1
|
Cheng Z, Lu X, Feng B. A review of research progress of antitumor drugs based on tubulin targets. Transl Cancer Res 2020; 9:4020-4027. [PMID: 35117769 PMCID: PMC8797889 DOI: 10.21037/tcr-20-682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Microtubules exist in all eukaryotic cells and are one of the critical components that make up the cytoskeleton. Microtubules play a crucial role in supporting cell morphology, cell division, and material transport. Tubulin modulators can promote microtubule polymerization or cause microtubule depolymerization. The modulators interfere with the mitosis of cells and inhibit cell proliferation. Tubulin mainly has three binding domains, namely, paclitaxel, vinca and colchicine binding domains, which are the best targets for the development of anticancer drugs. Currently, drugs for tumor therapy have been developed for these three domains. However, due to its narrow therapeutic window, poor selectivity, and susceptibility to drug resistance, it has severely limited clinical applications. The method of combined medication, the change of administration method, the modification of compound structure, and the research and development of new targets have all changed the side effects of tubulin drugs to a certain extent. In this review, we briefly introduce a basic overview of tubulin and the main mechanism of anti-tumor. Secondly, we focus on the application of drugs which developed based on the three domains of tubulin to various cancers in various fields. Finally, we further provide the development progress of tubulin inhibitors currently in clinical trials.
Collapse
Affiliation(s)
- Ziqi Cheng
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Xuan Lu
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Baomin Feng
- College of Life Science and Technology, Dalian University, Dalian, China
| |
Collapse
|
2
|
Howes SC, Geyer EA, LaFrance B, Zhang R, Kellogg EH, Westermann S, Rice LM, Nogales E. Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol 2017; 216:2669-2677. [PMID: 28652389 PMCID: PMC5584162 DOI: 10.1083/jcb.201612195] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/31/2017] [Accepted: 05/30/2017] [Indexed: 01/03/2023] Open
Abstract
Yeast MTs do not appear to undergo the lattice compaction seen in mammalian MTs upon GTP hydrolysis. Binding of the +TIP Bim1, both between and within αβ-tubulin dimers, causes compaction of yeast MTs and their rapid disassembly. Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. Our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.
Collapse
Affiliation(s)
- Stuart C Howes
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Elisabeth A Geyer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Benjamin LaFrance
- Molecular and Cell Biology Graduate Program, University of California, Berkeley, Berkeley, CA
| | - Rui Zhang
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth H Kellogg
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Stefan Westermann
- Department of Molecular Genetics, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Luke M Rice
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eva Nogales
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA .,Department of Molecular Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
3
|
Piedra FA, Kim T, Garza ES, Geyer EA, Burns A, Ye X, Rice LM. GDP-to-GTP exchange on the microtubule end can contribute to the frequency of catastrophe. Mol Biol Cell 2016; 27:3515-3525. [PMID: 27146111 PMCID: PMC5221584 DOI: 10.1091/mbc.e16-03-0199] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/26/2016] [Indexed: 11/11/2022] Open
Abstract
Microtubules are dynamic polymers of αβ-tubulin that have essential roles in chromosome segregation and organization of the cytoplasm. Catastrophe-the switch from growing to shrinking-occurs when a microtubule loses its stabilizing GTP cap. Recent evidence indicates that the nucleotide on the microtubule end controls how tightly an incoming subunit will be bound (trans-acting GTP), but most current models do not incorporate this information. We implemented trans-acting GTP into a computational model for microtubule dynamics. In simulations, growing microtubules often exposed terminal GDP-bound subunits without undergoing catastrophe. Transient GDP exposure on the growing plus end slowed elongation by reducing the number of favorable binding sites on the microtubule end. Slower elongation led to erosion of the GTP cap and an increase in the frequency of catastrophe. Allowing GDP-to-GTP exchange on terminal subunits in simulations mitigated these effects. Using mutant αβ-tubulin or modified GTP, we showed experimentally that a more readily exchangeable nucleotide led to less frequent catastrophe. Current models for microtubule dynamics do not account for GDP-to-GTP exchange on the growing microtubule end, so our findings provide a new way of thinking about the molecular events that initiate catastrophe.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Tae Kim
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Emily S Garza
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Elisabeth A Geyer
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Alexander Burns
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Xuecheng Ye
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
4
|
