1
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
2
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
3
|
Niland CN, Zhao J, Lin HC, Anderson DR, Jankowsky E, Harris ME. Determination of the Specificity Landscape for Ribonuclease P Processing of Precursor tRNA 5' Leader Sequences. ACS Chem Biol 2016; 11:2285-92. [PMID: 27336323 DOI: 10.1021/acschembio.6b00275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Maturation of tRNA depends on a single endonuclease, ribonuclease P (RNase P), to remove highly variable 5' leader sequences from precursor tRNA transcripts. Here, we use high-throughput enzymology to report multiple-turnover and single-turnover kinetics for Escherichia coli RNase P processing of all possible 5' leader sequences, including nucleotides contacting both the RNA and protein subunits of RNase P. The results reveal that the identity of N(-2) and N(-3) relative to the cleavage site at N(1) primarily control alternative substrate selection and act at the level of association not the cleavage step. As a consequence, the specificity for N(-1), which contacts the active site and contributes to catalysis, is suppressed. This study demonstrates high-throughput RNA enzymology as a means to globally determine RNA specificity landscapes and reveals the mechanism of substrate discrimination by a widespread and essential RNA-processing enzyme.
Collapse
Affiliation(s)
- Courtney N. Niland
- Department
of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Jing Zhao
- Department
of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Hsuan-Chun Lin
- Department
of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - David R. Anderson
- School
of Business, CUNY Baruch College, New York, New York 10010, United States
| | - Eckhard Jankowsky
- Center
for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Michael E. Harris
- Department
of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements. PLoS One 2016; 11:e0160246. [PMID: 27494328 PMCID: PMC4975455 DOI: 10.1371/journal.pone.0160246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.
Collapse
|
5
|
Karasik A, Shanmuganathan A, Howard MJ, Fierke CA, Koutmos M. Nuclear Protein-Only Ribonuclease P2 Structure and Biochemical Characterization Provide Insight into the Conserved Properties of tRNA 5' End Processing Enzymes. J Mol Biol 2015; 428:26-40. [PMID: 26655022 DOI: 10.1016/j.jmb.2015.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Protein-only RNase Ps (PRORPs) are a recently discovered class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. PRORPs are found in the nucleus and/or organelles of most eukaryotic organisms. Arabidopsis thaliana is a representative organism that contains PRORP enzymes (PRORP1, PRORP2 and PRORP3) in both its nucleus and its organelles; PRORP2 and PRORP3 localize to the nucleus and PRORP1 localizes to the chloroplast and the mitochondria. Apart from their identification, almost nothing is known about the structure and function of PRORPs that act in the nucleus. Here, we use a combination of biochemical assays and X-ray crystallography to characterize A. thaliana PRORP2. We solved the crystal structure of PRORP2 (3.2Å) revealing an overall V-shaped protein and conserved metallonuclease active-site structure. Our biochemical studies indicate that PRORP2 requires Mg(2+) for catalysis and catalyzes the maturation of nuclear encoded substrates up to 10-fold faster than mitochondrial encoded precursor nad6 t-element under single-turnover conditions. We also demonstrate that PRORP2 preferentially binds precursor tRNAs containing short 5' leaders and 3' trailers; however, leader and trailer lengths do not significantly alter the observed rate constants of PRORP2 in single-turnover cleavage assays. Our data provide a biochemical and structural framework to begin understanding how nuclear localized PRORPs recognize and cleave their substrates.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markos Koutmos
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA.
| |
Collapse
|
6
|
Wu S, Chen Y, Mao G, Trobro S, Kwiatkowski M, Kirsebom LA. Transition-state stabilization in Escherichia coli ribonuclease P RNA-mediated cleavage of model substrates. Nucleic Acids Res 2014; 42:631-42. [PMID: 24097434 PMCID: PMC3874170 DOI: 10.1093/nar/gkt853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023] Open
Abstract
We have used model substrates carrying modified nucleotides at the site immediately 5' of the canonical RNase P cleavage site, the -1 position, to study Escherichia coli RNase P RNA-mediated cleavage. We show that the nucleobase at -1 is not essential but its presence and identity contribute to efficiency, fidelity of cleavage and stabilization of the transition state. When U or C is present at -1, the carbonyl oxygen at C2 on the nucleobase contributes to transition-state stabilization, and thus acts as a positive determinant. For substrates with purines at -1, an exocyclic amine at C2 on the nucleobase promotes cleavage at an alternative site and it has a negative impact on cleavage at the canonical site. We also provide new insights into the interaction between E. coli RNase P RNA and the -1 residue in the substrate. Our findings will be discussed using a model where bacterial RNase P cleavage proceeds through a conformational-assisted mechanism that positions the metal(II)-activated H2O for an in-line attack on the phosphorous atom that leads to breakage of the phosphodiester bond.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Yu Chen
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Stefan Trobro
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA and Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Abstract
Ribonuclease P (RNase P) is one of the first ribozymes discovered and it is found in all phylogenetic groups. It is responsible for processing the 5' end of pre-tRNAs as well as other RNA molecules. RNase P is formed by an RNA molecule responsible for catalysis and one or more proteins. Structural studies of the proteins from different organisms, the bacterial RNA component, and a bacterial RNase P holoenzyme/tRNA complex provide insights into the mechanism of this universal ribozyme. Together with the existing wealth of biochemical information, these studies provide atomic-level information on the mechanism of RNase P and continue to expand our understanding of the structure and architecture of large RNA molecules and ribonucleoprotein complexes, the nature of catalysis by ribozymes, the structural basis of recognition of RNA by RNA molecules, and the evolution of enzymes from the prebiotic, RNA-based world to the modern world.
