1
|
Wang Y, Ji Y, Sun L, Huang Z, Ye S, Xuan W. A Sirtuin-Dependent T7 RNA Polymerase Variant. ACS Synth Biol 2024; 13:54-60. [PMID: 38117980 DOI: 10.1021/acssynbio.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Transcriptional regulation is of great significance for cells to maintain homeostasis and, meanwhile, represents an innovative but less explored means to control biological processes in synthetic biology and bioengineering. Herein we devised a T7 RNA polymerase (T7RNAP) variant through replacing an essential lysine located in the catalytic core (K631) with Nε-acetyl-l-lysine (AcK) via genetic code expansion. This T7RNAP variant requires the deacetylase activity of NAD-dependent sirtuins to recover its enzymatic activities and thereby sustains sirtuin-dependent transcription of the gene of interest in live cells including bacteria and mammalian cells as well as in in vitro systems. This T7RNAP variant could link gene transcription to sirtuin expression and NAD availability, thus holding promise to support some relevant research.
Collapse
Affiliation(s)
- Yongan Wang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yanli Ji
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Sun
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhifen Huang
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weimin Xuan
- Frontiers Science Center for Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Hemphill J, Chou C, Chin JW, Deiters A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J Am Chem Soc 2013; 135:13433-9. [PMID: 23931657 DOI: 10.1021/ja4051026] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photocaging provides a method to spatially and temporally control biological function and gene expression with high resolution. Proteins can be photochemically controlled through the site-specific installation of caging groups on amino acid side chains that are essential for protein function. The photocaging of a synthetic gene network using unnatural amino acid mutagenesis in mammalian cells was demonstrated with an engineered bacteriophage RNA polymerase. A caged T7 RNA polymerase was expressed in cells with an expanded genetic code and used in the photochemical activation of genes under control of an orthogonal T7 promoter, demonstrating tight spatial and temporal control. The synthetic gene expression system was validated with two reporter genes (luciferase and EGFP) and applied to the light-triggered transcription of short hairpin RNA constructs for the induction of RNA interference.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
3
|
Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 2009; 139:934-44. [PMID: 19945377 DOI: 10.1016/j.cell.2009.10.031] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/23/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022]
Abstract
Transcription in human mitochondria is carried out by a single-subunit, T7-like RNA polymerase assisted by several auxiliary factors. We demonstrate that an essential initiation factor, TFB2, forms a network of interactions with DNA near the transcription start site and facilitates promoter melting but may not be essential for promoter recognition. Unexpectedly, catalytic autolabeling reveals that TFB2 interacts with the priming substrate, suggesting that TFB2 acts as a transient component of the catalytic site of the initiation complex. Mapping of TFB2 identifies a region of its N-terminal domain that is involved in simultaneous interactions with the priming substrate and the templating (+1) DNA base. Our data indicate that the transcriptional machinery in human mitochondria has evolved into a system that combines features inherited from self-sufficient, T7-like RNA polymerase and those typically found in systems comprising cellular multi-subunit polymerases, and provide insights into the molecular mechanisms of transcription regulation in mitochondria.
Collapse
Affiliation(s)
- Marina Sologub
- Department of Cell Biology, UMDNJ, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | | | | | | |
Collapse
|
4
|
Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG. Structural basis for substrate selection by t7 RNA polymerase. Cell 2004; 116:381-91. [PMID: 15016373 DOI: 10.1016/s0092-8674(04)00059-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/12/2003] [Accepted: 12/22/2003] [Indexed: 01/22/2023]
Abstract
The mechanism by which nucleotide polymerases select the correct substrate is of fundamental importance to the fidelity of DNA replication and transcription. During the nucleotide addition cycle, pol I DNA polymerases undergo the transition from a catalytically inactive "open" to an active "closed" conformation. All known determinants of substrate selection are associated with the "closed" state. To elucidate if this mechanism is conserved in homologous single subunit RNA polymerases (RNAPs), we have determined the structure of T7 RNAP elongation complex with the incoming substrate analog. Surprisingly, the substrate specifically binds to RNAP in the "open" conformation, where it is base paired with the acceptor template base, while Tyr639 provides discrimination of ribose versus deoxyribose substrates. The structure therefore suggests a novel mechanism, in which the substrate selection occurs prior to the isomerization to the catalytically active conformation. Modeling of multisubunit RNAPs suggests that this mechanism might be universal for all RNAPs.
Collapse
Affiliation(s)
- Dmitry Temiakov
- Morse Institute for Molecular Genetics, Department of Microbiology, SUNY Health Science Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
5
|
Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 2002; 420:43-50. [PMID: 12422209 DOI: 10.1038/nature01129] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/19/2002] [Indexed: 01/22/2023]
Abstract
The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA-DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130 degrees rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA-DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.