Geyer EA, Burns A, Lalonde BA, Ye X, Piedra FA, Huffaker TC, Rice LM. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. eLife 2015; 4:e10113. [PMID: 26439009 PMCID: PMC4728127 DOI: 10.7554/elife.10113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking. DOI:http://dx.doi.org/10.7554/eLife.10113.001 Protein filaments called microtubules help move cargo around inside cells. Chromosomes, which contain the cell’s genetic blueprints, are the microtubule’s most precious cargo. Before a cell divides, microtubules grow from the ends of the dividing cell towards the middle, where they attach to the chromosomes that are lined up along the centerline. Then the microtubules shrink and drag the chromosomes back to the opposite ends of the cell. This allows each of the new cells to get one copy of each chromosome. When the microtubules are growing, a molecule called guanosine triphosphate (or GTP) is attached to the proteins at the end of the filament. This acts like a cap and protects the microtubule from shrinking. Later a chemical reaction converts GTP into GDP (short for guanosine diphosphate). Without the protective GTP cap, the microtubule quickly shrinks. At the same time, the proteins that make up the microtubule also change shape. In the microtubule, the proteins adopt a straight shape when GTP is attached. The proteins favor a different shape in the microtubule when GDP is attached. However, it is unclear if or how these shape changes contribute to how a microtubule grows or shrinks. Geyer et al. now show how this shape shifting can influence microtubule shrinking, by first identifying a mutation in yeast microtubule proteins that cause the proteins to remain straight even when GDP is attached. Next, powerful microscopes were used to make time-lapse videos of the mutated microtubules. This allowed Geyer et al. to observe how the mutated microtubules behaved and compare this to the behavior of normal microtubules. The experiments revealed that the mutated microtubules were less likely to begin shrinking than typical microtubules. The mutated microtubules also shrunk more slowly. These findings indicate that the shape changes control the speed of shrinking and frequency of entering the shrinking phase. These new details about the control of microtubule growth and shrinkage may help scientists studying how cell division happens in both healthy and cancerous cells. DOI:http://dx.doi.org/10.7554/eLife.10113.002
Collapse
Affiliation(s)
- Elisabeth A Geyer
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alexander Burns
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Beth A Lalonde
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Xuecheng Ye
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Felipe-Andres Piedra
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Tim C Huffaker
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
5
|
Lee GH, Oh SY, Yeo KJ, Ferdous T, Cho M, Paik Y. Solid-state 31P NMR investigation on the status of guanine nucleotides in paclitaxel-stabilized microtubules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:330-336. [PMID: 25808514 DOI: 10.1002/mrc.4183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by (31)P cross-polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid-state NMR experiments. A (31)P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the (31)P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the (31)P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β-tubulin (E-site) of the microtubules. It was found that most of the GDPs were present as GDP-Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding.
Collapse
Affiliation(s)
- Ga Hyang Lee
- Daegu Center, Korea Basic Science Institute, 80 Daehakro, Bukgu, Daegu, 702-701, Korea; Ochang Center, Korea Basic Science Institute, 162 Yeongudanjiro, Ochangeup, Cheongwongun, Chungcheongbukdo, 363-883, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Margolin G, Gregoretti IV, Cickovski TM, Li C, Shi W, Alber MS, Goodson HV. The mechanisms of microtubule catastrophe and rescue: implications from analysis of a dimer-scale computational model. Mol Biol Cell 2011; 23:642-56. [PMID: 22190741 PMCID: PMC3279392 DOI: 10.1091/mbc.e11-08-0688] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ETOC: The behavior of a dimer-scale computational model predicts that short interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks govern both catastrophe and rescue. Microtubule (MT) dynamic instability is fundamental to many cell functions, but its mechanism remains poorly understood, in part because it is difficult to gain information about the dimer-scale events at the MT tip. To address this issue, we used a dimer-scale computational model of MT assembly that is consistent with tubulin structure and biochemistry, displays dynamic instability, and covers experimentally relevant spans of time. It allows us to correlate macroscopic behaviors (dynamic instability parameters) with microscopic structures (tip conformations) and examine protofilament structure as the tip spontaneously progresses through both catastrophe and rescue. The model's behavior suggests that several commonly held assumptions about MT dynamics should be reconsidered. Moreover, it predicts that short, interprotofilament “cracks” (laterally unbonded regions between protofilaments) exist even at the tips of growing MTs and that rapid fluctuations in the depths of these cracks influence both catastrophe and rescue. We conclude that experimentally observed microtubule behavior can best be explained by a “stochastic cap” model in which tubulin subunits hydrolyze GTP according to a first-order reaction after they are incorporated into the lattice; catastrophe and rescue result from stochastic fluctuations in the size, shape, and extent of lateral bonding of the cap.