Collapse
Affiliation(s)
- Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
8
|
Yandek LE, Lin HC, Harris ME. Alternative substrate kinetics of Escherichia coli ribonuclease P: determination of relative rate constants by internal competition. J Biol Chem 2013; 288:8342-8354. [PMID: 23362254 DOI: 10.1074/jbc.m112.435420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A single enzyme, ribonuclease P (RNase P), processes the 5' ends of tRNA precursors (ptRNA) in cells and organelles that carry out tRNA biosynthesis. This substrate population includes over 80 different competing ptRNAs in Escherichia coli. Although the reaction kinetics and molecular recognition of a few individual model substrates of bacterial RNase P have been well described, the competitive substrate kinetics of the enzyme are comparatively unexplored. To understand the factors that determine how different ptRNA substrates compete for processing by E. coli RNase P, we compared the steady state reaction kinetics of two ptRNAs that differ at sequences that are contacted by the enzyme. For both ptRNAs, substrate cleavage is fast relative to dissociation. As a consequence, V/K, the rate constant for the reaction at limiting substrate concentrations, reflects the substrate association step for both ptRNAs. Reactions containing two or more ptRNAs follow simple competitive alternative substrate kinetics in which the relative rates of processing are determined by ptRNA concentration and their V/K. The relative V/K values for eight different ptRNAs, which were selected to represent the range of structure variation at sites contacted by RNase P, were determined by internal competition in reactions in which all eight substrates were present simultaneously. The results reveal a relatively narrow range of V/K values, suggesting that rates of ptRNA processing by RNase P are tuned for uniform specificity and consequently optimal coupling to precursor biosynthesis.
Collapse
Affiliation(s)
- Lindsay E Yandek
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Hsuan-Chun Lin
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106.
| |
Collapse
|
9
|
Wiltrout E, Goodenbour JM, Fréchin M, Pan T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:10494-506. [PMID: 22941646 PMCID: PMC3488245 DOI: 10.1093/nar/gks805] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.
Collapse
Affiliation(s)
- Elizabeth Wiltrout
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
10
|
Reiter NJ, Osterman AK, Mondragón A. The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Nucleic Acids Res 2012; 40:10384-93. [PMID: 22904083 PMCID: PMC3488217 DOI: 10.1093/nar/gks744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNAPhe revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N−4 and N−5 nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader.
Collapse
Affiliation(s)
- Nicholas J Reiter
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Dr., Evanston, IL 60208, USA.
| | | | | |
Collapse
|
11
|
Wu S, Kikovska E, Lindell M, Kirsebom LA. Cleavage mediated by the catalytic domain of bacterial RNase P RNA. J Mol Biol 2012; 422:204-14. [PMID: 22626870 DOI: 10.1016/j.jmb.2012.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
Like other RNA molecules, RNase P RNA (RPR) is composed of domains, and these have different functions. Here, we provide data demonstrating that the catalytic (C) domain of Escherichia coli (Eco) RPR when separated from the specificity (S) domain mediates cleavage using various model RNA hairpin loop substrates. Compared to full-length Eco RPR, the rate constant, k(obs), of cleavage for the truncated RPR (CP RPR) was reduced 30- to 13,000-fold depending on substrate. Specifically, the structural architecture of the -1/+73 played a significant role where a C(-1)/G(+73) pair had the most dramatic effect on k(obs). Substitution of A(248) (E. coli numbering), positioned near the cleavage site in the RNase P-substrate complex, with G in the CP RPR resulted in 30-fold improvement in rate. In contrast, strengthening the interaction between the RPR and the 3' end of the substrate only had a modest effect. Interestingly, although deleting the S-domain gave a reduction in the rate, it resulted in a less erroneous RPR with respect to cleavage site selection. These data support and extend our understanding of the coupling between the distal interaction between the S-domain and events at the active site. Our findings will also be discussed with respect to the structure of RPR derived from different organisms.
Collapse
Affiliation(s)
- Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
Turrini PCG, Loveland JL, Dorit RL. By any other name: heterologous replacement of the Escherichia coli RNase P protein subunit has in vivo fitness consequences. PLoS One 2012; 7:e32456. [PMID: 22448220 PMCID: PMC3308948 DOI: 10.1371/journal.pone.0032456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/29/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification.
Collapse
Affiliation(s)
| | | | - Robert L. Dorit
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
14
|
Sun FJ, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics 2010; 11:153. [PMID: 20334683 PMCID: PMC2858038 DOI: 10.1186/1471-2105-11-153] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/24/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. RESULTS To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. CONCLUSIONS The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms.
Collapse
Affiliation(s)
- Feng-Jie Sun
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Laboratory of Molecular Epigenetics of the Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun 130024, Jilin Province, PR China
- W.M. Keck Center for Comparative and Functional Genomics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Cuzic-Feltens S, Weber MHW, Hartmann RK. Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester. Nucleic Acids Res 2010; 37:7638-53. [PMID: 19793868 PMCID: PMC2794163 DOI: 10.1093/nar/gkp775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyzed cleavage of precursor tRNAs with an LNA, 2'-OCH(3), 2'-H or 2'-F modification at the canonical (c(0)) site by bacterial RNase P. We infer that the major function of the 2'-substituent at nt -1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c(0) site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3' -endo ribose and without the H-bond donor function of the 2'-substituent. LNA and 2'-OCH(3) suppressed processing at the major aberrant m(-)(1) site; instead, the m(+1) (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c(0) and m(+1) sites had different pH profiles, with a higher Mg(2+) requirement for c(0) versus m(+1) cleavage. The strong catalytic defect for LNA and 2'-OCH(3) supports a model where the extra methylene (LNA) or methyl group (2'-OCH(3)) causes a steric interference with a nearby bound catalytic Mg(2+) during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects.
