1
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. J Biol Chem 2024; 300:107746. [PMID: 39236875 PMCID: PMC11470594 DOI: 10.1016/j.jbc.2024.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan N Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| | - Andrei T Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
2
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599628. [PMID: 38948727 PMCID: PMC11212973 DOI: 10.1101/2024.06.18.599628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathan N. Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Wang HL, Sun HP, Zheng PR, Cheng RT, Liu ZW, Yuan H, Gao WY, Li H. Re-investigation of in vitro activity of acetohydroxyacid synthase I holoenzyme from Escherichia coli. Arch Biochem Biophys 2024; 754:109962. [PMID: 38499055 DOI: 10.1016/j.abb.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.
Collapse
Affiliation(s)
- Hai-Ling Wang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Hui-Peng Sun
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Pei-Rong Zheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Rui-Tong Cheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Wen Liu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Heng Yuan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Steyer JT, Todd RB. Branched-chain amino acid biosynthesis in fungi. Essays Biochem 2023; 67:865-876. [PMID: 37455545 DOI: 10.1042/ebc20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Branched-chain amino acids (BCAAs)-isoleucine, leucine, and valine-are synthesized by fungi. These amino acids are important components of proteins and secondary metabolites. The biochemical pathway for BCAA biosynthesis is well-characterized in the yeast Saccharomyces cerevisiae. The biosynthesis of these three amino acids is interconnected. Different precursors are metabolized in multiple steps through shared enzymes to produce isoleucine and valine, and the valine biosynthesis pathway branches before the penultimate step to a series of leucine biosynthesis-specific steps to produce leucine. Recent efforts have made advances toward characterization of the BCAA biosynthesis pathway in several fungi, revealing diversity in gene duplication and functional divergence in the genes for these enzymatic steps in different fungi. The BCAA biosynthesis pathway is regulated by the transcription factor LEU3 in S. cerevisiae, and LeuB in Aspergillus nidulans and Aspergillus fumigatus, and the activity of these transcription factors is modulated by the leucine biosynthesis pathway intermediate α-isopropylmalate. Herein, we discuss recent advances in our understanding of the BCAA pathway and its regulation, focusing on filamentous ascomycete fungi and comparison with the well-established process in yeast.
Collapse
Affiliation(s)
- Joel T Steyer
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| |
Collapse
|
5
|
Kato T, Kano M, Yokomori A, Azegami J, El Enshasy HA, Park EY. Involvement of a flavoprotein, acetohydroxyacid synthase, in growth and riboflavin production in riboflavin-overproducing Ashbya gossypii mutant. Microb Cell Fact 2023; 22:105. [PMID: 37217979 PMCID: PMC10201721 DOI: 10.1186/s12934-023-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
- Department of Applied Life Science, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan.
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
- Department of Applied Life Science, Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, Japan
| |
Collapse
|
6
|
Hui X, Tian JM, Wang X, Zhang ZQ, Zhao YM, Gao WY, Li H. Overall analyses of the reactions catalyzed by acetohydroxyacid synthase/acetolactate synthase using a precolumn derivatization-HPLC method. Anal Biochem 2023; 660:114980. [PMID: 36368345 DOI: 10.1016/j.ab.2022.114980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A precolumn derivatization-HPLC method using 2,4-dinitrophenylhydrazine and 4-nitro-o-phenylenediamine as respective labeling reagents for comprehensive analyses of the reactions catalyzed by acetohydroxyacid synthase (AHAS)/acetolactate synthase (ALS) is developed and evaluated in this research. Comparison with the classic Bauerle' UV assay which can analyze the enzymes only through measurement of acetoin production, the HPLC method shows advantages because it can analyze the enzymes not only via determination of consumption of the substrate pyruvate, but also via measurement of formation of the products including acetoin, 2,3-butanedione, and acetaldehyde in the enzymatic reactions. Thus the results deduced from the HPLC method can reflect the trait of each enzyme in a more precise manner. As far as we know, this is the first time that the reactions mediated by AHAS/ALS using pyruvate as a single substrate are globally analyzed and the features of the enzymes are properly discussed.
Collapse
Affiliation(s)
- Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jin-Meng Tian
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xin Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zhen-Qian Zhang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Mei Zhao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
7
|
Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genet Biol 2022; 159:103667. [PMID: 35041986 DOI: 10.1016/j.fgb.2022.103667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.
Collapse
Affiliation(s)
- ShengNan Shao
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Biao Li
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Qi Sun
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - PeiRu Guo
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - YeJuan Du
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| | - JiaFeng Huang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| |
Collapse
|
8
|
Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat Commun 2022; 13:270. [PMID: 35022416 PMCID: PMC8755756 DOI: 10.1038/s41467-021-27852-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acid (BCAA) metabolism fulfills numerous physiological roles and can be harnessed to produce valuable chemicals. However, the lack of eukaryotic biosensors specific for BCAA-derived products has limited the ability to develop high-throughput screens for strain engineering and metabolic studies. Here, we harness the transcriptional regulator Leu3p from Saccharomyces cerevisiae to develop a genetically encoded biosensor for BCAA metabolism. In one configuration, we use the biosensor to monitor yeast production of isobutanol, an alcohol derived from valine degradation. Small modifications allow us to redeploy Leu3p in another biosensor configuration that monitors production of the leucine-derived alcohol, isopentanol. These biosensor configurations are effective at isolating high-producing strains and identifying enzymes with enhanced activity from screens for branched-chain higher alcohol (BCHA) biosynthesis in mitochondria as well as cytosol. Furthermore, this biosensor has the potential to assist in metabolic studies involving BCAA pathways, and offers a blueprint to develop biosensors for other products derived from BCAA metabolism. There are a lack of eukaryotic biosensors specific for branched-chain amino acid (BCAA)-derived products. Here the authors report a genetically encoded biosensor for BCAA metabolism based on the Leu3p transcriptional regulator; they use this to monitor yeast production of isobutanol and isopentanol.
