochloride and glucose has important implications for the study of protein folding. Protein Sci 2000; 9:1601-3. [PMID: 10975582 PMCID: PMC2144716 DOI: 10.1110/ps.9.8.1601] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viscosities of aqueous solutions of guanidine hydrochloride (GuHCl) were measured in the presence of varying amounts of glucose. At high concentrations of glucose or GuHCl, the measured viscosities showed significant deviation from the values computed using a method proposed by Tanford (1966, J Biol Chem 241:3228-3232). This method was originally derived to allow the calculation of the effects of buffer or low concentrations of salts and other additives on the density and viscosity of aqueous solutions of urea or GuHCl. Recently it has been used to estimate the viscosity of denaturant solutions that contain high concentrations of viscogens. Our results show that the extrapolation of this approach to solutions of highly concentrated viscous co-solutes leads to significant errors. The implications for experimental studies of the viscosity dependence of conformational transitions in proteins is discussed.
Collapse
Affiliation(s)
- S Sato
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | | | |
Collapse
|
41
|
Luisi DL, Raleigh DP. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding. J Mol Biol 2000; 299:1091-100. [PMID: 10843860 DOI: 10.1006/jmbi.2000.3752] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of electrostatic interactions in the stability and the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) was investigated by determining the effects of varying the pH conditions. Urea denaturations and thermal unfolding experiments were used to measure the free energy of folding, DeltaG degrees, at 18 different pH values, ranging from pH 1.1 to pH 10.5. Folding rates were measured at 19 pH values between pH 2.1 and pH 9.5, and unfolding rates were determined at 15 pH values in this range using stopped-flow fluorescence experiments. The protein is maximally stable between pH 5.5 and 7.5 with a value of DeltaG degrees =4.45 kcal mol(-1). The folding rate reaches a maximum at pH 5.5, however the change in folding rates with pH is relatively modest. Over the pH range of 2.1 to 5.5 there is a small increase in folding rates, ln (k(f)) changes from 5.1 to 6.8. However, the change in stability is more dramatic, with a difference of 2.6 kcal mol(-1) between pH 2.0 and pH 5.4. The change in stability is largely due to the smaller barrier for unfolding at low pH values. The natural log of the unfolding rates varies by approximately four units between pH 2.1 and pH 5.5. The stability of the protein decreases above pH 7.5 and again the change is largely due to changes in the unfolding rate. ln (k(f)) varies by less than one unit between pH 5.5 and pH 9.5 while DeltaG degrees decreases by 2.4 kcal mol(-1) over the range of pH 5. 4 to pH 10.0, which corresponds to a change in ln K(eq) of 4.0. These studies show that pH-dependent interactions contribute significantly to the overall stability of the protein but have only a small effect upon the folding kinetics, indicating that electrostatic interactions are weakly formed in the transition state for folding.
Collapse
Affiliation(s)
- D L Luisi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | | |
Collapse
|
42
|
Narita M, Mochizuki A, Ohuchi S. Assingments of Tri- and Tetrapeptide Sequences in Globular Proteins to the 18 Kinds of Local Structures along Helices and Their Propensities for Specific Local Structures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2000. [DOI: 10.1246/bcsj.73.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Demarest SJ, Boice JA, Fairman R, Raleigh DP. Defining the core structure of the alpha-lactalbumin molten globule state. J Mol Biol 1999; 294:213-21. [PMID: 10556040 DOI: 10.1006/jmbi.1999.3228] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molten globules are partially folded states of proteins which are generally believed to mimic structures formed during the folding process. In order to determine the minimal requirements for the formation of a molten globule state, we have prepared a set of peptide models of the molten globule state of human alpha-lactalbumin (alphaLA). A peptide consisting of residues 1-38 crosslinked, via the native 28-111 disulfide bond, to a peptide corresponding to residues 95-120 forms a partially folded state at pH 2.8 which has all of the characteristics of the molten globule state of alphaLA as judged by near and far UV CD, fluorescence, ANS binding and urea denaturation experiments. The structure of the peptide construct is the same at pH 7.0. Deletion of residues 95-100 from the construct has little effect. Thus, less than half the sequence is required to form a molten globule. Further truncation corresponding to the selective deletion of the A (residues 1-19) or D (residues 101-110) helices or the C-terminal 310 helix (residues 112-120) leads to a significant loss of structure. The loss of structure which results from the deletion of any of these three regions is much greater than that which would be expected based upon the non-cooperative loss of local helical structure. Deletion of residues corresponding to the region of the D helix or C-terminal 310 helix region results in a peptide construct which is largely unfolded and contains no more helical structure than is expected from the sum of the helicity of the two reduced peptides. These experiments have defined the minimum core structure of the alphaLA molten globule state.
