1
|
Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor. Proc Natl Acad Sci U S A 2015; 112:E3274-81. [PMID: 26056311 DOI: 10.1073/pnas.1505297112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In nature, most organisms experience conditions that are suboptimal for growth. To survive, cells must fine-tune energy-demanding metabolic processes in response to nutrient availability. Here, we describe a novel mechanism by which protein synthesis in starved cells is down-regulated by phosphorylation of the universally conserved elongation factor Tu (EF-Tu). Phosphorylation impairs the essential GTPase activity of EF-Tu, thereby preventing its release from the ribosome. As a consequence, phosphorylated EF-Tu has a dominant-negative effect in elongation, resulting in the overall inhibition of protein synthesis. Importantly, this mechanism allows a quick and robust regulation of one of the most abundant cellular proteins. Given that the threonine that serves as the primary site of phosphorylation is conserved in all translational GTPases from bacteria to humans, this mechanism may have important implications for growth-rate control in phylogenetically diverse organisms.
Collapse
|
2
|
Montanari A, Zhou YF, D'Orsi MF, Bolotin-Fukuhara M, Frontali L, Francisci S. Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 2013; 527:1-9. [PMID: 23727608 DOI: 10.1016/j.gene.2013.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 12/01/2022]
Abstract
The respiratory defects associated with mutations in human mitochondrial tRNA genes can be mimicked in yeast, which is the only organism easily amenable to mitochondrial transformation. This approach has shown that overexpression of several nuclear genes coding for factors involved in mitochondrial protein synthesis can alleviate the respiratory defects both in yeast and in human cells. The present paper analyzes in detail the effects of overexpressed yeast and human mitochondrial translation elongation factors EF-Tu. We studied the suppressing activity versus the function in mt translation of mutated versions of this factor and we obtained indications on the mechanism of suppression. Moreover from a more extended search for suppressor genes we isolated factors which might be active in mitochondrial biogenesis. Results indicate that the multiplicity of mitochondrial factors as well as their high variability of expression levels can account for the variable severity of mitochondrial diseases and might suggest possible therapeutic approaches.
Collapse
Affiliation(s)
- Arianna Montanari
- Department of Biology and Biotechnologies C. Darwin, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
4
|
Seshadri A, Samhita L, Gaur R, Malshetty V, Varshney U. Analysis of the fusA2 locus encoding EFG2 in Mycobacterium smegmatis. Tuberculosis (Edinb) 2011; 89:453-64. [PMID: 19595631 DOI: 10.1016/j.tube.2009.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/01/2009] [Accepted: 06/05/2009] [Indexed: 11/25/2022]
Abstract
The translation elongation factor G (EFG) is encoded by the fusA gene. Several bacteria possess a second fusA-like locus, fusA2 which encodes EFG2. A comparison of EFG and EFG2 from various bacteria reveals that EFG2 preserves domain organization and maintains significant sequence homology with EFG, suggesting that EFG2 may function as an elongation factor. However, with the single exception of a recent study on Thermus thermophilus EFG2, this class of EFG-like factors has not been investigated. Here, we have characterized EFG2 (MSMEG_6535) from Mycobacterium smegmatis. Expression of EFG2 was detected in stationary phase cultures of M. smegmatis (Msm). Our in vitro studies show that while MsmEFG2 binds guanine nucleotides, it lacks the ribosome-dependent GTPase activity characteristic of EFGs. Furthermore, unlike MsmEFG (MSMEG_1400), MsmEFG2 failed to rescue an E. coli strain harboring a temperature-sensitive allele of EFG, for its growth at the non-permissive temperature. Subsequent experiments showed that the fusA2 gene could be disrupted in M. smegmatis mc(2)155 with Kan(R) marker. The M. smegmatis fusA2::kan strain was viable and showed growth kinetics similar to that of the parent strain (wild-type for fusA2). However, in the growth competition assays, the disruption of fusA2 was found to confer a fitness disadvantage to M. smegmatis, raising the possibility that EFG2 is of some physiological relevance to mycobacteria.
