1
|
Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Nat Commun 2018; 9:4865. [PMID: 30451861 PMCID: PMC6242847 DOI: 10.1038/s41467-018-07321-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023] Open
Abstract
The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Elisabeth Fuchs
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Aaron Siewert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0314, USA
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eric Westhof
- Architecture and Reactivity of RNA, Institute of Molecular and Cellular Biology of the CNRS UPR9002/University of Strasbourg, Strasbourg, 67084, France
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Plochowietz A, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Res 2016; 45:926-937. [PMID: 27625389 PMCID: PMC5314786 DOI: 10.1093/nar/gkw787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 07/29/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022] Open
Abstract
Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 μm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.
Collapse
Affiliation(s)
- Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Ian Farrell
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA.,Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Zeev Smilansky
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| |
Collapse
|
3
|
Vestergaard B, Sayers Z. Investigating increasingly complex macromolecular systems with small-angle X-ray scattering. IUCRJ 2014; 1:523-9. [PMID: 25485132 PMCID: PMC4224470 DOI: 10.1107/s2052252514020843] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/17/2014] [Indexed: 05/04/2023]
Abstract
The biological solution small-angle X-ray scattering (BioSAXS) field has undergone tremendous development over recent decades. This means that increasingly complex biological questions can be addressed by the method. An intricate synergy between advances in hardware and software development, data collection and evaluation strategies and implementations that readily allow integration with complementary techniques result in significant results and a rapidly growing user community with ever increasing ambitions. Here, a review of these developments, by including a selection of novel BioSAXS method-ologies and recent results, is given.
Collapse
Affiliation(s)
- Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
- Correspondence e-mail:
| | - Zehra Sayers
- Faculty of Engineering and Natural Science, Sabanci University, Orhanli, Istanbul Tuzla 34956, Turkey
| |
Collapse
|
4
|
Giel-Pietraszuk M, Barciszewski J. Hydrostatic and osmotic pressure study of the RNA hydration. Mol Biol Rep 2012; 39:6309-18. [PMID: 22314910 PMCID: PMC3310992 DOI: 10.1007/s11033-012-1452-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/23/2012] [Indexed: 11/17/2022]
Abstract
The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and osmotic pressure to analyze changes in RNA hydration. We analyzed the lead catalyzed hydrolysis of tRNAPhe from S. cerevisiae as well as hydrolytic activity of leadzyme. Pb(II) induced hydrolysis of the single phosphodiester bond in tRNAPhe is accompanied by release of 98 water molecules, while other molecule, leadzyme releases 86.
Collapse
Affiliation(s)
- Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | | |
Collapse
|
5
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
6
|
Hetrick B, Khade PK, Lee K, Stephen J, Thomas A, Joseph S. Polyamines accelerate codon recognition by transfer RNAs on the ribosome. Biochemistry 2010; 49:7179-89. [PMID: 20666453 DOI: 10.1021/bi1009776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selection of aminoacyl-tRNAs by the ribosome is a fundamental step in the elongation cycle of protein synthesis. tRNA selection is a multistep process that ensures only correct aminoacyl-tRNAs are accepted while incorrect aminoacyl-tRNAs are rejected. A key step in tRNA selection is the formation of base pairs between the anticodon of the aminoacyl-tRNA and the mRNA codon in the A site, called "codon recognition". Here, we report the development of a new, fluorescence-based, kinetic assay for monitoring codon recognition by the ribosome. Using this assay, we show that codon recognition is a second-order binding step under optimal conditions. Additionally, we show that at low Mg(2+) concentrations, the polyamines spermine and spermidine stimulate codon recognition by the ribosome without a loss of fidelity. Polyamines may accelerate codon recognition by altering the structure and dynamics of the anticodon arm of the aminoacyl-tRNA.
Collapse
Affiliation(s)
- Byron Hetrick
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0314, USA
| | | | | | | | | | | |
Collapse
|
7
|
X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 2008; 40:191-285. [PMID: 18078545 DOI: 10.1017/s0033583507004635] [Citation(s) in RCA: 864] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crystallography supplies unparalleled detail on structural information critical for mechanistic analyses; however, it is restricted to describing low energy conformations of macromolecules within crystal lattices. Small angle X-ray scattering (SAXS) offers complementary information about macromolecular folding, unfolding, aggregation, extended conformations, flexibly linked domains, shape, conformation, and assembly state in solution, albeit at the lower resolution range of about 50 A to 10 A resolution, but without the size limitations inherent in NMR and electron microscopy studies. Together these techniques can allow multi-scale modeling to create complete and accurate images of macromolecules for modeling allosteric mechanisms, supramolecular complexes, and dynamic molecular machines acting in diverse processes ranging from eukaryotic DNA replication, recombination and repair to microbial membrane secretion and assembly systems. This review addresses both theoretical and practical concepts, concerns and considerations for using these techniques in conjunction with computational methods to productively combine solution scattering data with high-resolution structures. Detailed aspects of SAXS experimental results are considered with a focus on data interpretation tools suitable to model protein and nucleic acid macromolecular structures, including membrane protein, RNA, DNA, and protein-nucleic acid complexes. The methods discussed provide the basis to examine molecular interactions in solution and to study macromolecular flexibility and conformational changes that have become increasingly relevant for accurate understanding, simulation, and prediction of mechanisms in structural cell biology and nanotechnology.
