1
|
Pallitsch K, Rogers MP, Andrews FH, Hammerschmidt F, McLeish MJ. Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis. Bioorg Med Chem 2017; 25:4368-4374. [PMID: 28693916 DOI: 10.1016/j.bmc.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.
Collapse
Affiliation(s)
| | - Megan P Rogers
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | - Forest H Andrews
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | | | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
2
|
Spinka M, Seiferheld S, Zimmermann P, Bergner E, Blume AK, Schierhorn A, Reichenbach T, Pertermann R, Ehrt C, König S. Significance of Individual Residues at the Regulatory Site of Yeast Pyruvate Decarboxylase for Allosteric Substrate Activation. Biochemistry 2017; 56:1285-1298. [PMID: 28170226 DOI: 10.1021/acs.biochem.6b01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic activity of the allosteric enzyme pyruvate decarboxylase from yeast is strictly controlled by its own substrate pyruvate via covalent binding at a separate regulatory site. Kinetic studies, chemical modifications, cross-linking, small-angle X-ray scattering, and crystal structure analyses have led to a detailed understanding of the substrate activation mechanism at an atomic level with C221 as the core moiety of the regulatory site. To characterize the individual role of the residues adjacent to C221, we generated variants H92F, H225F, H310F, A287G, S311A, and C221A/C222A. The integrity of the protein structure of the variants was established by small-angle X-ray scattering measurements. The analyses of both steady state and transient kinetic data allowed the identification of the individual roles of the exchanged side chains during allosteric enzyme activation. In each case, the kinetic pattern of activation was modulated but not completely abolished. Despite the crucial role of C221, the covalent binding of pyruvate is not obligate for enzyme activation but is a requirement for a kinetically efficient transition from the inactive to the active state. Moreover, only one of the three histidines guiding the activator molecule to the binding pocket, H310, specifically interacts with C221. H310 stabilizes the thiolate form of C221, ensuring a rapid nucleophilic attack of the thiolate sulfur on C2 of the regulatory pyruvate, thus forming a regulatory dyad. The influence of the other two histidines is less pronounced. Substrate activation is slightly weakened for A287G and significantly retarded for S311A.
Collapse
Affiliation(s)
- Michael Spinka
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Sebastian Seiferheld
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Philipp Zimmermann
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Elena Bergner
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Anne-Kathrin Blume
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Angelika Schierhorn
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Tom Reichenbach
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Robert Pertermann
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Christiane Ehrt
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| | - Stephan König
- Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Yamanishi M, Matsuyama T. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. ACS Synth Biol 2012; 1:172-80. [PMID: 23651155 DOI: 10.1021/sb200017p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The control of metabolic flow is a prerequisite for efficient chemical production in transgenic microorganisms. Exogenous genes required for the biosynthesis of target chemicals are expressed under strong promoters, while the endogenous genes of the original metabolic pathway are repressed by disruption or mutation. These genetic manipulations occasionally cause harmful effects to the host. In the lactate-producing yeast Saccharomyces cerevisiae, where endogenous pyruvate decarboxylase (PDC) is disrupted and exogenous lactate dehydrogenase (LDH) is introduced, PDC deletion is extremely detrimental to cell growth but is required for efficient production of lactate. A suitable means to dynamically control the metabolic flow from ethanol fermentation during the growth phase to lactate fermentation during the production phase is needed. Here, we demonstrated that this flow can be controlled by the exclusive expression of PDC and LDH with a Cre-lox genetic switch. This switch was evaluated with a gene cassette that encoded two different fluorescence proteins and enabled changes in genotype and phenotype within 2 and 10 h, respectively. Transgenic yeast harboring this switch and the PDC-LDH cassette showed a specific growth rate (0.45 h (-1)) that was almost the same as that of wild-type (0.47 h (-1)). Upon induction of the genetic switch, the transgenic yeast produced lactate from up to 85.4% of the glucose substrate, while 91.7% of glucose went to ethanol before induction. We thus propose a "metabolic shift" concept that can serve as an alternative means to obtain gene products that are currently difficult to obtain by using conventional methodologies.
Collapse
Affiliation(s)
- Mamoru Yamanishi
- Toyota Central Research and Development
Laboratories,
Inc., 41-1 Nagakute Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takashi Matsuyama
- Toyota Central Research and Development
Laboratories,
Inc., 41-1 Nagakute Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
4
|
Balakrishnan A, Gao Y, Moorjani P, Nemeria NS, Tittmann K, Jordan F. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4'-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase. J Am Chem Soc 2012; 134:3873-85. [PMID: 22300533 PMCID: PMC3295232 DOI: 10.1021/ja211139c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the nonoxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, and E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4'-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest the following: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1',4'-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20 Å away. (4) YPDC stabilizes an electrostatic model for the 4'-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members.