Collapse
Affiliation(s)
- Anuradha Seshadri
- Department of Microbiology and Cell Biology, Indian Institute of Science, CNR Rao Circle, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
5
|
Converting structural information into an allosteric-energy-based picture for elongation factor Tu activation by the ribosome. Proc Natl Acad Sci U S A 2011; 108:9827-32. [PMID: 21617092 DOI: 10.1073/pnas.1105714108] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crucial process of aminoacyl-tRNA delivery to the ribosome is energized by the GTPase reaction of the elongation factor Tu (EF-Tu). Advances in the elucidation of the structure of the EF-Tu/ribosome complex provide the rare opportunity of gaining a detailed understanding of the activation process of this system. Here, we use quantitative simulation approaches and reproduce the energetics of the GTPase reaction of EF-Tu with and without the ribosome and with several key mutants. Our study provides a novel insight into the activation process. It is found that the critical H84 residue is not likely to behave as a general base but rather contributes to an allosteric effect, which includes a major transition state stabilization by the electrostatic effect of the P loop and other regions of the protein. Our findings have general relevance to GTPase activation, including the processes that control signal transduction.
Collapse
|
6
|
Berisio R, Ruggiero A, Vitagliano L. Elongation Factors EFIA and EF-Tu: Their Role in Translation and Beyond. Isr J Chem 2010. [DOI: 10.1002/ijch.201000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Ruggiero I, Cantiello P, Lamberti A, Sorrentino A, Martucci NM, Ruggiero A, Arcone R, Vitagliano L, Arcari P, Masullo M. Biochemical characterisation of the D60A mutant of the elongation factor 1alpha from the archaeon Sulfolobus solfataricus. Biochimie 2009; 91:835-42. [PMID: 19375481 DOI: 10.1016/j.biochi.2009.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/02/2009] [Indexed: 11/28/2022]
Abstract
The D60A mutant of the elongation factor (EF) 1alpha from Sulfolobus solfataricus (Ss), was obtained as heterologous expressed protein and characterised. This substitution was carried out in order to analyse the involvement of this evolutionally conserved amino acid position in the interaction between the elongation factor and guanosine nucleotides and in the coordination of magnesium ions. The expression system used produced a folded protein able to catalyse, although to a slightly lower extent with respect to the wild-type enzyme, protein synthesis in vitro and NaCl-dependent intrinsic GTPase activity. The affinity for guanosine nucleotides was almost identical to that exhibited by wild-type SsEF-1alpha; vice versa, the GDP exchange rate was one order of magnitude faster on the mutated elongation factor, a property partially restored when the exchange reaction was analysed in the presence of the magnesium ions chelating agent EDTA. Finally, the D60A substitution only a little affected the high thermal stability of the elongation factor. From a structural point of view, the analysis of the data reported confirmed that this conserved carboxyl group belongs to a protein region differentiating the GDP binding mode among elongation factors from different organisms.
Collapse
Affiliation(s)
- Immacolata Ruggiero
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bartish G, Nygård O. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae. Biochimie 2008; 90:736-48. [DOI: 10.1016/j.biochi.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
9
|
Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schüler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S, Spahn CMT. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 2007; 25:751-64. [PMID: 17349960 DOI: 10.1016/j.molcel.2007.01.027] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/24/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Elongation factor G (EF-G) catalyzes tRNA translocation on the ribosome. Here a cryo-EM reconstruction of the 70S*EF-G ribosomal complex at 7.3 A resolution and the crystal structure of EF-G-2*GTP, an EF-G homolog, at 2.2 A resolution are presented. EF-G-2*GTP is structurally distinct from previous EF-G structures, and in the context of the cryo-EM structure, the conformational changes are associated with ribosome binding and activation of the GTP binding pocket. The P loop and switch II approach A2660-A2662 in helix 95 of the 23S rRNA, indicating an important role for these conserved bases. Furthermore, the ordering of the functionally important switch I and II regions, which interact with the bound GTP, is dependent on interactions with the ribosome in the ratcheted conformation. Therefore, a network of interaction with the ribosome establishes the active GTP conformation of EF-G and thus facilitates GTP hydrolysis and tRNA translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jonák J. Bacterial elongation factors EF-Tu, their mutants, chimeric forms, and domains: isolation and purification. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:141-53. [PMID: 17197255 DOI: 10.1016/j.jchromb.2006.11.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 11/24/2022]
Abstract
Prokaryotic elongation factors EF-Tu form a family of homologous, three-domain molecular switches catalyzing the binding of aminoacyl-tRNAs to ribosomes during the process of mRNA translation. They are GTP-binding proteins, or GTPases. Binding of GTP or GDP regulates their conformation and thus their activity. Because of their particular structure and regulation, various activities (also outside of the translation system) and a relative abundance they represent attractive tools for studies of many basic but still not fully understood mechanisms both of the translation process, the structure-function relationships in EF-Tu molecules themselves and proteins and energy transduction mechanisms in general. The review critically summarizes procedures for the isolation and purification of native and engineered eubacterial elongation factors EF-Tu and their mutants on a large as well as small scale. Current protocols for the purification of both native and polyHis-tagged or glutathione-S-transferase (GST)-tagged EF-Tu proteins and their variants using conventional procedures and the Ni-NTA-Agarose or Glutathione Sepharose are presented.