Collapse
|
8
|
Masullo M, Cantiello P, Arcari P. Archaeal elongation factor 1alpha from Sulfolobus solfataricus interacts with the eubacterial antibiotic GE2270A. Extremophiles 2004; 8:499-505. [PMID: 15290325 DOI: 10.1007/s00792-004-0410-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
The thiazolyl-peptide antibiotic GE2270A, an inhibitor of the elongation factor Tu from Escherichia coli (EcEF-Tu), was used to study the effects produced in the biochemical properties of the archaeal functional analogue elongation factor 1alpha from Sulfolobus solfataricus (SsEF-1alpha). GE2270A did not substantially affect the poly(U)-directed-polyPhe incorporation catalyzed by SsEF-1alpha and the formation of the ternary complex SsEF-1alpha.GTP.Phe-tRNAPhe. On the other hand, the antibiotic was able to increase the GDP/GTP exchange rate of SsEF-1alpha; nevertheless, this improvement was not associated with an increase in the catalytic activity of the enzyme. In fact, GE2270A inhibited both the intrinsic GTPase of SsEF-1alpha (GTPaseNa) and that stimulated by ribosomes. Interestingly, GTPaseNa of both intact and C-terminal-deleted SsEF-1alpha resulted in a greater sensitivity to the antibiotic with respect to SsEF-1alpha lacking both the M- and C-terminal domains. This result suggested that, similar to what is found for EcEF-Tu, the M domain of SsEF-1alpha is the region of the enzyme most responsible for the interaction with GE2270A. The different behavior observed in the inhibition of protein synthesis with respect to EcEF-Tu can be ascribed to the different adaptive structural changes that have occurred in SsEF-1alpha during evolution.
Collapse
Affiliation(s)
- Mariorosario Masullo
- Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro Magna Graecia, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | | | | |
Collapse
|
9
|
Krab IM, Parmeggiani A. Mechanisms of EF-Tu, a pioneer GTPase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:513-51. [PMID: 12102560 DOI: 10.1016/s0079-6603(02)71050-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review considers several aspects of the function of EF-Tu, a protein that has greatly contributed to the advancement of our knowledge of both protein biosynthesis and GTP-binding proteins in general. A number of topics are described with emphasis on the function-structure relationships, in particular of EF-Tu's domains, the nucleotide-binding site, and the magnesium-binding network. Aspects related to the interaction with macromolecular ligands and antibiotics and to folding and GTPase activity are also presented and discussed. Comments and criticism are offered to draw attention to remaining discrepancies and problems.
Collapse
Affiliation(s)
- Ivo M Krab
- Laboratory of Biophysics, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
10
|
Vachette P, Koch MHJ, Svergun DI. Looking behind the Beamstop: X-Ray Solution Scattering Studies of Structure and Conformational Changes of Biological Macromolecules. Methods Enzymol 2003; 374:584-615. [PMID: 14696389 DOI: 10.1016/s0076-6879(03)74024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Petrushenko ZM, Budkevich TV, Shalak VF, Negrutskii BS, El'skaya AV. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4811-8. [PMID: 12354112 DOI: 10.1046/j.1432-1033.2002.03178.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multimolecular complexes involving the eukaryotic elongation factor 1A (eEF1A) have been suggested to play an important role in the channeling (vectorial transfer) of tRNA during protein synthesis [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. Mol. Biol. 60, 47-78]. Recently we have demonstrated that besides performing its canonical function of forming a ternary complex with GTP and aminoacyl-tRNA, the mammalian eEF1A can produce a noncanonical ternary complex with GDP and uncharged tRNA [Petrushenko, Z.M., Negrutskii, B.S., Ladokhin, A.S., Budkevich, T.V., Shalak, V.F. & El'skaya, A.V. (1997) FEBS Lett. 407, 13-17]. The [eEF1A.GDP.tRNA] complex has been hypothesized to interact with aminoacyl-tRNA synthetase (ARS) resulting in a quaternary complex where uncharged tRNA is transferred to the enzyme for aminoacylation. Here we present the data on association of the [eEF1A.GDP.tRNA] complex with phenylalanyl-tRNA synthetase (PheRS), e.g. the formation of the above quaternary complex detected by the gel-retardation and surface plasmon resonance techniques. To estimate the stability of the novel ternary and quaternary complexes of eEF1A the fluorescence method and BIAcore analysis were used. The dissociation constants for the [eEF1A.GDP.tRNA] and [eEF1A.GDP.tRNAPhe.PheRS] complexes were found to be 20 nm and 9 nm, respectively. We also revealed a direct interaction of PheRS with eEF1A in the absence of tRNAPhe (Kd = 21 nm). However, the addition of tRNAPhe accelerated eEF1A.GDP binding to the enzyme. A possible role of these stable novel ternary and quaternary complexes of eEF1A.GDP with tRNA and ARS in the channeled elongation cycle is discussed.