Collapse
|
9
|
Low YS, Garcia MD, Lonhienne T, Fraser JA, Schenk G, Guddat LW. Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads. Sci Rep 2021; 11:21055. [PMID: 34702838 PMCID: PMC8548585 DOI: 10.1038/s41598-021-00349-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.
Collapse
Affiliation(s)
- Y S Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - T Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - J A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - G Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - L W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Xie L, Zang X, Cheng W, Zhang Z, Zhou J, Chen M, Tang Y. Harzianic Acid from Trichoderma afroharzianum Is a Natural Product Inhibitor of Acetohydroxyacid Synthase. J Am Chem Soc 2021; 143:10.1021/jacs.1c03988. [PMID: 34132537 PMCID: PMC8674378 DOI: 10.1021/jacs.1c03988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthetic pathway and is a validated target for herbicide and fungicide development. Here we report harzianic acid (HA, 1) produced by the biocontrol fungus Trichoderma afroharzianum t-22 (Tht22) as a natural product inhibitor of AHAS. The biosynthetic pathway of HA was elucidated with heterologous reconstitution. Guided by a putative self-resistance enzyme in the genome, HA was biochemically demonstrated to be a selective inhibitor of fungal AHAS, including those from phytopathogenic fungi. In addition, HA can inhibit a common resistant variant of AHAS in which the active site proline is mutated. Structural analysis of AHAS complexed with HA revealed the molecular basis of competitive inhibition, which differs from all known commercial AHAS inhibitors. The alternative binding mode also rationalizes the selectivity of HA, as well as effectiveness toward resistant mutants. A proposed role of HA biosynthesis by Tht22 in the rhizosphere is discussed based on the data.
Collapse
Affiliation(s)
- Linan Xie
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Xin Zang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Cheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhuan Zhang
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengbin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, Erban A, de Souza LP, Childs D, Wojciechowska I, Luzarowska U, Górka M, Sokołowska EM, Kosmacz M, Moreno JC, Brzezińska A, Vegesna B, Kopka J, Fernie AR, Willmitzer L, Ewald JC, Skirycz A. Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Commun Biol 2021; 4:181. [PMID: 33568709 PMCID: PMC7876005 DOI: 10.1038/s42003-021-01684-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.
Collapse
Affiliation(s)
- Marcin Luzarowski
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rubén Vicente
- grid.418390.70000 0004 0491 976XDepartment of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrei Kiselev
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.503344.50000 0004 0445 6769Laboratoire de Recherche en Sciences Végétales (LRSV), UPS/CNRS, UMR, Castanet Tolosan, France
| | - Mateusz Wagner
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.8505.80000 0001 1010 5103University of Wrocław, Faculty of Biotechnology, Laboratory of Medical Biology, Wrocław, Poland
| | - Dennis Schlossarek
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Erban
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Leonardo Perez de Souza
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Dorothee Childs
- grid.4709.a0000 0004 0495 846XDepartment of Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Izabela Wojciechowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Urszula Luzarowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michał Górka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ewelina M. Sokołowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Monika Kosmacz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aleksandra Brzezińska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Bhavana Vegesna
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jennifer C. Ewald
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.5386.8000000041936877XBoyce Thompson Institute, Ithaca, NY USA
| |
Collapse
|
12
|
Agnew-Francis KA, Tang Y, Lin X, Low YS, Wun SJ, Kuo A, Elias SMASI, Lonhienne T, Condon ND, Pimentel BNAS, Vergani CE, Smith MT, Fraser JA, Williams CM, Guddat LW. Herbicides That Target Acetohydroxyacid Synthase Are Potent Inhibitors of the Growth of Drug-Resistant Candida auris. ACS Infect Dis 2020; 6:2901-2912. [PMID: 32986949 DOI: 10.1021/acsinfecdis.0c00229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, is the target for more than 50 commercially available herbicides, and is a promising target for antimicrobial drug discovery. Herein, we have expressed and purified AHAS from Candida auris, a newly identified human invasive fungal pathogen. Thirteen AHAS inhibiting herbicides have Ki values of <2 μM for this enzyme, with the most potent having Ki values of <32 nM. Six of these compounds exhibited MIC50 values of <1 μM against C. auris (CBS10913 strain) grown in culture, with bensulfuron methyl (BSM) being fungicidal and the most potent (MIC50 of 0.090 μM) in defined minimal media. The MIC50 value increases to 0.90 μM in media enriched by the addition of branched-chain amino acids at the expected concentration in the blood serum. The sessile MIC50 for BSM is 0.6 μM. Thus, it is also an excellent inhibitor of the growth of C. auris biofilms. BSM is nontoxic in HEK-293 cells at concentrations >100 μM and thus possesses a therapeutic index of >100. These data suggest that targeting AHAS is a viable strategy for treating C. auris infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bruna N. A. S. Pimentel
- School of Dentistry, São Paulo State University (UNESP), Araraquara, Rua Humaita, 1680, 14801-903 Araraquara, SP Brazil
| | - Carlos E. Vergani
- School of Dentistry, São Paulo State University (UNESP), Araraquara, Rua Humaita, 1680, 14801-903 Araraquara, SP Brazil
| | | | | | | | | |
Collapse
|
13
|
Liang YF, Yan LT, Yue Q, Zhao JK, Luo CY, Gao F, Li H, Gao WY. Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones. Sci Rep 2020; 10:15404. [PMID: 32958806 PMCID: PMC7505981 DOI: 10.1038/s41598-020-72416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Le-Tian Yan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Qiao Yue