Collapse
Affiliation(s)
- Tahir H Tahirov
- High Throughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Kazmierczak K, Davydova E, Mustaev A, Rothman-Denes L. The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases. EMBO J 2002; 21:5815-23. [PMID: 12411499 PMCID: PMC131081 DOI: 10.1093/emboj/cdf584] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vitro, bacteriophage N4 virion RNA polymerase (vRNAP) recognizes in vivo sites of transcription initiation on single-stranded templates. N4 vRNAP promoters are comprised of a hairpin structure and conserved sequences. Here, we show that vRNAP consists of a single 3500 amino acid polypeptide, and we define and characterize a transcriptionally active 1106 amino acid domain (mini-vRNAP). Biochemical and genetic characterization of this domain indicates that, despite its peculiar promoter specificity and lack of extensive sequence similarity to other DNA-dependent RNA polymerases, mini-vRNAP is related to the family of T7-like RNA polymerases.
Collapse
Affiliation(s)
- K.M. Kazmierczak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - E.K. Davydova
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - A.A. Mustaev
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| | - L.B. Rothman-Denes
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637 and Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA Present address: Lilly Research Laboratories, Indianapolis, IN 46285, USA Corresponding author e-mail: K.M.Kazmierczak and E.K.Davydova contributed equally to this work
| |
Collapse
|
7
|
Kuzmine I, Martin CT. Pre-steady-state kinetics of initiation of transcription by T7 RNA polymerase: a new kinetic model. J Mol Biol 2001; 305:559-66. [PMID: 11152612 DOI: 10.1006/jmbi.2000.4316] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to begin to understand the mechanism of the initiation of transcription in the model bacteriophage T7 RNA polymerase system, the simplest possible reaction, the synthesis of a dinucleotide, has been followed by quench-flow kinetics and numerical integration of mechanism-specific rate equations has been used to test specific kinetic models. In order to fit the observed time dependence in the pre-steady-state kinetics, a model for dinucleotide synthesis is proposed in which rebinding of the dinucleotide to the enzyme-DNA complex must be included. Separate reactions using dinucleotide as a substrate confirm this mechanism and the determined rate constants. The dinucleotide rebinding observed as inhibition under these conditions forms a productive intermediate in the synthesis of longer transcripts, and must be included in future kinetic mechanisms. The rate-limiting step leading to product formation shows a substrate dependence consistent with the binding of two substrate GTP molecules, and at saturating levels of GTP, is comparable in magnitude to the product release rate. The rate of product release shows a positive correlation with the concentration of GTP, suggesting that the reaction shows base-specific substrate activation. The binding of another substrate molecule, presumably via interaction with the triphosphate binding site, likely facilitates displacement of the dinucleotide product from the complex.
Collapse
Affiliation(s)
- I Kuzmine
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003-4510, USA
| | | |
Collapse
|
8
|
Huang J, Villemain J, Padilla R, Sousa R. Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription. J Mol Biol 1999; 293:457-75. [PMID: 10543943 DOI: 10.1006/jmbi.1999.3135] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T7 lysozyme binds to T7 RNA polymerase (RNAP) and regulates its transcription by differentially repressing initiation from different T7 promoters. This selective repression is due in part to a lysozyme-induced increase in the KNTP of the initiation complex (IC) and to intrinsically different NTP concentration requirements for efficient initiation from different T7 promoters. While lysozyme represses initiation, once the enzyme has left the promoter and formed an elongation complex (EC) it is generally resistant to the effects of lysozyme. The mechanism by which the inhibitory effects of lysozyme are largely restricted to the initiation phase of transcription is not well understood. We find that T7 lysozyme destabilizes initial transcription complexes (ITCs) and increases the rate of release of transcripts from these complexes but does not destabilize ECs. However, if the RNA:RNAP interaction proposed to be important for EC stability is disrupted by proteolysis of the RNA-binding domain or use of templates which interfere with establishment of this RNA:RNAP interaction, the EC becomes sensitive to lysozyme. Comparison of the X-ray structures of T7RNAP and of a T7RNAP:T7 lysozyme complex reveals that lysozyme causes the C terminus of the polymerase to flip out of the active site. Experiments in which carboxypeptidase A is used to probe the lysozyme-induced exposure of the C terminus reveal a large decrease in carboxypeptidase sensitivity following transcription initiation, suggesting that interactions with the 3'-end of the RNA help stabilize the active site in a functional (carboxypeptidase protected) conformation. Thus, the resistance of the EC to lysozyme appears to be due to the consecutive establishment of two sets of RNA:RNAP interactions. The first is made with the 3'-end of the RNA and helps stabilize a functional conformation of the active site, thereby suppressing the effects of lysozyme on KNTP. The second is made with a more upstream element of the RNA and keeps the EC from being destabilized by lysozyme binding.
Collapse
Affiliation(s)
- J Huang
- Department of Biochemistry, University of Texas Health Sciences Center, 7703 Floyd Curl Drive, San Antonio, TX, 78284-7760, USA
| | | | | | | |
Collapse
|