Collapse
Affiliation(s)
| | | | - Roland K. Hartmann
- *To whom correspondence should be addressed. Tel: +49 6421 2825827; Fax +49 6421 2825854;
| |
Collapse
|
16
|
Koutmou KS, Zahler NH, Kurz JC, Campbell FE, Harris ME, Fierke CA. Protein-precursor tRNA contact leads to sequence-specific recognition of 5' leaders by bacterial ribonuclease P. J Mol Biol 2010; 396:195-208. [PMID: 19932118 PMCID: PMC2829246 DOI: 10.1016/j.jmb.2009.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/15/2022]
Abstract
Bacterial ribonuclease P (RNase P) catalyzes the cleavage of 5' leader sequences from precursor tRNAs (pre-tRNAs). Previously, all known substrate nucleotide specificities in this system are derived from RNA-RNA interactions with the RNase P RNA subunit. Here, we demonstrate that pre-tRNA binding affinities for Bacillus subtilis and Escherichia coli RNase P are enhanced by sequence-specific contacts between the fourth pre-tRNA nucleotide on the 5' side of the cleavage site (N(-4)) and the RNase P protein (P protein) subunit. B. subtilis RNase P has a higher affinity for pre-tRNA with adenosine at N(-4), and this binding preference is amplified at physiological divalent ion concentrations. Measurements of pre-tRNA-containing adenosine analogs at N(-4) indicate that specificity arises from a combination of hydrogen bonding to the N6 exocyclic amine of adenosine and steric exclusion of the N2 amine of guanosine. Mutagenesis of B. subtilis P protein indicates that F20 and Y34 contribute to selectivity at N(-4). The hydroxyl group of Y34 enhances selectivity, likely by forming a hydrogen bond with the N(-4) nucleotide. The sequence preference of E. coli RNase P is diminished, showing a weak preference for adenosine and cytosine at N(-4), consistent with the substitution of Leu for Y34 in the E. coli P protein. This is the first identification of a sequence-specific contact between P protein and pre-tRNA that contributes to molecular recognition of RNase P. Additionally, sequence analyses reveal that a greater-than-expected fraction of pre-tRNAs from both E. coli and B. subtilis contains a nucleotide at N(-4) that enhances RNase P affinity. This observation suggests that specificity at N(-4) contributes to substrate recognition in vivo. Furthermore, bioinformatic analyses suggest that sequence-specific contacts between the protein subunit and the leader sequences of pre-tRNAs may be common in bacterial RNase P and may lead to species-specific substrate recognition.
Collapse
Affiliation(s)
- Kristin S. Koutmou
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Nathan H. Zahler
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Jeffrey C. Kurz
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
| | - Frank E. Campbell
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Michael E. Harris
- Center for RNA Molecular Biology, and Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4973
| | - Carol A. Fierke
- Department of Chemistry University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Binding of C5 protein to P RNA enhances the rate constant for catalysis for P RNA processing of pre-tRNAs lacking a consensus (+ 1)/C(+ 72) pair. J Mol Biol 2009; 395:1019-37. [PMID: 19917291 DOI: 10.1016/j.jmb.2009.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/03/2009] [Accepted: 11/10/2009] [Indexed: 12/23/2022]
Abstract
The RNA subunit of the ribonucleoprotein enzyme ribonuclease P (RNase P (P RNA) contains the active site, but binding of Escherichia coli RNase P protein (C5) to P RNA increases the rate constant for catalysis for certain pre-tRNA substrates up to 1000-fold. Structure-swapping experiments between a substrate that is cleaved slowly by P RNA alone (pre-tRNA(f-met605)) and one that is cleaved quickly (pre-tRNA(met608)) pinpoint the characteristic C(+1)/A(+72) base pair of initiator tRNA(f-met) as the sole determinant of slow RNA-alone catalysis. Unlike other substrate modifications that slow RNA-alone catalysis, the presence of a C(+1)/A(+72) base pair reduces the rate constant for processing at both correct and miscleavage sites, indicating an indirect but nonetheless important role in catalysis. Analysis of the Mg(2)(+) dependence of apparent catalytic rate constants for pre-tRNA(met608) and a pre-tRNA(met608) (+1)C/(+72)A mutant provides evidence that C5 promotes rate enhancement primarily by compensating for the decrease in the affinity of metal ions important for catalysis engendered by the presence of the CA pair. Together, these results support and extend current models for RNase P substrate recognition in which contacts involving the conserved (+1)G/C(+72) pair of tRNA stabilize functional metal ion binding. Additionally, these observations suggest that C5 protein has evolved to compensate for tRNA variation at positions important for binding to P RNA, allowing for tRNA specialization.
Collapse
|
18
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
19
|
Ramaswamy P, Woodson SA. Global stabilization of rRNA structure by ribosomal proteins S4, S17, and S20. J Mol Biol 2009; 392:666-77. [PMID: 19616559 DOI: 10.1016/j.jmb.2009.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/01/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Ribosomal proteins stabilize the folded structure of the ribosomal RNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17, and S20, stabilize the three-dimensional structure of the Escherichia coli 16S 5' domain. The stability of the complexes was perturbed by varying the concentration of MgCl(2). Each protein influences the stability of the ribosomal RNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5' domain, while S20 has a more local effect. Multistage folding of individual helices within the 5' domain shows that each protein stabilizes a different ensemble of structural intermediates that include nonnative interactions at low Mg(2+) concentration. We propose that the combined interactions of S4, S17, and S20 with different helical junctions bias the free-energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly.