Collapse
Affiliation(s)
- J Jonák
- Department of Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Prague 6, Czech Republic.
| |
Collapse
|
11
|
Sanderová H, Jonák J. Opposite roles of domains 2+3 of Escherichia coli EF-Tu and Bacillus stearothermophilus EF-Tu in the regulation of EF-Tu GTPase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:11-7. [PMID: 16081328 DOI: 10.1016/j.bbapap.2005.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 06/29/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
The effect of noncatalytic domains 2+3 on the intrinsic activity and thermostability of the EF-Tu GTPase center was evaluated in experiments with isolated domains 1 and six chimeric variants of mesophilic Escherichia coli (Ec) and thermophilic Bacillus stearothermophilus (Bst) EF-Tus. The isolated catalytic domains 1 of both EF-Tus displayed similar GTPase activities at their optimal temperatures. However, noncatalytic domains 2+3 of the EF-Tus influenced the GTPase activity of domains 1 differently, depending on the domain origin. Ecdomains 2+3 suppressed the GTPase activity of the Ecdomain 1, whereas those of BstEF-Tu stimulated the Bstdomain 1 GTPase. Domain 1 and domains 2+3 of both EF-Tus positively cooperated to heat-stabilize their GTPase centers to attain optimal activity at a temperature close to the optimal growth temperature of either organism. This can be explained by a stabilization effect of domains 2+3 on alpha-helical regions of the G-domain as revealed by CD spectroscopy.
Collapse
Affiliation(s)
- Hana Sanderová
- Department of Gene Expression, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Prague 6, Czech Republic
| | | |
Collapse
|
12
|
Martínez-Vicente M, Yim L, Villarroya M, Mellado M, Pérez-Payá E, Björk GR, Armengod ME. Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification. J Biol Chem 2005; 280:30660-70. [PMID: 15983041 DOI: 10.1074/jbc.m503223200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MnmE is an evolutionarily conserved, three domain GTPase involved in tRNA modification. In contrast to Ras proteins, MnmE exhibits a high intrinsic GTPase activity and requires GTP hydrolysis to be functionally active. Its G domain conserves the GTPase activity of the full protein, and thus, it should contain the catalytic residues responsible for this activity. In this work, mutational analysis of all conserved arginine residues of the MnmE G-domain indicates that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis. In addition, we show that residues in the G2 motif (249GTTRD253), which resides in the switch I region, are not important for GTP binding but play some role in stabilizing the transition state, specially Gly249 and Thr251. On the other hand, G2 mutations leading to a minor loss of the GTPase activity result in a non-functional MnmE protein. This indicates that GTP hydrolysis is a required but non-sufficient condition so that MnmE can mediate modification of tRNA. The conformational change of the switch I region associated with GTP hydrolysis seems to be crucial for the function of MnmE, and the invariant threonine (Thr251) of the G2 motif would be essential for such a change, because it cannot be substituted by serine. MnmE defects result in impaired growth, a condition that is exacerbated when defects in other genes involved in the decoding process are simultaneously present. This behavior is reminiscent to that found in yeast and stresses the importance of tRNA modification for gene expression.