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ji-Kui Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Cai-Yun Luo
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Feng Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Kato T, Azegami J, Yokomori A, Dohra H, El Enshasy HA, Park EY. Genomic analysis of a riboflavin-overproducing Ashbya gossypii mutant isolated by disparity mutagenesis. BMC Genomics 2020; 21:319. [PMID: 32326906 PMCID: PMC7181572 DOI: 10.1186/s12864-020-6709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Ami Yokomori
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Instrumental Research Support Office, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A. El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
| | - Enoch Y. Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
15
|
Wang B, Xie G, Liu Z, He R, Han J, Huang S, Liu L, Cheng X. Mutagenesis Reveals That the OsPPa6 Gene Is Required for Enhancing the Alkaline Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:759. [PMID: 31244876 PMCID: PMC6580931 DOI: 10.3389/fpls.2019.00759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/24/2019] [Indexed: 05/30/2023]
Abstract
Alkaline stress (AS) is one of the abiotic stressful factors limiting plant's growth and development. Inorganic pyrophosphatase is usually involved in a variety of biological processes in plant in response to the abiotic stresses. Here, to clarify the responsive regulation of inorganic pyrophosphatase in rice under AS, the mutagenesis of the OsPPa6 gene encoding an inorganic pyrophosphatase in rice cv. Kitaake (Oryza sativa L. ssp. japonica) was performed by the CRISPR/Cas9 system. Two homozygous independent mutants with cas9-free were obtained by continuously screening. qPCR reveals that the OsPPa6 gene was significantly induced by AS, and the mutagenesis of the OsPPa6 gene apparently delayed rice's growth and development, especially under AS. Measurements demonstrate that the contents of pyrophosphate in the mutants were higher than those in the wild type under AS, however, the accumulation of inorganic phosphate, ATP, chlorophyll, sucrose, and starch in the mutants were decreased significantly, and the mutagenesis of the OsPPa6 gene remarkably lowered the net photosynthetic rate of rice mutants, thus reducing the contents of soluble sugar and proline, but remarkably increasing MDA, osmotic potentials and Na+/K+ ratio in the mutants under AS. Metabonomics measurement shows that the mutants obviously down-regulated the accumulation of phosphorylcholine, choline, anthranilic acid, apigenin, coniferol and dodecanoic acid, but up-regulated the accumulation of L-valine, alpha-ketoglutarate, phenylpyruvate and L-phenylalanine under AS. This study suggests that the OsPPa6 gene is an important osmotic regulatory factor in rice, and the gene-editing of CRISPR/Cas9-guided is an effective method evaluating the responsive regulation of the stress-induced gene, and simultaneously provides a scientific support for the application of the gene encoding a soluble inorganic pyrophosphatase in molecular breeding.
Collapse
Affiliation(s)
- Bing Wang
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guoqiang Xie
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Zhonglai Liu
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Rui He
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Han
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengcai Huang
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xianguo Cheng
- Laboratory of Plant Nutrition and Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Liu X, Jiang Y, Zhang Y, Yu M, Jiang H, Xu J, Shi J. FgIlv3a is crucial in branched-chain amino acid biosynthesis, vegetative differentiation, and virulence in Fusarium graminearum. J Microbiol 2019; 57:694-703. [PMID: 31079334 DOI: 10.1007/s12275-019-9123-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Dihydroxyacid dehydratase (DHAD), encoded by ILV3, catalyses the third step in the biosynthetic pathway of branched-chain amino acids (BCAAs), which include isoleucine (Ile), leucine (Leu), and valine (Val). Enzymes involved in BCAA biosynthesis exist in bacteria, plants, and fungi but not in mammals and are therefore attractive targets for antimicrobial or herbicide development. In this study, three paralogous ILV3 genes (FgILV3A, FgILV3B, and FgILV3C) were identified in the genome of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). Deletion of FgILV3A alone or combined with FgILV3B or FgILV3C indicated an important role for FgILV3A in BCAA biosynthesis. FgILV3A deletion mutants lost the ability to grow on medium lacking amino acids. Exogenous supplementation of 1 mM Ile and Val rescued the auxotrophy of ΔFgIlv3A, though 5 mM was required to recover the growth defects in ΔFgIlv3AB and ΔFgIlv3AC strains, indicating that FgIlv3b and FgIlv3c exhibit redundant but accessory roles with FgIlv3a in BCAA biosynthesis. The auxotrophy of ΔFgIlv3A resulted in pleiotropic defects in aerial hyphal growth, in conidial formation and germination, and in aurofusarin accumulation. In addition, the mutants showed reduced virulence and deoxynivalenol production. Overall, our study demonstrates that FgIlv3a is crucial for BCAA biosynthesis in F. graminearum and a candidate fungicide target for FHB management.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Yichen Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, Tibet, P. R. China
| | - Yinghui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Life Science, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, Henan, P. R. China
| | - Mingzheng Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China
| | - Hongjun Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, P. R. China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China.,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, P. R. China. .,School of Food and Biological Engineering, Jiangsu Univeristy, Zhenjiang, 212013, Jiangsu, P. R. China.