Collapse
|
20
|
Suwa S, Nagai Y, Fujimoto A, Kikuchi Y, Tanaka T. Analysis on substrate specificity of Escherichia coli ribonuclease P using shape variants of pre-tRNA: proposal of subsites model for substrate shape recognition. J Biochem 2008; 145:151-60. [PMID: 19008262 DOI: 10.1093/jb/mvn150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We prepared a series of shape variants of a pre-tRNA and examined substrate shape recognition by bacterial RNase P ribozyme and holoenzyme. Cleavage site analysis revealed two new subsites for accepting the T-arm and the bottom half of pre-tRNA in the substrate-binding site of the enzyme. These two subsites take part in cleavage site selection of substrate by the enzyme: the cleavage site is not always selected according to the relative position of the 3'-CCA sequence of the substrate. Kinetic studies indicated that the substrate shape is recognized mainly in the transition state of the reaction, and neither the shape nor position of either the T-arm or the bottom half of the substrate affected the Michaelis complex formation. These results strongly suggest that the 5' and 3' termini of a substrate are trapped by the enzyme first, then the position and the shape of the T-arm and the bottom half are examined by the cognate subsites. From these facts, we propose a new substrate recognition model that can explain many experimental facts that have been seen as enigmatic.
Collapse
Affiliation(s)
- Satoshi Suwa
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | | | | | | | | |
Collapse
|
21
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
22
|
Brännvall M, Kikovska E, Wu S, Kirsebom LA. Evidence for Induced Fit in Bacterial RNase P RNA-mediated Cleavage. J Mol Biol 2007; 372:1149-64. [PMID: 17719605 DOI: 10.1016/j.jmb.2007.07.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 11/26/2022]
Abstract
RNase P with its catalytic RNA subunit is involved in the processing of a number of RNA precursors with different structures. However, precursor tRNAs are the most abundant substrates for RNase P. Available data suggest that a tRNA is folded into its characteristic structure already at the precursor state and that RNase P recognizes this structure. The tRNA D-/T-loop domain (TSL-region) is suggested to interact with the specificity domain of RNase P RNA while residues in the catalytic domain interact with the cleavage site. Here, we have studied the consequences of a productive interaction between the TSL-region and its binding site (TBS) in the specificity domain using tRNA precursors and various hairpin-loop model substrates. The different substrates were analyzed with respect to cleavage site recognition, ground-state binding, cleavage as a function of the concentration of Mg(2+) and the rate of cleavage under conditions where chemistry is suggested to be rate limiting using wild-type Escherichia coli RNase P RNA, M1 RNA, and M1 RNA variants with structural changes in the TBS-region. On the basis of our data, we conclude that a productive TSL/TBS interaction results in a conformational change in the M1 RNA substrate complex that has an effect on catalysis. Moreover, it is likely that this conformational change comprises positioning of chemical groups (and Mg(2+)) at and in the vicinity of the cleavage site. Hence, our findings are consistent with an induced-fit mechanism in RNase P RNA-mediated cleavage.
Collapse
Affiliation(s)
- Mathias Brännvall
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
23
|
Sun L, Harris ME. Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA (NEW YORK, N.Y.) 2007; 13:1505-15. [PMID: 17652407 PMCID: PMC1950769 DOI: 10.1261/rna.571007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.
Collapse
Affiliation(s)
- Lei Sun
- Center for RNA Molecular Biology, Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
24
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous endonuclease that catalyses the maturation of the 5' end of transfer RNA (tRNA). Although it carries out a biochemically simple reaction, RNase P is a complex ribonucleoprotein particle composed of a single large RNA and at least one protein component. In bacteria and some archaea, the RNA component of RNase P can catalyse tRNA maturation in vitro in the absence of proteins. The discovery of the catalytic activity of the bacterial RNase P RNA triggered numerous mechanistic and biochemical studies of the reactions catalysed by the RNA alone and by the holoenzyme and, in recent years, structures of individual components of the RNase P holoenzyme have been determined. The goal of the present review is to summarize what is known about the bacterial RNase P, and to bring together the recent structural results with extensive earlier biochemical and phylogenetic findings.
Collapse
Affiliation(s)
- Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
25
|
Guo X, Campbell FE, Sun L, Christian EL, Anderson VE, Harris ME. RNA-dependent folding and stabilization of C5 protein during assembly of the E. coli RNase P holoenzyme. J Mol Biol 2006; 360:190-203. [PMID: 16750220 DOI: 10.1016/j.jmb.2006.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 04/25/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
The pre-tRNA processing enzyme ribonuclease P is a ribonucleoprotein. In Escherichia coli assembly of the holoenzyme involves binding of the small (119 amino acid residue) C5 protein to the much larger (377 nucleotide) P RNA subunit. The RNA subunit makes the majority of contacts to the pre-tRNA substrate and contains the active site; however, binding of C5 stabilizes P RNA folding and contributes to high affinity substrate binding. Here, we show that RNase P ribonucleoprotein assembly also influences the folding of C5 protein. Thermal melting studies demonstrate that the free protein population is a mixture of folded and unfolded conformations under conditions where it assembles quantitatively with the RNA subunit. Changes in the intrinsic fluorescence of a unique tryptophan residue located in the folded core of C5 provide further evidence for an RNA-dependent conformational change during RNase P assembly. Comparisons of the CD spectra of the free RNA and protein subunits with that of the holoenzyme provide evidence for changes in P RNA structure in the presence of C5 as indicated by previous studies. Importantly, monitoring the temperature dependence of the CD signal in regions of the holoenzyme spectra that are dominated by protein or RNA structure permitted analysis of the thermal melting of the individual subunits within the ribonucleoprotein. These analyses reveal a significantly higher Tm for C5 when bound to P RNA and show that unfolding of the protein and RNA are coupled. These data provide evidence for a general mechanism in which the favorable free energy for formation of the RNA-protein complex offsets the unfavorable free energy of structural rearrangements in the RNA and protein subunits.