Collapse
Affiliation(s)
- Zoya M Petrushenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | | | | | | |
Collapse
|
12
|
Pérez J, Vachette P, Russo D, Desmadril M, Durand D. Heat-induced unfolding of neocarzinostatin, a small all-β protein investigated by small-angle X-ray scattering 1 1Edited by M. F. Moody. J Mol Biol 2001; 308:721-43. [PMID: 11350171 DOI: 10.1006/jmbi.2001.4611] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neocarzinostatin is an all-beta protein, 113 amino acid residues long, with an immunoglobulin-like fold. Its thermal unfolding has been studied by small-angle X-ray scattering. Preliminary differential scanning calorimetry and fluorescence measurements suggest that the transition is not a simple, two-state transition. The apparent radius of gyration is determined using three different approaches, the validity of which is critically assessed using our experimental data as well as a simple, two-state model. Similarly, each step of data analysis is evaluated and the underlying assumptions plainly stated. The existence of at least one intermediate state is formally demonstrated by a singular value decomposition of the set of scattering patterns. We assume that the pattern of the solution before the onset of the transition is that of the native protein, and that of the solution at the highest temperature is that of the completely unfolded protein. Given these, actually not very restrictive, boundary constraints, a least-squares procedure yields a scattering pattern of the intermediate state. However, this solution is not unique: a whole class of possible solutions is derived by adding to the previous linear combination of the native and completely unfolded states. Varying the initial conditions of the least-squares calculation leads to very similar solutions. Whatever member of the class is considered, the conformation of this intermediate state appears to be weakly structured, probably less than the transition state should be according to some proposals. Finally, we tried and used the classical model of three thermodynamically well-defined states to account for our data. The failure of the simple thermodynamic model suggests that there is more than the single intermediate structure required by singular value decomposition analysis. Formally, there could be several discrete intermediate species at equilibrium, or an ensemble of conformations differently populated according to the temperature. In the latter case, a third state would be a weighted average of all non native and not completely unfolded states of the protein but, since the weights change with temperature, no meaningful curve is likely to be derived by a global analysis using the simple model of three thermodynamically well-defined states.
Collapse
Affiliation(s)
- J Pérez
- LURE, Orsay Cédex, 91898, France
| | | | | | | | | |
Collapse
|
13
|
Raimo G, Masullo M, Lombardo B, Bocchini V. The archaeal elongation factor 1alpha bound to GTP forms a ternary complex with eubacterial and eukaryal aminoacyl-tRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6012-8. [PMID: 10998062 DOI: 10.1046/j.1432-1327.2000.01678.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The archaeal Sulfolobus solfataricus elongation factor 1alpha (SsEF-1alpha) bound to GTP or to its analogue guanyl-5'-yl imido diphosphate [Gpp(NH)p] formed a ternary complex with either Escherichia coli Val-tRNAVal or Saccharomyces cerevisiae Phe-tRNAPhe as demonstrated by gel-shift and gel-filtration experiments. Evidence of such an interaction also came from the observation that SsEF-1alphaz.rad;Gpp(NH)p was able to display a protective effect against either the spontaneous deacylation or the digestion of aminoacyl-tRNA by RNase A. Protection against the deacylation of aminoacyl-tRNA allowed evaluatation of the affinity of SsEF-1alphaz. rad;Gpp(NH)p for both aminoacyl-tRNAs used. The K'd values of the ternary complex containing S. cerevisiae Phe-tRNAPhe or E. coli Val-tRNAVal were 0.3 microM and 4.4 microM, respectively. In both cases, the affinity of SsEF-1alphaz.rad;Gpp(NH)p for aminoacyl-tRNA was three orders of magnitude lower than that of the homologous eubacterial ternary complexes, but comparable with the affinity shown by the ternary complex involving eukaryal EF-1alpha [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. 60, 47-77]. As already observed with eukaryal EF-1alpha, SsEF-1alpha in its GDP-bound form was also able to protect the ester bond of aminoacyl-tRNA, even though with a 10-fold lower efficiency compared with SsEF-1alphaz.rad;Gpp(NH)p. The overall results indicated that the archaeal elongation factor 1alpha shares several properties with eukaryal EF-1alpha but not with eubacterial EF-Tu.