| |
Collapse
|
17
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
18
|
Takpho N, Watanabe D, Takagi H. High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metab Eng 2019; 46:60-67. [PMID: 29477860 DOI: 10.1016/j.ymben.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyces cerevisiae, which is a useful microorganism in fermentation industry. In S. cerevisiae, valine biosynthesis is regulated by valine itself via the feedback inhibition of acetohydroxyacid synthase (AHAS), which consists of two subunits, the catalytic subunit Ilv2 and the regulatory subunit Ilv6. In this study, to improve the valine productivity of yeast cells, we constructed several variants of Ilv6 by introducing amino acid substitutions based on a protein sequence comparison with the AHAS regulatory subunit of E. coli. Among them, we found that the Asn86Ala, Gly89Asp and Asn104Ala variants resulted in approximately 4-fold higher intracellular valine contents compared with those in cells with the wild-type Ilv6. The computational analysis of Ilv6 predicted that Asn86, Gly89 and Asn104 are located in the vicinity of a valine-binding site, suggesting that amino acid substitutions at these positions induce conformational change of the valine-binding site. To test the effects of these variants on AHAS activity, both recombinant Ilv2 and Ilv6 were purified and reconstituted in vitro. The Ilv6 variants were much less sensitive to feedback inhibition by valine than the wild-type Ilv6. Only a portion of the amino acid changes identified in the E. coli AHAS regulatory subunit IlvH enhanced the valine synthesis, suggesting structural and/or functional differences between the S. cerevisiae and E. coli AHAS regulatory subunits. It should also be noted that these amino acid substitutions did not affect the intracellular pools of the other BCAAs, leucine and isoleucine. The approach described here could be a practical method for the development of industrial yeast strains with high-level production of valine or isobutanol.
Collapse
Affiliation(s)
- Natthaporn Takpho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
19
|
Wess J, Brinek M, Boles E. Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:173. [PMID: 31303893 PMCID: PMC6604370 DOI: 10.1186/s13068-019-1486-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/07/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Isobutanol is a promising candidate as second-generation biofuel and has several advantages compared to bioethanol. Another benefit of isobutanol is that it is already formed as a by-product in fermentations with the yeast Saccharomyces cerevisiae, although only in very small amounts. Isobutanol formation results from valine degradation in the cytosol via the Ehrlich pathway. In contrast, valine is synthesized from pyruvate in mitochondria. This spatial separation into two different cell compartments is one of the limiting factors for higher isobutanol production in yeast. Furthermore, some intermediate metabolites are also substrates for various isobutanol competing pathways, reducing the metabolic flux toward isobutanol production. We hypothesized that a relocation of all enzymes involved in anabolic and catabolic reactions of valine metabolism in only one cell compartment, the cytosol, in combination with blocking non-essential isobutanol competing pathways will increase isobutanol production in yeast. RESULTS Here, we overexpressed the three endogenous enzymes acetolactate synthase (Ilv2), acetohydroxyacid reductoisomerase (Ilv5) and dihydroxy-acid dehydratase (Ilv3) of the valine synthesis pathway in the cytosol and blocked the first step of mitochondrial valine synthesis by disrupting endogenous ILV2, leading to a 22-fold increase of isobutanol production up to 0.22 g/L (5.28 mg/g glucose) with aerobic shake flask cultures. Then, we successively deleted essential genes of competing pathways for synthesis of 2,3-butanediol (BDH1 and BDH2), leucine (LEU4 and LEU9), pantothenate (ECM31) and isoleucine (ILV1) resulting in an optimized metabolic flux toward isobutanol and titers of up to 0.56 g/L (13.54 mg/g glucose). Reducing ethanol formation by deletion of the ADH1 gene encoding the major alcohol dehydrogenase did not result in further increased isobutanol production, but in strongly enhanced glycerol formation. Nevertheless, deletion of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2 prevented formation of glycerol and increased isobutanol production up to 1.32 g/L. Finally, additional deletion of aldehyde dehydrogenase gene ALD6 reduced the synthesis of the by-product isobutyrate, thereby further increasing isobutanol production up to 2.09 g/L with a yield of 59.55 mg/g glucose, corresponding to a more than 200-fold increase compared to the wild type. CONCLUSIONS By overexpressing a cytosolic isobutanol synthesis pathway and by blocking non-essential isobutanol competing pathways, we could achieve isobutanol production with a yield of 59.55 mg/g glucose, which is the highest yield ever obtained with S. cerevisiae in shake flask cultures. Nevertheless, our results indicate a still limiting capacity of the isobutanol synthesis pathway itself.