Collapse
Affiliation(s)
- Xia Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou Jiangsu 225002, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
Torres-Larios A, Swinger KK, Pan T, Mondragón A. Structure of ribonuclease P--a universal ribozyme. Curr Opin Struct Biol 2006; 16:327-35. [PMID: 16650980 DOI: 10.1016/j.sbi.2006.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Ribonuclease P (RNase P) is one of only two known universal ribozymes and was one of the first ribozymes to be discovered. It is involved in RNA processing, in particular the 5' maturation of tRNA. Unlike most other natural ribozymes, it recognizes and cleaves its substrate in trans. RNase P is a ribonucleoprotein complex containing one RNA subunit and as few as one protein subunit. It has been shown that, in bacteria and in some archaea, the RNA subunit alone can support catalysis. The structure and function of bacterial RNase P RNA have been studied extensively, but the detailed catalytic mechanism is not yet fully understood. Recently, structures of one of the structural domains and of the entire RNA component of RNase P from two different bacteria have been described. These structures provide the first atomic-level information on the structural assembly of the RNA component, and the regions involved in substrate recognition and catalysis. Comparison of these structures reveals a highly conserved core that comprises two universally conserved structural modules. Interestingly, the same structural core can be found in the context of different scaffolds.
Collapse
Affiliation(s)
- Alfredo Torres-Larios
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
27
|
Kikovska E, Brännvall M, Kirsebom LA. The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 2006; 359:572-84. [PMID: 16638615 DOI: 10.1016/j.jmb.2006.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/14/2006] [Accepted: 03/18/2006] [Indexed: 10/24/2022]
Abstract
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.
Collapse
Affiliation(s)
- Ema Kikovska
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
28
|
Peculis BA. Two Ps in the bacterial pod. Nat Struct Mol Biol 2005; 12:941-3. [PMID: 16419276 DOI: 10.1038/nsmb1105-941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Buck AH, Kazantsev AV, Dalby AB, Pace NR. Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 2005; 12:958-64. [PMID: 16228004 DOI: 10.1038/nsmb1004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/13/2005] [Indexed: 11/09/2022]
Abstract
Ribonucleoprotein particles are central to numerous cellular pathways, but their study in vitro is often complicated by heterogeneity and aggregation. We describe a new technique to characterize these complexes trapped as homogeneous species in a nondenaturing gel. Using this technique, in conjunction with phosphorothioate footprinting analysis, we identify the protein-binding site and RNA folding states of ribonuclease P (RNase P), an RNA-based enzyme that, in vivo, requires a protein cofactor to catalyze the 5' maturation of precursor transfer RNA (pre-tRNA). Our results show that the protein binds to a patch of conserved RNA structure adjacent to the active site and influences the conformation of the RNA near the tRNA-binding site. The data are consistent with a role of the protein in substrate recognition and support a new model of the holoenzyme that is based on a recently solved crystal structure of RNase P RNA.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
30
|
Hori Y, Rogert MC, Tanaka T, Kikuchi Y, Bichenkova EV, Wilton AN, Gbaj A, Douglas KT. Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. ACTA ACUST UNITED AC 2005; 1730:47-55. [PMID: 16005529 DOI: 10.1016/j.bbaexp.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Porphyrins and porphines strongly inhibit the action of the RNA subunit of the Escherichia coli ribonuclease P (M1 RNA). Meso-tetrakis(N-methyl-pyridyl)porphine followed linear competitive kinetics with pre-tRNA(Gly1) from E. coli as variable substrate (Ki 0.960 microM). Protoporphyrin IX showed linear competitive inhibition versus pre-tRNA(Gly1) from E. coli (Ki 1.90 microM). Inhibition by meso-tetrakis[4-(trimethylammonio)phenyl]porphine versus pre-tRNA(Gly1) from E. coli followed non-competitive kinetics (Ki 4.1 microM). The porphyrins bound directly to E. coli tRNAVal, E. coli pre-tRNAGly1 and M1 RNA and dissociation constants for the 1:1 complexes were determined using fluorescence spectroscopy. Dissociation constants (microM) against E. coli tRNAVal and E. coli pre-tRNAGly were: meso-tetrakis(N-methyl-pyridyl)porphine 1.21 and 0.170; meso-tetrakis[4-(trimethylammonio)phenyl]porphine, 0.107 and 0.293; protoporphyrin IX, 0.138 and 0.0819. For M1 RNA, dissociation constants were 32.8 nM for meso-tetrakis(N-methyl-pyridyl)porphine and 59.8 nM for meso-tetrakis[4-(trimethylammonio)phenyl]porphine and excitation and emission spectra indicate a binding mode with strong pi-stacking of the porphine nucleus and base pairs in a rigid low-polarity environment. Part of the inhibition of ribonuclease P is from interaction with the pre-tRNA substrate, resulting from porphyrin binding to the D-loop/T-loop region which interfaces with M1 RNA during catalysis, and part from the porphyrin binding to the M1 RNA component.
Collapse
Affiliation(s)
- Yoshiaki Hori
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR. Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 2005; 24:3360-8. [PMID: 16163391 PMCID: PMC1276167 DOI: 10.1038/sj.emboj.7600805] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/15/2005] [Indexed: 11/08/2022] Open
Abstract
Bacterial ribonuclease P (RNase P) belongs to a class of enzymes that utilize both RNAs and proteins to perform essential cellular functions. The bacterial RNase P protein is required to activate bacterial RNase P RNA in vivo, but previous studies have yielded contradictory conclusions regarding its specific functions. Here, we use biochemical and biophysical techniques to examine all of the proposed functions of the protein in both Escherichia coli and Bacillus subtilis RNase P. We demonstrate that the E. coli protein, but not the B. subtilis protein, stabilizes the global structure of RNase P RNA, although both proteins influence holoenzyme dimer formation and precursor tRNA recognition to different extents. By comparing each protein in complex with its cognate and noncognate RNA, we show that differences between the two types of holoenzymes reside primarily in the RNA and not the protein components of each. Our results reconcile previous contradictory conclusions regarding the role of the protein and support a model where the protein activates local RNA structures that manifest multiple holoenzyme properties.