Collapse
Affiliation(s)
- Gennady Margolin
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 2008; 322:1353-6. [PMID: 18927356 DOI: 10.1126/science.1165401] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microtubules display dynamic instability, with alternating phases of growth and shrinkage separated by catastrophe and rescue events. The guanosine triphosphate (GTP) cap at the growing end of microtubules, whose presence is essential to prevent microtubule catastrophes in vitro, has been difficult to observe in vivo. We selected a recombinant antibody that specifically recognizes GTP-bound tubulin in microtubules and found that GTP-tubulin was indeed present at the plus end of growing microtubules. Unexpectedly, GTP-tubulin remnants were also present in older parts of microtubules, which suggests that GTP hydrolysis is sometimes incomplete during polymerization. Observations in living cells suggested that these GTP remnants may be responsible for the rescue events in which microtubules recover from catastrophe.
Collapse
Affiliation(s)
- Ariane Dimitrov
- CNRS UMR144, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
8
|
Margolin G, Gregoretti IV, Goodson HV, Alber MS. Analysis of a mesoscopic stochastic model of microtubule dynamic instability. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:041920. [PMID: 17155109 DOI: 10.1103/physreve.74.041920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/13/2006] [Indexed: 05/12/2023]
Abstract
A theoretical model of dynamic instability of a system of linear one-dimensional microtubules (MTs) in a bounded domain is introduced for studying the role of a cell edge in vivo and analyzing the effect of competition for a limited amount of tubulin. The model differs from earlier models in that the evolution of MTs is based on the rates of single-mesoscopic-unit (e.g., a heterodimer per protofilament) transformations, in contrast to postulating effective rates and frequencies of larger-scale macroscopic changes, extracted, e.g., from the length history plots of MTs. Spontaneous GTP hydrolysis with finite rate after polymerization is assumed, and theoretical estimates of an effective catastrophe frequency as well as other parameters characterizing MT length distributions and cap size are derived. We implement a simple cap model which does not include vectorial hydrolysis. We demonstrate that our theoretical predictions, such as steady-state concentration of free tubulin and parameters of MT length distributions, are in agreement with the numerical simulations. The present model establishes a quantitative link between mesoscopic parameters governing the dynamics of MTs and macroscopic characteristics of MTs in a closed system. Last, we provide an explanation for nonexponential MT length distributions observed in experiments. In particular, we show that the appearance of such nonexponential distributions in the experiments can occur because a true steady state has not been reached and/or due to the presence of a cell edge.
Collapse
Affiliation(s)
- Gennady Margolin
- Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
9
|
Folker ES, Baker BM, Goodson HV. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior. Mol Biol Cell 2005; 16:5373-84. [PMID: 16120651 PMCID: PMC1266433 DOI: 10.1091/mbc.e04-12-1106] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CLIP-170 belongs to a group of proteins (+TIPs) with the enigmatic ability to dynamically track growing microtubule plus-ends. CLIP-170 regulates microtubule dynamics in vivo and has been implicated in cargo-microtubule interactions in vivo and in vitro. Though plus-end tracking likely has intimate connections to +TIP function, little is known about the mechanism(s) by which this dynamic localization is achieved. Using a combination of biochemistry and live cell imaging, we provide evidence that CLIP-170 tracks microtubule plus-ends by a preassociation, copolymerization, and regulated release mechanism. As part of this analysis, we find that CLIP-170 has a stronger affinity for tubulin dimer than for polymer, and that CLIP-170 can distinguish between GTP- and GDP-like polymer. This work extends the previous analysis of CLIP-170 behavior in vivo and complements the existing fluorescence microscope characterization of CLIP-170 interactions with microtubules in vitro. In particular, these data explain observations that CLIP-170 localizes to newly polymerized microtubules in vitro but cannot track microtubule plus-ends in vitro. These observations have implications for the functions of CLIP-170 in regulating microtubule dynamics.