Collapse
Affiliation(s)
- Johannes Wess
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Martin Brinek
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
21
|
Li P, Gao Y, Wang C, Zhang CY, Guo X, Xiao D. Effect of ILV6 Deletion and Expression of aldB from Lactobacillus plantarum in Saccharomyces uvarum on Diacetyl Production and Wine Flavor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8556-8565. [PMID: 30027745 DOI: 10.1021/acs.jafc.8b02356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diacetyl generates an aromatic off-flavor in wine at a high level. The present study expressed α-acetolactate decarboxylase (ALDB) from Lactobacillus plantarum and/or inactivated acetohydroxyacid synthase (Ilv6) in Saccharomyces uvarum, and the effects on diacetyl production and wine flavor in mutants were investigated through sequential fermentation and cofermentation in mixed cultures of S. uvarum and L. plantarum. The diacetyl content of WYDΔ6 (disrupted one ILV6 allele), WYSΔ6 ( ILV6 complete deletion), WYADΔ6 (disrupted one ILV6 allele with aldB expression), and WYASΔ6 ( ILV6 complete deletion with aldB expression) decreased by 25.71%, 41.30%, 47.77%, and 50.00%, respectively, after sequential fermentation and decreased by 15.15%, 26.72%, 35.26%, and 43.80%, respectively, after cofermentation, compared with that of the parental strain. In addition, Ilv6 inactivation not only decreased the acetic acid content but also balanced the flavor profile in wine effectively. This work provided a valuable insight into the metabolic pathway of diacetyl and wine flavor in S. uvarum.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Yingying Gao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cailing Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Cui-Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
22
|
Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast. Appl Environ Microbiol 2017; 83:AEM.01620-17. [PMID: 28986374 DOI: 10.1128/aem.01620-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023] Open
Abstract
The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile.IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms.
Collapse
|
23
|
Paasch F, den Brave F, Psakhye I, Pfander B, Jentsch S. Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 2017; 293:599-609. [PMID: 29183993 PMCID: PMC5767865 DOI: 10.1074/jbc.m117.817833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.
Collapse
Affiliation(s)
| | | | - Ivan Psakhye
- From the Department of Molecular Cell Biology and
| | - Boris Pfander
- the Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
24
|
Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis. Metab Eng 2017; 44:302-312. [DOI: 10.1016/j.ymben.2017.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
|
25
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
26
|
Lonhienne T, Garcia MD, Guddat LW. The Role of a FAD Cofactor in the Regulation of Acetohydroxyacid Synthase by Redox Signaling Molecules. J Biol Chem 2017; 292:5101-5109. [PMID: 28159840 DOI: 10.1074/jbc.m116.773242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Indexed: 11/06/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the first step of branched-chain amino acid (BCAA) biosynthesis, a pathway essential to the lifecycle of plants and microorganisms. This enzyme is of high interest because its inhibition is at the base of the exceptional potency of herbicides and potentially a target for the discovery of new antimicrobial drugs. The enzyme has conserved attributes from its predicted ancestor, pyruvate oxidase, such as a ubiquinone-binding site and the requirement for FAD as cofactor. Here, we show that these requirements are linked to the regulation of AHAS, in relationship to its anabolic function. Using various soluble quinone derivatives (e.g. ubiquinones), we reveal a new path of down-regulation of AHAS activity involving inhibition by oxidized redox-signaling molecules. The inhibition process relies on two factors specific to AHAS: (i) the requirement of a reduced FAD cofactor for the enzyme to be active and (ii) a characteristic slow rate of FAD reduction by the pyruvate oxidase side reaction of the enzyme. The mechanism of inhibition involves the oxidation of the FAD cofactor, leading to a time-dependent inhibition of AHAS correlated with the slow process of FAD re-reduction. The existence and conservation of such a complex mechanism suggests that the redox level of the environment regulates the BCAA biosynthesis pathway. This mode of regulation appears to be the foundation of the inhibitory activity of many of the commercial herbicides that target AHAS.
Collapse
Affiliation(s)
- Thierry Lonhienne
- From the School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Mario D Garcia
- From the School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Luke W Guddat
- From the School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| |
Collapse
|
27
|
Eram MS, Ma K. Pyruvate decarboxylase activity of the acetohydroxyacid synthase of Thermotoga maritima. Biochem Biophys Rep 2016; 7:394-399. [PMID: 28955930 PMCID: PMC5613635 DOI: 10.1016/j.bbrep.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s−1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms. The acetohydroxyacid synthase of T. maritima has pyruvate decarboxylase activity The AHAS and PDC activities share the same temperature and pH optima Reconstitution of the catalytic and regulatory subunits increases both PDC and AHAS activities
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
28
|
Romão-Dumaresq AS, Dourado MN, Fávaro LCDL, Mendes R, Ferreira A, Araújo WL. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant. PLoS One 2016; 11:e0158974. [PMID: 27415014 PMCID: PMC4944904 DOI: 10.1371/journal.pone.0158974] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community's structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in the roots where it formed a dense mycelial cover and was able to penetrate the intercellular spaces of the root epidermis upper layers. The ability of T. virens to colonize plant roots suggests a potential for protecting plant health, inhibiting pathogens or inducing systemic resistance.