Collapse
Affiliation(s)
- S J Demarest
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | | | | | | |
Collapse
|
44
|
Evans SP, Bycroft M. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. J Mol Biol 1999; 291:661-9. [PMID: 10448044 DOI: 10.1006/jmbi.1999.2971] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to the conserved and well-defined RNase H domain, eukaryotic RNases HI possess either one or two copies of a small N-terminal domain. The solution structure of one of the N-terminal domains from Saccharomyces cerevisiae RNase HI, determined using NMR spectroscopy, is presented. The 46 residue motif comprises a three-stranded antiparallel beta-sheet and two short alpha-helices which pack onto opposite faces of the beta-sheet. Conserved residues involved in packing the alpha-helices onto the beta-sheet form the hydrophobic core of the domain. Three highly conserved and solvent exposed residues are implicated in RNA binding, W22, K38 and K39. The beta-beta-alpha-beta-alpha topology of the domain differs from the structures of known RNA binding domains such as the double-stranded RNA binding domain (dsRBD), the hnRNP K homology (KH) domain and the RNP motif. However, structural similarities exist between this domain and the N-terminal domain of ribosomal protein L9 which binds to 23 S ribosomal RNA.
Collapse
Affiliation(s)
- S P Evans
- Cambridge Centre for Protein Engineering, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
45
|
Ghoshal AK. Minithioredoxin: a folded and functional peptide fragment of thioredoxin. Biochem Biophys Res Commun 1999; 261:676-81. [PMID: 10441485 DOI: 10.1006/bbrc.1999.1098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A peptide fragment comprising the first 83 residues from the N-terminus of E. coli thioredoxin is purified by hydroxylamine cleavage of the intact protein. At physiological pH, the secondary and tertiary structure contents of the peptide are 70 and 35%, respectively, compared to the intact protein. Peptide 83 is able to display dual biological functions of thioredoxin, namely, a substrate for the enzyme E. coli thioredoxin-reductase and a processivity factor of T7 DNA polymerase. At present, peptide 83 represents the minimum functional and folding unit of thioredoxin. The highly conserved residue Phe 81 appears to play an important role in the folding of peptide 83, as judged from the packing analysis. Peptide 83 also mimics a particular kinetic folding intermediate of thioredoxin in terms of spectral properties and may serve as an equilibrium peptide model for the former.
Collapse
Affiliation(s)
- A K Ghoshal
- Molecular Biophysics Unit (MBU), Indian Institute of Science (IISc), Bangalore, Pin-, 560 012, India.
| |
Collapse
|
46
|
Luisi DL, Kuhlman B, Sideras K, Evans PA, Raleigh DP. Effects of varying the local propensity to form secondary structure on the stability and folding kinetics of a rapid folding mixed alpha/beta protein: characterization of a truncation mutant of the N-terminal domain of the ribosomal protein L9. J Mol Biol 1999; 289:167-74. [PMID: 10339414 DOI: 10.1006/jmbi.1999.2742] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal domain of the ribosomal protein L9 forms a split betaalphabeta structure with a long C-terminal helix. The folding transitions of a 56 residue version of this protein have previously been characterized, here we report the results of a study of a truncation mutant corresponding to residues 1-51. The 51 residue protein adopts the same fold as the 56 residue protein as judged by CD and two-dimensional NMR, but it is less stable as judged by chemical and thermal denaturation experiments. Studies with synthetic peptides demonstrate that the C-terminal helix of the 51 residue version has very little propensity to fold in isolation in contrast to the C-terminal helix of the 56 residue variant. The folding rates of the two proteins, as measured by stopped-flow fluorescence, are essentially identical, indicating that formation of local structure in the C-terminal helix is not involved in the rate-limiting step of folding.
Collapse
Affiliation(s)
- D L Luisi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | | | |
Collapse
|
47
|
Luisi DL, Wu WJ, Raleigh DP. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state. J Mol Biol 1999; 287:395-407. [PMID: 10080901 DOI: 10.1006/jmbi.1999.2595] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable interest in the structure of the denatured state and in the role local interactions play in protein stability and protein folding. Studies of peptide fragments provide one method to assess local conformational preferences which may be present in the denatured state under native-like conditions. A set of peptides corresponding to the individual elements of secondary structure derived from the N-terminal domain of the ribosomal protein L9 have been synthesized. This small 56 residue protein adopts a mixed alpha-beta topology and has been shown to fold rapidly in an apparent two-state fashion. The conformational preferences of each peptide have been analyzed by proton nuclear magnetic resonance spectroscopy and circular dichroism spectroscopy. Peptides corresponding to each of the three beta-stands and to the first alpha-helix are unstructured as judged by CD and NMR. In contrast, a peptide corresponding to the C-terminal helix is remarkably structured. This 17 residue peptide is 53 % helical at pH 5.4, 4 degrees C. Two-dimensional NMR studies demonstrate that the helical structure is distributed approximately uniformly throughout the peptide, although there is some evidence for fraying at the C terminus. Detailed analysis of the NMR spectra indicate that the helix is stabilized, in part, by a native N-capping interaction involving Thr40. A mutant peptide which lacks Thr40 is only 32 % helical. pH and ionic strength-dependent studies suggested that charge charge interactions make only a modest net contribution to the stability of the peptide. The protein contains a trans proline peptide bond located at the first position of the C-terminal helix. NMR analysis of the helical peptide and of a smaller peptide containing the proline residue indicates that only a small amount of cis proline isomer (8 %) is likely to be populated in the unfolded state.