Collapse
Affiliation(s)
- G Raimo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| | | | | | | |
Collapse
|
14
|
Svergun DI, Petoukhov MV, Koch MH, König S. Crystal versus solution structures of thiamine diphosphate-dependent enzymes. J Biol Chem 2000; 275:297-302. [PMID: 10617618 DOI: 10.1074/jbc.275.1.297] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of the thiamine diphosphate-dependent enzymes transketolase (EC 2.2.1.1; from Saccharomyces cerevisiae), pyruvate oxidase (EC 1.2.3.3; from Lactobacillus plantarum), and pyruvate decarboxylase (EC 4.1.1.1; from Zymomonas mobilis and brewers' yeast, the latter in the native and pyruvamide-activated forms) were examined by synchrotron x-ray solution scattering. The experimental scattering data were compared with the curves calculated from the crystallographic models of these multisubunit enzymes. For all enzymes noted above, except the very compact pyruvate decarboxylase from Z. mobilis, there were significant differences between the experimental and calculated profiles. The changes in relative positions of the subunits in solution were determined by rigid body refinement. For pyruvate oxidase and transketolase, which have tight intersubunit contacts in the crystal, relatively small modifications of the quaternary structure (root mean square displacements of 0.23 and 0.27 nm, respectively) sufficed to fit the experimental data. For the enzymes with looser contacts (the native and activated forms of yeast pyruvate decarboxylase), large modifications of the crystallographic models (root mean square displacements of 0.58 and 1.53 nm, respectively) were required. A clear correlation was observed between the magnitude of the distortions induced by the crystal environment and the interfacial area between subunits.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Deutsches Elektronen Synchrotron, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | |
Collapse
|
15
|
Clark BF, Thirup S, Kjeldgaard M, Nyborg J. Structural information for explaining the molecular mechanism of protein biosynthesis. FEBS Lett 1999; 452:41-6. [PMID: 10376675 DOI: 10.1016/s0014-5793(99)00562-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein biosynthesis is controlled by a number of proteins external to the ribosome. Of these, extensive structural investigations have been performed on elongation factor-Tu and elongation factor-G. This now gives a rather complete structural picture of the functional cycle of elongation factor-Tu and especially of the elongation phase of protein biosynthesis. The discovery that three domains of elongation factor-G are structurally mimicking the amino-acylated tRNA in the ternary complex of elongation factor-Tu has been the basis of much discussion of the functional similarities and functional differences of elongation factor-Tu and elongation factor-G in their interactions with the ribosome. Elongation factor-G:GDP is now thought to leave the ribosome in a state ready for checking the codon-anticodon interaction of the aminoacyl-tRNA contained in the ternary complex of elongation factor-Tu. Elongation factor-G does this by mimicking the shape of the ternary complex. Other translation factors such as the initiation factor-2 and the release factor 1 or 2 are also thought to mimic tRNA. These observations raise questions concerning the possible evolution of G-proteins involved in protein biosynthesis.
Collapse
Affiliation(s)
- B F Clark
- Institute of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
16
|
Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 1999; 76:2879-86. [PMID: 10354416 PMCID: PMC1300260 DOI: 10.1016/s0006-3495(99)77443-6] [Citation(s) in RCA: 1683] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method is proposed to restore ab initio low resolution shape and internal structure of chaotically oriented particles (e.g., biological macromolecules in solution) from isotropic scattering. A multiphase model of a particle built from densely packed dummy atoms is characterized by a configuration vector assigning the atom to a specific phase or to the solvent. Simulated annealing is employed to find a configuration that fits the data while minimizing the interfacial area. Application of the method is illustrated by the restoration of a ribosome-like model structure and more realistically by the determination of the shape of several proteins from experimental x-ray scattering data.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg, Germany and Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
17
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|