Collapse
Affiliation(s)
- Aline Silva Romão-Dumaresq
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
| | - Manuella Nóbrega Dourado
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Léia Cecilia de Lima Fávaro
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, Distrito Federal, Brazil
| | - Rodrigo Mendes
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Anderson Ferreira
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agrosilvopastoral, Sinop, Mato Grosso, Brazil
| | - Welington Luiz Araújo
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
van Bergen B, Cyr N, Strasser R, Blanchette M, Sheppard JD, Jardim A. α,β-Dicarbonyl reduction is mediated by the Saccharomyces Old Yellow Enzyme. FEMS Yeast Res 2016; 16:fow059. [PMID: 27400981 DOI: 10.1093/femsyr/fow059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/13/2022] Open
Abstract
The undesirable flavor compounds diacetyl and 2,3-pentanedione are vicinal diketones (VDKs) formed by extracellular oxidative decarboxylation of intermediate metabolites of the isoleucine, leucine and valine (ILV) biosynthetic pathway. These VDKs are taken up by Saccharomyces and enzymatically converted to acetoin and 3-hydroxy-2-pentanone, respectively. Purification of a highly enriched diacetyl reductase fraction from Saccharomyces cerevisiae in conjunction with mass spectrometry identified Old Yellow Enzyme (Oye) as an enzyme capable of catalyzing VDK reduction. Kinetic analysis of recombinant Oye1p, Oye2p and Oye3p isoforms confirmed that all three isoforms reduced diacetyl and 2,3-pentanedione in an NADPH-dependent reaction. Transcriptomic analysis of S. cerevisiae (ale) and S. pastorianus (lager) yeast during industrial fermentations showed that the transcripts for OYE1, OYE2, arabinose dehydrogenase (ARA1), α-acetolactate synthase (ILV2) and α-acetohydroxyacid reductoisomerase (ILV5) were differentially regulated in a manner that correlated with changes in extracellular levels of VDKs. These studies provide insights into the mechanism for reducing VDKs and decreasing maturation times of beer which are of commercial importance.
Collapse
Affiliation(s)
- Barry van Bergen
- Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Normand Cyr
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27612, USA
| | - Rona Strasser
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Maxime Blanchette
- Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - John D Sheppard
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27612, USA
| | - Armando Jardim
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
30
|
Milne N, Wahl SA, van Maris AJA, Pronk JT, Daran JM. Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 2016; 3:39-51. [PMID: 29142820 PMCID: PMC5678825 DOI: 10.1016/j.meteno.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022] Open
Abstract
It is theoretically possible to engineer Saccharomyces cerevisiae strains in which isobutanol is the predominant catabolic product and high-yielding isobutanol-producing strains are already reported by industry. Conversely, isobutanol yields of engineered S. cerevisiae strains reported in the scientific literature typically remain far below 10% of the theoretical maximum. This study explores possible reasons for these suboptimal yields by a mass-balancing approach. A cytosolically located, cofactor-balanced isobutanol pathway, consisting of a mosaic of bacterial enzymes whose in vivo functionality was confirmed by complementation of null mutations in branched-chain amino acid metabolism, was expressed in S. cerevisiae. Product formation by the engineered strain was analysed in shake flasks and bioreactors. In aerobic cultures, the pathway intermediate isobutyraldehyde was oxidized to isobutyrate rather than reduced to isobutanol. Moreover, significant concentrations of the pathway intermediates 2,3-dihydroxyisovalerate and α-ketoisovalerate, as well as diacetyl and acetoin, accumulated extracellularly. While the engineered strain could not grow anaerobically, micro-aerobic cultivation resulted in isobutanol formation at a yield of 0.018±0.003 mol/mol glucose. Simultaneously, 2,3-butanediol was produced at a yield of 0.649±0.067 mol/mol glucose. These results identify massive accumulation of pathway intermediates, as well as overflow metabolites derived from acetolactate, as an important, previously underestimated contributor to the suboptimal yields of 'academic' isobutanol strains. The observed patterns of by-product formation is consistent with the notion that in vivo activity of the iron-sulphur-cluster-requiring enzyme dihydroxyacid dehydratase is a key bottleneck in the present and previously described 'academic' isobutanol-producing yeast strains.
Collapse
Affiliation(s)
- N Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
31
|
Li H, Liu N, Wang WT, Wang JY, Gao WY. Cloning and characterization of GST fusion tag stabilized large subunit of Escherichia coli acetohydroxyacid synthase I. J Biosci Bioeng 2016; 121:21-26. [DOI: 10.1016/j.jbiosc.2015.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 10/22/2022]
|
32
|
Eram MS, Sarafuddin B, Gong F, Ma K. Characterization of acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima. Biochem Biophys Rep 2015; 4:89-97. [PMID: 29124191 PMCID: PMC5668897 DOI: 10.1016/j.bbrep.2015.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far. First report of AHAS from a hyperthermophilic bacterium. Catalytic and regulatory subunits of AHAS of T. maritima was expressed in E. coli. Recombinant proteins were purified using a simplified procedure. Enzyme represents the most active and thermostable AHAS reported so far. Kinetic parameters were determined for the purified recombinant enzyme
Collapse
Key Words
- AHAS, acetohydroxyacid synthase
- Acetohydroxyacid synthase
- BCAA, branched chain amino acid
- Branched-chain amino acids
- CCE, crude cell extract
- CFE, cell-free extract
- HTCCE, heat-treated crude cell extract
- Hyperthermophiles
- IB, inclusion body
- IMAC, immobilized metal affinity chromatography
- TPP, thiamine pyrophosphate
- Thermotogales
- TmAHAS, Thermotoga maritima acetohydroxyacid synthase
- ilv, isoleucine, leucine, valine
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Benozir Sarafuddin
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Frank Gong
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
33
|
Gibson B, Krogerus K, Ekberg J, Monroux A, Mattinen L, Rautio J, Vidgren V. Variation in α-acetolactate production within the hybrid lager yeast group Saccharomyces pastorianus and affirmation of the central role of the ILV6 gene. Yeast 2014; 32:301-16. [PMID: 24965182 DOI: 10.1002/yea.3026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022] Open
Abstract
A screen of 14 S. pastorianus lager-brewing strains showed as much as a nine-fold difference in wort total diacetyl concentration at equivalent stages of fermentation of 15°Plato brewer's wort. Two strains (A153 and W34), with relatively low and high diacetyl production, respectively, but which did not otherwise differ in fermentation performance, growth or flavour production, were selected for further investigation. Transcriptional analysis of key genes involved in valine biosynthesis showed differences between the two strains that were consistent with the differences in wort diacetyl concentration. In particular, the ILV6 gene, encoding a regulatory subunit of acetohydroxy acid synthase, showed early transcription (only 6 h after inoculation) and up to five-fold greater expression in W34 compared to A153. This earlier transcription was observed for both orthologues of ILV6 in the S. pastorianus hybrid (S. cerevisiae × S. eubayanus), although the S. cerevisiae form of ILV6 in W34 also showed a consistently higher transcript level throughout fermentation relative to the same gene in A153. Overexpression of either form of ILV6 (by placing it under the control of the PGK1 promoter) resulted in an identical two-fold increase in wort total diacetyl concentration relative to a control. The results confirm the role of the Ilv6 subunit in controlling α-acetolactate/diacetyl concentration and indicate no functional divergence between the two forms of Ilv6. The greater contribution of the S. cerevisiae ILV6 to acetolactate production in natural brewing yeast hybrids appears rather to be due to higher levels of transcription relative to the S. eubayanus form.