Collapse
Affiliation(s)
| | - Yuhong Gao
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | - Prerna Moorjani
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | | | - Kai Tittmann
- Albrecht-von-Haller Institute & Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 2011; 43:26-36. [PMID: 22245019 DOI: 10.1016/j.bioorg.2011.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
Thiamin diphosphate (ThDP) is the biologically active form of vitamin B(1), and ThDP-dependent enzymes are found in all forms of life. The catalytic mechanism of this family requires the formation of a common intermediate, the 2α-carbanion-enamine, regardless of whether the enzyme is involved in C-C bond formation or breakdown, or even formation of C-N, C-O and C-S bonds. This demands that the enzymes must screen substrates prior to, and/or after, formation of the common intermediate. This review is focused on the group for which the second step is the protonation of the 2α-carbanion, i.e., the ThDP-dependent decarboxylases. Based on kinetic data, sequence/structure alignments and mutagenesis studies the factors involved in substrate specificity have been identified.
Collapse
|
6
|
König S, Spinka M, Kutter S. Allosteric activation of pyruvate decarboxylases. A never-ending story? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Kutter S, Weiss MS, Wille G, Golbik R, Spinka M, König S. Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylases triggers allosteric enzyme activation. J Biol Chem 2009; 284:12136-44. [PMID: 19246454 PMCID: PMC2673282 DOI: 10.1074/jbc.m806228200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/17/2009] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which the enzyme pyruvate decarboxylase from two yeast species is activated allosterically has been elucidated. A total of seven three-dimensional structures of the enzyme, of enzyme variants, or of enzyme complexes from two yeast species, three of them reported here for the first time, provide detailed atomic resolution snapshots along the activation coordinate. The prime event is the covalent binding of the substrate pyruvate to the side chain of cysteine 221, thus forming a thiohemiketal. This reaction causes the shift of a neighboring amino acid, which eventually leads to the rigidification of two otherwise flexible loops, one of which provides two histidine residues necessary to complete the enzymatically competent active site architecture. The structural data are complemented and supported by kinetic investigations and binding studies, providing a consistent picture of the structural changes occurring upon enzyme activation.
Collapse
Affiliation(s)
- Steffen Kutter
- Institute for Biochemistry and Biotechnology, Faculty of Biological Sciences, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
8
|
Werther T, Spinka M, Tittmann K, Schütz A, Golbik R, Mrestani-Klaus C, Hübner G, König S. Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis. J Biol Chem 2007; 283:5344-54. [PMID: 18086676 DOI: 10.1074/jbc.m706569200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene rv0853c from Mycobacterium tuberculosis strain H37Rv codes for a thiamine diphosphate-dependent alpha-keto acid decarboxylase (MtKDC), an enzyme involved in the amino acid degradation via the Ehrlich pathway. Steady state kinetic experiments were performed to determine the substrate specificity of MtKDC. The mycobacterial enzyme was found to convert a broad spectrum of branched-chain and aromatic alpha-keto acids. Stopped-flow kinetics showed that MtKDC is allosterically activated by alpha-keto acids. Even more, we demonstrate that also amino acids are potent activators of this thiamine diphosphate-dependent enzyme. Thus, metabolic flow through the Ehrlich pathway can be directly regulated at the decarboxylation step. The influence of amino acids on MtKDC catalysis was investigated, and implications for other thiamine diphosphate-dependent enzymes are discussed.
Collapse
Affiliation(s)
- Tobias Werther
- Institute of Biochemistry and Biotechnology, Faculty for Biological Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Versées W, Spaepen S, Vanderleyden J, Steyaert J. The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Å resolution. FEBS J 2007; 274:2363-75. [PMID: 17403037 DOI: 10.1111/j.1742-4658.2007.05771.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 A resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open alpha/beta topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
10
|
Kutter S, Wille G, Relle S, Weiss MS, Hübner G, König S. The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. FEBS J 2006; 273:4199-209. [PMID: 16939618 DOI: 10.1111/j.1742-4658.2006.05415.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis has been determined to 2.26 A resolution. Like other yeast enzymes, Kluyveromyces lactis pyruvate decarboxylase is subject to allosteric substrate activation. Binding of substrate at a regulatory site induces catalytic activity. This process is accompanied by conformational changes and subunit rearrangements. In the nonactivated form of the corresponding enzyme from Saccharomyces cerevisiae, all active sites are solvent accessible due to the high flexibility of loop regions 106-113 and 292-301. The binding of the activator pyruvamide arrests these loops. Consequently, two of four active sites become closed. In Kluyveromyces lactis pyruvate decarboxylase, this half-side closed tetramer is present even without any activator. However, one of the loops (residues 105-113), which are flexible in nonactivated Saccharomyces cerevisiae pyruvate decarboxylase, remains flexible. Even though the tetramer assemblies of both enzyme species are different in the absence of activating agents, their substrate activation kinetics are similar. This implies an equilibrium between the open and the half-side closed state of yeast pyruvate decarboxylase tetramers. The completely open enzyme state is favoured for Saccharomyces cerevisiae pyruvate decarboxylase, whereas the half-side closed form is predominant for Kluyveromyces lactis pyruvate decarboxylase. Consequently, the structuring of the flexible loop region 105-113 seems to be the crucial step during the substrate activation process of Kluyveromyces lactis pyruvate decarboxylase.
Collapse
Affiliation(s)
- Steffen Kutter
- Institute for Biochemistry, Department of Biochemistry & Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
11
|
Metzler DE, Metzler CM, Sauke DJ. Coenzymes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Current awareness on yeast. Yeast 2000. [DOI: 10.1002/1097-0061(20000115)16:1<89::aid-yea563>3.0.co;2-h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|