Collapse
Affiliation(s)
- Amy H Buck
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Andrew B Dalby
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexander W Poole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexei V Kazantsev
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | - Norman R Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, CO 80309, USA. Tel.: +1 303 735 1808; Fax: +1 303 492 7744; E-mail:
| |
Collapse
|
32
|
Rubin CJ, Thollesson M, Kirsebom LA, Herrmann B. Phylogenetic relationships and species differentiation of 39 Legionella species by sequence determination of the RNase P RNA gene rnpB. Int J Syst Evol Microbiol 2005; 55:2039-2049. [PMID: 16166707 DOI: 10.1099/ijs.0.63656-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rnpB gene is ubiquitous in Bacteria, Archaea and Eucarya and encodes the RNA component of RNase P, an endoribonuclease P that consists of one RNA and one protein subunit (C5). In this study, partial rnpB genes were sequenced from 39 type strains and 16 additional strains of the genus Legionella. Models of the putative secondary structures of the RNase P RNA in the genus Legionella are proposed and possible interactions between RNase P RNA and C5 are discussed. The phylogenetic relationships within the genus Legionella were examined and rnpB sequences indicated six main clades that together comprised 27 of the 39 species examined. The phylogenetic relationships were further inferred by analysing combined datasets of sequences from the rnpB, mip, 16S rRNA and rpoB genes. It is concluded that rnpB is suitable for use in phylogenetic studies of closely related species and that it exhibits the potential to discriminate between Legionella species.
Collapse
Affiliation(s)
- Carl-Johan Rubin
- Department of Clinical Microbiology, University Hospital, SE-751 85 Uppsala, Sweden
| | - Mikael Thollesson
- Department of Molecular Evolution, EBC, Uppsala University, Norbyvägen 18C, SE-19530 Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-75124 Uppsala, Sweden
| | - Björn Herrmann
- Department of Clinical Microbiology, University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
33
|
Williams D, Brown JW. In vitro selection of an archaeal RNase P RNA mimics natural variation. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:241-5. [PMID: 15810433 PMCID: PMC2685577 DOI: 10.1155/2004/903283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Archaeal and bacterial RNase P RNAs are similar in sequence and secondary structure, but in the absence of protein, the archaeal RNAs are much less active and require extreme ionic conditions for activity. To assess how readily the activity of the archaeal RNA alone could be improved by small changes in sequence, in vitro selection was used to generate variants of a Methanobacterium formicicum RNase P RNA: Bacillus subtilus pre-tRNA(Asp) self-cleaving conjugate RNA. Functional variants were generated with a spectrum of mutations that were predominately consistent with natural variation in this RNA. Variants generated from the selection had cleavage rates comparable to that of wild type; variants with improved cleavage rates or lower ionic requirements were not obtained. This suggests that the RNase P RNAs of Bacteria and Archaea are globally optimized and the basis for the large biochemical differences between these two types of RNase P RNA is distributed in the molecule.
Collapse
Affiliation(s)
- Daniel Williams
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
- V.A. Medical Center, Emory University Medical Research, Rm 5A188, 1670 Clarimont Rd., Decatur, GA 30033, USA
| | - James W. Brown
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
- Corresponding author ()
| |
Collapse
|
34
|
Kikovska E, Brännvall M, Kufel J, Kirsebom LA. Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site. Nucleic Acids Res 2005; 33:2012-21. [PMID: 15817565 PMCID: PMC1074746 DOI: 10.1093/nar/gki344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Like the translational elongation factor EF-Tu, RNase P interacts with a large number of substrates where RNase P with its RNA subunit generates tRNAs with matured 5' termini by cleaving tRNA precursors immediately 5' of the residue at +1, i.e. at the position that corresponds to the first residue in tRNA. Most tRNAs carry a G+1C+72 base pair at the end of the aminoacyl acceptor-stem whereas in tRNA(Gln) G+1C+72 is replaced with U+1A+72. Here, we investigated RNase P RNA-mediated cleavage as a function of having G+1C+72 versus U+1A+72 in various substrate backgrounds, two full-size tRNA precursors (pre-tRNA(Gln) and pre-tRNA(Tyr)Su3) and a model RNA hairpin substrate (pATSer). Our data showed that replacement of G+1C+72 with U+1A+72 influenced ground state binding, cleavage efficiency under multiple and single turnover conditions in a substrate-dependent manner. Interestingly, we observed differences both in ground state binding and rate of cleavage comparing two full-size tRNA precursors, pre-tRNA(Gln) and pre-tRNA(Tyr)Su3. These findings provide evidence for substrate discrimination in RNase P RNA-mediated cleavage both at the level of binding, as previously observed for EF-Tu, as well as at the catalytic step. In our experiments where we used model substrate derivatives further indicated the importance of the +1/+72 base pair in substrate discrimination by RNase P RNA. Finally, we provide evidence that the structural architecture influences Mg2+ binding, most likely in its vicinity.
Collapse
Affiliation(s)
| | | | | | - Leif A. Kirsebom
- To whom correspondence should be addressed. Tel: +46 18 471 4068; Fax: +46 18 53 03 96;
| |
Collapse
|
35
|
Zahler NH, Sun L, Christian EL, Harris ME. The pre-tRNA nucleotide base and 2'-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 2004; 345:969-85. [PMID: 15644198 DOI: 10.1016/j.jmb.2004.10.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/20/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.