Collapse
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Du Y, Zhang H, Hong L, Wang J, Zheng X, Zhang Z. Acetolactate synthases MoIlv2 and MoIlv6 are required for infection-related morphogenesis in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2013; 14:870-884. [PMID: 23782532 PMCID: PMC6638861 DOI: 10.1111/mpp.12053] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amino acids are important components in the metabolism of a variety of pathogens, plants and animals. Acetolactate synthase (ALS) catalyses the first common step in leucine, isoleucine and valine biosynthesis, and is the target of several classes of inhibitors. Here, MoIlv2, an orthologue of the Saccharomyces cerevisiae ALS catalytic subunit Ilv2, and MoIlv6, an orthologue of the S. cerevisiae ALS regulatory subunit Ilv6, were identified. To characterize MoILV2 and MoILV6 functions, we generated the deletion mutants ΔMoilv2 and ΔMoilv6. Phenotypic analysis showed that both mutants were auxotrophic for leucine, isoleucine and valine, and were defective in conidial morphogenesis, appressorial penetration and pathogenicity. Further studies suggested that MoIlv2 and MoIlv6 play a critical role in maintaining the balance of intracellular amino acid levels. MoIlv2 and MoIlv6 are both localized to the mitochondria and the signal peptide of MoIlv6 is critical for its localization. In summary, our evidence indicates that MoIlv2 plays a crucial role in isoleucine and valine biosynthesis, whereas MoIlv6 contributes to isoleucine and leucine biosynthesis; both genes are required for fungal pathogenicity. This study indicates the potential of targeting branched-chain amino acid biosynthesis for anti-rice blast management.
Collapse
Affiliation(s)
- Yan Du
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
35
|
Krogerus K, Gibson BR. 125thAnniversary Review: Diacetyl and its control during brewery fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Brian R. Gibson
- VTT Technical Research Centre of Finland; Tietotie 2, PO Box 1000; FI-02044; VTT, Espoo; Finland
| |
Collapse
|
36
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
37
|
Lee YT, Cui CJ, Chow EWL, Pue N, Lonhienne T, Wang JG, Fraser JA, Guddat LW. Sulfonylureas Have Antifungal Activity and Are Potent Inhibitors of Candida albicans Acetohydroxyacid Synthase. J Med Chem 2012; 56:210-9. [DOI: 10.1021/jm301501k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Chang-Jun Cui
- State-Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | | - Jian-Guo Wang
- State-Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | |
Collapse
|
38
|
Karanth NM, Sarma SP. The Coil-to-Helix Transition in IlvN Regulates the Allosteric Control of Escherichia coli Acetohydroxyacid Synthase I. Biochemistry 2012. [DOI: 10.1021/bi301415m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| |
Collapse
|
39
|
Brat D, Weber C, Lorenzen W, Bode HB, Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:65. [PMID: 22954227 PMCID: PMC3476451 DOI: 10.1186/1754-6834-5-65] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/30/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. RESULTS Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. CONCLUSION A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.
Collapse
Affiliation(s)
- Dawid Brat
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Christian Weber
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Wolfram Lorenzen
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Barak Z, Chipman DM. Allosteric regulation in Acetohydroxyacid Synthases (AHASs) – Different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 2012; 519:167-74. [DOI: 10.1016/j.abb.2011.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
41
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Duong C, Strack L, Futschik M, Katou Y, Nakao Y, Fujimura T, Shirahige K, Kodama Y, Nevoigt E. Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers' yeast. Metab Eng 2011; 13:638-47. [DOI: 10.1016/j.ymben.2011.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/04/2011] [Accepted: 07/22/2011] [Indexed: 11/28/2022]
|
43
|
Abstract
A bacterial strain S9-1capable of degrading sulfonylurea herbicide pyrazosulfuron-ethyl (PSE) was isolated from contaminated soil through the enrichment incubation method. Based on morphology, colony and cultural properties, physiological and biochemical characteristics, living-cell absorption spectra, internal photosynthetic membrane, and phylogenetics of its 16S rRNA gene sequence, S9-1was preliminarily identified as belonging to the genus Rhodopseudomonas, a group of photosynthetic bacteria (PSB). The effects of PSE concentration, pH, and temperature on biodegradation were examined. The degradation rate was found to decrease with increasing PSE concentration. Optimal growth pH and temperature were found to be 7.0 and 30°C, respectively. The strain was able to degrade 47.51% of PSE at a concentration of 100 mg ml-1after 7 days of incubation at 30°C and could tolerate 800 mg ml-1PSE. S9-1was also able to completely co-metabolically transform 100 mg ml-1PSE at 30°C, pH 7.0, and 7500 lux in 15 days. As the concentration of PSE increased, the degradation process took longer to complete. The fragment encoding acetolactate synthase (ALS) gene from S9-1was cloned and sequenced. Comparison of deduced amino acid sequences was implemented, and the conserved sites were analyzed. To our knowledge, this is the first report of PSB in PSE biodegradation. These results highlight the potential of this bacterium as a detoxifying agent for use with PSE-contaminated soil and wastewater.