Collapse
Affiliation(s)
- Eric S Folker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46565, USA
| | | | | |
Collapse
|
10
|
Newton CN, DeLuca JG, Himes RH, Miller HP, Jordan MA, Wilson L. Intrinsically slow dynamic instability of HeLa cell microtubules in vitro. J Biol Chem 2002; 277:42456-62. [PMID: 12207023 DOI: 10.1074/jbc.m207134200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamic behavior of mammalian microtubules has been extensively studied, both in living cells and with microtubules assembled from purified brain tubulin. To understand the intrinsic dynamic behavior of mammalian nonneural microtubules, we purified tubulin from cultured HeLa cells. We find that HeLa cell microtubules exhibit remarkably slow dynamic instability, spending most of their time in an attenuated state. The tempered dynamics contrast sharply with the dynamics of microtubules prepared from purified bovine brain tubulin under similar conditions. In accord with their minimal dynamic instability, assembled HeLa cell microtubules displayed a slow treadmilling rate and a low guanosine-5'-triphosphate hydrolysis rate at steady state. We find that unlike brain tubulin, which consists of a heterogeneous mixture of beta-tubulin isotypes (beta(II), beta(III), and beta(IV) and a low level of beta(I)), HeLa cell tubulin consists of beta(I) tubulin ( approximately 80%) and a minor amount of beta(IV) tubulin ( approximately 20%). The slow dynamic behavior of HeLa cell microtubules in vitro differs strikingly from the dynamic behavior of microtubules in living cultured mammalian cells, supporting the idea that accessory factors create the robust dynamics that occur in cells.
Collapse
Affiliation(s)
- Cori N Newton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Jánosi IM, Chrétien D, Flyvbjerg H. Structural microtubule cap: stability, catastrophe, rescue, and third state. Biophys J 2002; 83:1317-30. [PMID: 12202357 PMCID: PMC1302230 DOI: 10.1016/s0006-3495(02)73902-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microtubules polymerize from GTP-liganded tubulin dimers, but are essentially made of GDP-liganded tubulin. We investigate the tug-of-war resulting from the fact that GDP-liganded tubulin favors a curved configuration, but is forced to remain in a straight one when part of a microtubule. We point out that near the end of a microtubule, the proximity of the end shifts the balance in this tug-of-war, with some protofilament bending as result. This somewhat relaxes the microtubule lattice near its end, resulting in a structural cap. This structural cap thus is a simple mechanical consequence of two well-established facts: protofilaments made of GDP-liganded tubulin have intrinsic curvature, and microtubules are elastic, made from material that can yield to forces, in casu its own intrinsic forces. We explore possible properties of this structural cap, and demonstrate 1) how it allows both polymerization from GTP-liganded tubulin and rapid depolymerization in its absence; 2) how rescue can occur; 3) how a third, meta-stable intermediate state is possible and can explain some experimental results; and 4) how the tapered tips observed at polymerizing microtubule ends are stabilized during growth, though unable to accommodate a lateral cap. This scenario thus supports the widely accepted GTP-cap model by suggesting a stabilizing mechanism that explains the many aspects of dynamic instability.
Collapse
Affiliation(s)
- Imre M Jánosi
- The Niels Bohr Institute, DK-2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
12
|
Nogales E. Structural insight into microtubule function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:397-420. [PMID: 11441808 DOI: 10.1146/annurev.biophys.30.1.397] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley California 94720, USA.
| |
Collapse
|
13
|
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of /¿-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
14
|
The Chemistry of Movement. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Abstract
Microtubule-based motility in the cell is directly associated with changes in microtubule numbers through nucleation and growth and shrinkage of the polymer from the ends. Recent analysis of spindle pole bodies and kinetochores in yeast reveal how the cell builds specialized structures for association with the ends of microtubules.
Collapse
Affiliation(s)
- W S Saunders
- Department of Biological Sciences 258 Crawford Hall University of Pittsburgh Pittsburgh PA 15260 USA. wsaund+@pitt.edu
| |
Collapse
|