Collapse
Affiliation(s)
- Nathan H Zahler
- Department of Biochemistry, Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4973, USA
| | | | | | | |
Collapse
|
36
|
Barrera A, Pan T. Interaction of the Bacillus subtilis RNase P with the 30S ribosomal subunit. RNA (NEW YORK, N.Y.) 2004; 10:482-492. [PMID: 14970393 PMCID: PMC1370943 DOI: 10.1261/rna.5163104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/14/2003] [Indexed: 05/24/2023]
Abstract
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.
Collapse
Affiliation(s)
- Alessandra Barrera
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
37
|
Hsieh J, Andrews AJ, Fierke CA. Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 2004; 73:79-89. [PMID: 14691942 DOI: 10.1002/bip.10521] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.
Collapse
Affiliation(s)
- John Hsieh
- Chemistry Department, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
38
|
Zahler NH, Christian EL, Harris ME. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P. RNA (NEW YORK, N.Y.) 2003; 9:734-45. [PMID: 12756331 PMCID: PMC1370440 DOI: 10.1261/rna.5220703] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 03/13/2003] [Indexed: 05/20/2023]
Abstract
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Adenosine/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Conserved Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Models, Biological
- Mutation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribonuclease P
- Sequence Analysis, RNA
- Substrate Specificity
Collapse
Affiliation(s)
- Nathan H Zahler
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4973, USA
| | | | | |
Collapse
|
39
|
Harris ME, Christian EL. Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol 2003; 13:325-33. [PMID: 12831883 DOI: 10.1016/s0959-440x(03)00069-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In bacteria, the tRNA-processing endonuclease ribonuclease P is composed of a large ( approximately 400 nucleotide) catalytic RNA and a smaller ( approximately 100 amino acid) protein subunit that is essential for substrate recognition. Current biochemical and biophysical investigations are providing fresh insights into the modular architecture of the ribozyme, the mechanisms of substrate specificity and the role of essential metal ions in catalysis. Together with recent high-resolution structures of portions of the ribozyme, these findings are beginning to reveal how the functions of RNA and protein are coordinated in this ribonucleoprotein enzyme.
Collapse
Affiliation(s)
- Michael E Harris
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, 44106, Cleveland, OH 44106, USA.
| | | |
Collapse
|
40
|
Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V. Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 2003; 325:661-75. [PMID: 12507471 DOI: 10.1016/s0022-2836(02)01267-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Catalytic Domain
- Computer Simulation
- Cysteine/chemistry
- DNA Footprinting
- DNA, Bacterial/genetics
- Edetic Acid
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Evolution, Molecular
- Ferrous Compounds
- Holoenzymes/chemistry
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Hydroxyl Radical/chemistry
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Ribonuclease P
Collapse
Affiliation(s)
- Hsin-Yue Tsai
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
41
|
Christian EL, Zahler NH, Kaye NM, Harris ME. Analysis of substrate recognition by the ribonucleoprotein endonuclease RNase P. Methods 2002; 28:307-22. [PMID: 12431435 DOI: 10.1016/s1046-2023(02)00238-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribonuclease P (RNase P), is a ribonucleoprotein complex that catalyzes the site-specific cleavage of pre-tRNA and a wide variety of other substrates. Although RNase P RNA is the catalytic subunit of the holoenzyme, the protein subunit plays a critical role in substrate binding. Thus, RNase P is an excellent model system for studying ribonucleoprotein function. In this review we describe methods applied to the in vitro study of substrate recognition by bacterial RNase P, covering general considerations of reaction conditions, quantitative measurement of substrate binding equilibria, enzymatic and chemical protection, cross-linking, modification interference, and analysis of site-specific substitutions. We describe application of these methods to substrate binding by RNase P RNA alone and experimental considerations for examining the holoenzyme. The combined use of these approaches has shown that the RNA and protein subunits cooperate to bind different portions of the substrate structure, with the RNA subunit predominantly interacting with the mature domain of tRNA and the protein interacting with the 5(') leader sequence. However, important questions concerning the interface between the two subunits and the coordination of RNA and protein subunits in binding and catalysis remain.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- T A Hall
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
43
|
Rox C, Feltens R, Pfeiffer T, Hartmann RK. Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 2002; 315:551-60. [PMID: 11812129 DOI: 10.1006/jmbi.2001.5261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have detected by nucleotide analog interference mapping (NAIM) AMPalphaS and IMPalphaS modifications in Bacillus subtilis RNase P RNA that interfere with binding of the homologous protein subunit. Interference as well as some enhancement effects were clustered in two main areas, in P10.1a/L10.1 and P12 of the specificity domain (cluster 1, domain I) and in P2, P3, P15.1, J18/2 and J19/4 of the catalytic domain (cluster 2a, domain II). Minor interferences in P1 and P19 and a strong and weak enhancement effect in P19 represent a third area located in domain II (cluster 2b). Our results suggest that P3, P2-J18/2 and J19/4 are key elements for anchoring of the protein to the catalytic domain close to the scissile phosphodiester in enzyme-substrate complexes. Sites of interference or enhancement in clusters 1 and 2a are located at distances between 65 and 130 A from each other in the current 3D model of a full-length RNase P RNA-substrate complex. Taking into account that the RNase P protein monomer can bridge a maximum distance of about 40 A, simultaneous direct contacts to the two aforementioned potential RNA-binding areas would be incompatible with our current understanding of bacterial RNase P RNA architecture. Our findings suggest that the current 3D model has to be rearranged in order to reduce the distance between clusters 1 and 2a. Alternatively, based on the recent finding that B. subtilis RNase P forms a tetramer consisting of two protein and two RNA subunits, cluster 1 may reflect one protein contact site in domain I, and cluster 2a a separate one in domain II.