Collapse
|
44
|
Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family. J Bacteriol 2011; 193:6760-9. [PMID: 21965568 DOI: 10.1128/jb.05348-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict.
Collapse
|
45
|
Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:21. [PMID: 21798060 PMCID: PMC3162486 DOI: 10.1186/1754-6834-4-21] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/28/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Isobutanol can be a better biofuel than ethanol due to its higher energy density and lower hygroscopicity. Furthermore, the branched-chain structure of isobutanol gives a higher octane number than the isomeric n-butanol. Saccharomyces cerevisiae was chosen as the production host because of its relative tolerance to alcohols, robustness in industrial fermentations, and the possibility for future combination of isobutanol production with fermentation of lignocellulosic materials. RESULTS The yield of isobutanol was improved from 0.16 to 0.97 mg per g glucose by simultaneous overexpression of biosynthetic genes ILV2, ILV3, and ILV5 in valine metabolism in anaerobic fermentation of glucose in mineral medium in S. cerevisiae. Isobutanol yield was further improved by twofold by the additional overexpression of BAT2, encoding the cytoplasmic branched-chain amino-acid aminotransferase. Overexpression of ILV6, encoding the regulatory subunit of Ilv2, in the ILV2 ILV3 ILV5 overexpression strain decreased isobutanol production yield by threefold. In aerobic cultivations in shake flasks in mineral medium, the isobutanol yield of the ILV2 ILV3 ILV5 overexpression strain and the reference strain were 3.86 and 0.28 mg per g glucose, respectively. They increased to 4.12 and 2.4 mg per g glucose in yeast extract/peptone/dextrose (YPD) complex medium under aerobic conditions, respectively. CONCLUSIONS Overexpression of genes ILV2, ILV3, ILV5, and BAT2 in valine metabolism led to an increase in isobutanol production in S. cerevisiae. Additional overexpression of ILV6 in the ILV2 ILV3 ILV5 overexpression strain had a negative effect, presumably by increasing the sensitivity of Ilv2 to valine inhibition, thus weakening the positive impact of overexpression of ILV2, ILV3, and ILV5 on isobutanol production. Aerobic cultivations of the ILV2 ILV3 ILV5 overexpression strain and the reference strain showed that supplying amino acids in cultivation media gave a substantial improvement in isobutanol production for the reference strain, but not for the ILV2 ILV3 ILV5 overexpression strain. This result implies that other constraints besides the enzyme activities for the supply of 2-ketoisovalerate may become bottlenecks for isobutanol production after ILV2, ILV3, and ILV5 have been overexpressed, which most probably includes the valine inhibition to Ilv2.
Collapse
Affiliation(s)
- Xiao Chen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Kristian F Nielsen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Irina Borodina
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Morten C Kielland-Brandt
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | - Kaisa Karhumaa
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 223, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
46
|
Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL. Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 2010; 192:307-13. [PMID: 20191263 DOI: 10.1007/s00203-010-0557-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/02/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.
Collapse
|
47
|
Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 2010; 76:1507-15. [PMID: 20081005 DOI: 10.1128/aem.02135-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD(+) and NADPH/NADP(+) under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD(+) and NADP(+) regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.
Collapse
|
48
|
Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM. Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 2009; 48:8731-7. [PMID: 19653643 DOI: 10.1021/bi9009488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant. The LSUs have only approximately 15, <<1 and approximately 3%, respectively, of the activity of their respective holoenzymes, but the holoenzymes can be reconstituted with complete recovery of activity. We have examined the activation of each of the LSUs by SSUs from different isozymes and ask to what extent such activation is specific; that is, is effective nonspecific interaction possible between LSUs and SSUs of different isozymes? To our surprise, the AHAS II SSU ilvM is able to activate the LSUs of all three of the isozymes, and the truncated AHAS III SSUs ilvH-Delta80, ilvH-Delta86 and ilvH-Delta89 are able to activate the LSUs of both AHAS I and AHAS III. However, none of the heterologously activated enzymes have any feedback sensitivity. Our results imply the existence of a common region in all three LSUs to which regulatory subunits may bind, as well as a similarity between the surfaces of ilvM and the other SSUs. This surface must be included within the N-terminal betaalphabetabetaalphabeta-domain of the SSUs, probably on the helical face of this domain. We suggest hypotheses for the mechanism of valine inhibition, and reject one involving induced dissociation of subunits.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0213-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Makarchikov AF. Vitamin B1: Metabolism and functions. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|