Collapse
Affiliation(s)
- D L Luisi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | | | | |
Collapse
|
48
|
Kuhlman B, Luisi DL, Evans PA, Raleigh DP. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J Mol Biol 1998; 284:1661-70. [PMID: 9878377 DOI: 10.1006/jmbi.1998.2246] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding and unfolding kinetics of the N-terminal domain of the ribosomal protein L9 have been measured at temperatures between 7 and 85 degrees C and between 0 and 6 M guanidine deuterium chloride. Stopped-flow fluorescence was used to measure rates below 55 degrees C and NMR lineshape analysis was used above 55 degrees C. The amplitudes and rate profiles of the stopped-flow fluorescence experiments are consistent with a two-state folding mechanism, and plots of ln(k) versus guanidine deuterium chloride concentration show the classic v-shape indicative of two-state folding. There is no roll over in the plots when the experiments are repeated in the presence of 400 mM sodium sulfate. Temperature and denaturant effects were fit simultaneously to the simple model k=D exp(-DeltaG*/RT) where DeltaG* represents the change in apparent free energy between the transition state and the folded or unfolded state and D represents the maximum possible folding speed. DeltaG* is assumed to vary linearly with denaturant concentration and the Gibbs-Helmholtz equation is used to model stability changes with temperature. Approximately 60% of the surface area buried upon folding is buried in the transition state as evidenced by changes in the heat capacity and m value between the unfolded state and the transition state. The equilibrium thermodynamic parameters, DeltaCp degrees, m and DeltaG degrees, all agree with the values calculated from the kinetic experiments, providing additional evidence that folding is two-state. The folding rates at 0 M guanidine hydrochloride show a non-Arrhenius temperature dependence typical of globular proteins. When the folding rates are examined along constant DeltaG degrees/T contours they display an Arrhenius temperature dependence with a slope of -8600 K. This indicates that for this system, the non-Arrhenius temperature dependence of folding can be accounted for by the anomalous temperature dependence of the interactions which stabilize proteins.
Collapse
Affiliation(s)
- B Kuhlman
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | | | | | | |
Collapse
|
49
|
Kuhlman B, Raleigh DP. Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, deltaH(o), deltaS(o), and deltaC(o)p and evaluation of solvent isotope effects. Protein Sci 1998; 7:2405-12. [PMID: 9828007 PMCID: PMC2143857 DOI: 10.1002/pro.5560071118] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.
Collapse
Affiliation(s)
- B Kuhlman
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | |
Collapse
|
50
|
Vugmeyster L, Kuhlman B, Raleigh DP. Amide proton exchange measurements as a probe of the stability and dynamics of the N-terminal domain of the ribosomal protein L9: comparison with the intact protein. Protein Sci 1998; 7:1994-7. [PMID: 9761480 PMCID: PMC2144167 DOI: 10.1002/pro.5560070915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amide H/D exchange rates have been measured for the N-terminal domain of the ribosomal protein L9, residues 1-56. The rates were measured at pD 3.91, 5.03, and 5.37. At pD 5.37, 18 amides exchange slowly enough to give reliable rate measurements. At pD 3.91, seven additional residues could be followed. The exchange is shown to occur by the EX2 mechanism for all conditions studied. The rates for the N-terminal domain are very similar to those previously measured for the corresponding region in the full-length protein (Lillemoen J et al., 1997, J Mol Biol 268:482-493). In particular, the rates for the residues that we have shown to exchange via global unfolding in the N-terminal domain agree within the experimental error with the rates measured by Hoffman and coworkers, suggesting that the structure of the domain is preserved in isolation and that the stability of the isolated domain is comparable to the stability of this domain in intact L9.
Collapse
Affiliation(s)
- L Vugmeyster
- Department of Chemistry, State University of New York at Stony Brook, 11794-3400, USA
| | | | | |
Collapse
|