Collapse
Affiliation(s)
- Christoph Rox
- Institut für Biochemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, D-23538, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|
45
|
Sharkady SM, Nolan JM. Bacterial ribonuclease P holoenzyme crosslinking analysis reveals protein interaction sites on the RNA subunit. Nucleic Acids Res 2001; 29:3848-56. [PMID: 11557817 PMCID: PMC55911 DOI: 10.1093/nar/29.18.3848] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The structure of the Escherichia coli ribonuclease P (RNase P) holoenzyme was investigated by site-directed attachment of an aryl azide crosslink reagent to specific sites in the protein subunit of the enzyme. The sites of crosslinking to the RNase P RNA subunit were mapped by primer extension to several conserved residues and structural features throughout the RNA. The results suggest rearrangement of current tertiary models of the RNA subunit, particularly in regions poorly constrained by earlier data. Crosslinks to the substrate precursor-tRNA were also detected, consistent with previous crosslinking results in the Bacillus subtilis RNase P holoenzyme.
Collapse
Affiliation(s)
- S M Sharkady
- Department of Biochemistry-SL43, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA
| | | |
Collapse
|
46
|
Abstract
Natural nucleic acids frequently rely on proteins for stabilization or catalytic activity. In contrast, nucleic acids selected in vitro can catalyze a wide range of reactions even in the absence of proteins. To augment selected nucleic acids with protein functionalities, we have developed a technique for the selection of protein-dependent ribozyme ligases. After randomizing a previously selected ribozyme ligase, L1, we selected variants that required one of two protein cofactors, a tyrosyl transfer RNA (tRNA) synthetase (Cyt18) or hen egg white lysozyme. The resulting nucleoprotein enzymes were activated several thousand fold by their cognate protein effectors, and could specifically recognize the structures of the native proteins. Protein-dependent ribozymes can potentially be adapted to novel assays for detecting target proteins, and the selection method's generality may allow the high-throughput identification of ribozymes capable of recognizing a sizable fraction of a proteome.
Collapse
Affiliation(s)
- M P Robertson
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
47
|
Loria A, Pan T. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res 2001; 29:1892-7. [PMID: 11328872 PMCID: PMC37254 DOI: 10.1093/nar/29.9.1892] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5'-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain-P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of approximately 0.1 microM. The C-domain-P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (approximately 0.9 min(-1) at pH 7.8) and substrates with a hairpin-loop 3' to the cleavage site (approximately 40 min(-1)). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10-500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem-loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.
Collapse
Affiliation(s)
- A Loria
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
48
|
Tanaka T, Baba H, Hori Y, Kikuchi Y. Guide DNA technique reveals that the protein component of bacterial ribonuclease P is a modifier for substrate recognition. FEBS Lett 2001; 491:94-8. [PMID: 11226427 DOI: 10.1016/s0014-5793(01)02170-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a guide DNA technique with which the cleavage efficiency of pre-tRNA substrate raised in the RNase P reaction. The 20-mer guide DNAs hybridizing to the upstream region of the cleaving site enhanced the cleavage reactions of RNA substrates by Escherichia coli RNase P. This guide DNA technique was also applicable to cleavage site selection by choosing the DNA-hybridizing site. Results showed that RNase P accepts DNA/RNA double-stranded 5'-leader region with high catalytic efficiency as well as single-stranded RNA region in pre-tRNAs as substrates, which suggests that the protein component of bacterial RNase P prefers bulky nucleotides. The protein component did not affect the normal 5'-processing reaction of pre-tRNAs, but enhanced the mis-cleaving (hyperprocessing) reactions of tRNA in non-cloverleaf folding. Our results suggested that the protein component of RNase P is a modifier for substrate recognition.
Collapse
Affiliation(s)
- T Tanaka
- Division of Bioscience and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
| | | | | | | |
Collapse
|
49
|
Abstract
The ribonucleoprotein ribonuclease P catalyzes the hydrolysis of a specific phosphodiester bond in precursor tRNA to form the mature 5' end of tRNA. Recent studies have shed light on the structures of RNase-P-RNA-P-protein and RNase-P-RNA-precursor-tRNA complexes, as well as on the positions of catalytic metal ions, emphasizing the importance of the structure to the catalytic function.
Collapse
Affiliation(s)
- J C Kurz
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 27710, USA
| | | |
Collapse
|
50
|
Hsu AW, Kilani AF, Liou K, Lee J, Liu F. Differential effects of the protein cofactor on the interactions between an RNase P ribozyme and its target mRNA substrate. Nucleic Acids Res 2000; 28:3105-16. [PMID: 10931926 PMCID: PMC108434 DOI: 10.1093/nar/28.16.3105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2000] [Revised: 06/23/2000] [Accepted: 06/23/2000] [Indexed: 11/14/2022] Open
Abstract
RNase P from Escherichia coli is a tRNA-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1, can cleave a herpes simplex virus 1 mRNA efficiently in vitro and inhibit its expression effectively in viral-infected cells. In this study, the effects of C5 on the interactions between a M1GS ribozyme and a model mRNA substrate were investigated by site-specific UV crosslink mapping. In the presence of the protein cofactor, the ribozyme regions crosslinked to the substrate sequence 3' immediately to the cleavage site were similar to those found in the absence of C5. Meanwhile, some of the ribozyme regions (e.g. P12 and J11/12) that were crosslinked to the leader sequence 5' immediately to the cleavage site in the presence of C5 were different from those regions (e.g. P3 and P4) found in the absence of the protein cofactor and were not among those that are believed to interact with a tRNA. Understanding how C5 affects the specific interactions between the ribozyme and its target mRNA may facilitate the development of gene-targeting ribozymes that function effectively in vivo, in the presence of cellular proteins.
Collapse
Affiliation(s)
- A W Hsu
- Program in Infectious Diseases and Immunity and Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|