Collapse
Affiliation(s)
- Marta Martínez-Vicente
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Daviter T, Wieden HJ, Rodnina MV. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J Mol Biol 2003; 332:689-99. [PMID: 12963376 DOI: 10.1016/s0022-2836(03)00947-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elongation factor Tu (EF-Tu) is a GTP-binding protein that delivers aminoacyl-tRNA to the A site of the ribosome during protein synthesis. The mechanism of GTP hydrolysis in EF-Tu on the ribosome is poorly understood. It is known that mutations of a conserved histidine residue in the switch II region of the factor, His84 in Escherichia coli EF-Tu, impair GTP hydrolysis. However, the partial reaction which is directly affected by mutations of His84 was not identified and the effect on GTP hydrolysis was not quantified. Here, we show that the replacement of His84 with Ala reduces the rate constant of GTP hydrolysis more than 10(6)-fold, whereas the preceding steps of ternary complex binding to the ribosome, codon recognition and, most importantly, the GTPase activation step are affected only slightly. These results show that His84 plays a key role in the chemical step of GTP hydrolysis. Rate constants of GTP hydrolysis by wild-type EF-Tu, measured using the slowly hydrolyzable GTP analog, GTPgammaS, showed no dependence on pH, indicating that His84 does not act as a general base. We propose that the catalytic role of His84 is to stabilize the transition state of GTP hydrolysis by hydrogen bonding to the attacking water molecule or, possibly, the gamma-phosphate group of GTP.
Collapse
Affiliation(s)
- Tina Daviter
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448, Witten, Germany
| | | | | |
Collapse
|
14
|
Krab IM, Parmeggiani A. Mechanisms of EF-Tu, a pioneer GTPase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:513-51. [PMID: 12102560 DOI: 10.1016/s0079-6603(02)71050-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review considers several aspects of the function of EF-Tu, a protein that has greatly contributed to the advancement of our knowledge of both protein biosynthesis and GTP-binding proteins in general. A number of topics are described with emphasis on the function-structure relationships, in particular of EF-Tu's domains, the nucleotide-binding site, and the magnesium-binding network. Aspects related to the interaction with macromolecular ligands and antibiotics and to folding and GTPase activity are also presented and discussed. Comments and criticism are offered to draw attention to remaining discrepancies and problems.
Collapse
Affiliation(s)
- Ivo M Krab
- Laboratory of Biophysics, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
15
|
Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with GDP reveals novel features in nucleotide binding and exchange. EMBO J 2001; 20:5305-11. [PMID: 11574461 PMCID: PMC125647 DOI: 10.1093/emboj/20.19.5305] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The crystal structure of elongation factor 1alpha from the archaeon Sulfolobus solfataricus in complex with GDP (SsEF-1alpha.GDP) at 1.8 A resolution is reported. As already known for the eubacterial elongation factor Tu, the SsEF-1alpha.GDP structure consists of three different structural domains. Surprisingly, the analysis of the GDP-binding site reveals that the nucleotide- protein interactions are not mediated by Mg(2+). Furthermore, the residues that usually co-ordinate Mg(2+) through water molecules in the GTP-binding proteins, though conserved in SsEF-1alpha, are located quite far from the binding site. [(3)H]GDP binding experiments confirm that Mg(2+) has only a marginal effect on the nucleotide exchange reaction of SsEF-1alpha, although essential to GTPase activity elicited by SsEF-1alpha. Finally, structural comparisons of SsEF- 1alpha.GDP with yeast EF-1alpha in complex with the nucleotide exchange factor EF-1beta shows that a dramatic rearrangement of the overall structure of EF-1alpha occurs during the nucleotide exchange.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Mariorosario Masullo
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Filomena Sica
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Adriana Zagari
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| | - Vincenzo Bocchini
- Centro di Biocristallografia, CNR, via Mezzocannone 6, I-80134 Napoli, Dipartimento di Biochimica e Biotecnologie Mediche Via Pansini 5, I-80131 Napoli and Dipartimento di Chimica, Università degli studi di Napoli ‘Federico II’, Dipartimento di Scienze Farmacobiologiche, Università degli Studi di Catanzaro ‘Magna Graecia’, Catanzaro and CEINGE, Biotecnologie avanzate Scarl, Napoli, Italy Corresponding author e-mail: Deceased June 28, 2001
| |
Collapse
|
16
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|