1
|
Essentiality of core hydrophobicity to the structure and function of archaeal chromatin protein Cren7. Int J Biol Macromol 2022; 214:381-390. [PMID: 35728637 DOI: 10.1016/j.ijbiomac.2022.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
Abstract
Studies on the structure-function relationship of protein greatly help to understand not only the principles of protein folding but also the rationales of protein engineering. Crenarchaeal chromatin protein Cren7 provides an excellent research model for this issue. The small protein adopts a 'β-barrel' fold, formed by the double-stranded antiparallel β-sheet 1 tightly packing with the triple-stranded antiparallel β-sheet 2. The simple structure of Cren7 is stabilized by the hydrophobic core between the β-sheets, consisting of the side chains of V8, V10, L20, V25, F41 and F50. In the present work, mutation analyses by alanine substitution of each of the residues in the hydrophobic core were performed. Circular dichroism spectra and nuclear magnetic resonance analyses showed that mutation of F41 led to a significant misfolding of Cren7 through disruption of the β-sheets. Meanwhile, the mutant F41A showed a reduced thermostatility (Tm of 53.2 °C), as compared with the wild-type Cren7 (Tm > 80 °C). Biolayer interferometry and nick-closure assays showed the largely unchanged activities in DNA binding and supercoiling of F41A, indicating the DNA interface of Cren7 was generally retained in F41A. However, F41A was unable to mediate DNA bridging, probably due to the impairment in forming oligomers/polymers on DNA. Atomic force microscopic images of the F41A-DNA complexes also revealed that F41A nearly completely lost the ability to compact DNA into highly condensed structures. Our results not only reveal the critical role of F41 in protein folding of Cren7 but also provide new insights into the structure-function relationships of thermostable proteins.
Collapse
|
2
|
Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Curr Opin Struct Biol 2018; 54:1-9. [PMID: 30268910 PMCID: PMC6420056 DOI: 10.1016/j.sbi.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023]
Abstract
A large body of work has gone into understanding the effect of mutations on protein structure and function. Conventional treatments have involved quantifying the change in stability, activity and relaxation rates of the mutants with respect to the wild-type protein. However, it is now becoming increasingly apparent that mutational perturbations consistently modulate the packing and dynamics of a significant fraction of protein residues, even those that are located >10–15 Å from the mutated site. Such long-range modulation of protein features can distinctly tune protein stability and the native conformational ensemble contributing to allosteric modulation of function. In this review, I summarize a series of experimental and computational observations that highlight the incredibly pliable nature of proteins and their response to mutational perturbations manifested via the intra-protein interaction network. I highlight how an intimate understanding of mutational effects could pave the way for integrating stability, folding, cooperativity and even allostery within a single physical framework.
Collapse
|
3
|
Aye SL, Fujiwara K, Ueki A, Doi N. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication. Biochem Biophys Res Commun 2018; 499:170-176. [PMID: 29550479 DOI: 10.1016/j.bbrc.2018.03.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol.
Collapse
Affiliation(s)
- Seaim Lwin Aye
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Asuka Ueki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan.
| |
Collapse
|
4
|
Rajasekaran N, Suresh S, Gopi S, Raman K, Naganathan AN. A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochemistry 2016; 56:294-305. [DOI: 10.1021/acs.biochem.6b00798] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nandakumar Rajasekaran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Francia F, Malferrari M, Lanciano P, Steimle S, Daldal F, Venturoli G. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q o site of bacterial cytochrome bc 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1796-1806. [PMID: 27550309 DOI: 10.1016/j.bbabio.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.
Collapse
Affiliation(s)
- Francesco Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Marco Malferrari
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy
| | - Pascal Lanciano
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Steimle
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Giovanni Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiT, Università di Bologna, 40126 Bologna, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), Dipartimento di Fisica, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
6
|
Protein adaptations in archaeal extremophiles. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:373275. [PMID: 24151449 PMCID: PMC3787623 DOI: 10.1155/2013/373275] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022]
Abstract
Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.
Collapse
|
7
|
Roche J, Caro JA, Dellarole M, Guca E, Royer CA, García-Moreno BE, Garcia AE, Roumestand C. Structural, energetic, and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Proteins 2013; 81:1069-80. [PMID: 23239146 DOI: 10.1002/prot.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
The effects of cavity-creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C-terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale. The pressure sensitivity of the folded states of these variants was similar to that of the parent protein. Such observations point to the capacity of the folded proteins to adjust to packing defects in these regions. In contrast, cavity creation in the β-barrel subdomain led to minimal perturbation of the structure of the folded state, However, significant pressure dependence of the native state amide resonances, along with strong effects on native state H/D exchange are consistent with increased probability of population of excited state(s) for these variants. Such contrasted responses to the creation of cavities could not be anticipated from global thermodynamic stability or crystal structures; they depend on the local structural and energetic context of the substitutions.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Priyakumar UD. Role of Hydrophobic Core on the Thermal Stability of Proteins—Molecular Dynamics Simulations on a Single Point Mutant of Sso7d. J Biomol Struct Dyn 2012; 29:961-71. [DOI: 10.1080/07391102.2012.10507415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Bernini A, Spiga O, Consonni R, Arosio I, Fusi P, Cirri S, Guagliardi A, Niccolai N. Hydration studies on the archaeal protein Sso7d using NMR measurements and MD simulations. BMC STRUCTURAL BIOLOGY 2011; 11:44. [PMID: 22017970 PMCID: PMC3207888 DOI: 10.1186/1472-6807-11-44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/21/2011] [Indexed: 11/25/2022]
Abstract
Background How proteins approach surrounding molecules is fundamental to our understanding of the specific interactions that occur at the surface of proteins. The enhanced surface accessibility of small molecules such as organic solvents and paramagnetic probes to protein binding sites has been observed; however, the molecular basis of this finding has not been fully established. Recently, it has been suggested that hydration dynamics play a predominant role in controlling the distribution of hot spots on surface of proteins. Results In the present study, the hydration of the archaeal multifunctional protein Sso7d from Solfolobus solfataricus was investigated using a combination of computational and experimental data derived from molecular dynamics simulations and ePHOGSY NMR spectroscopy. Conclusions We obtained a convergent protein hydration landscape that indicated how the shape and stability of the Sso7d hydration shell could modulate the function of the protein. The DNA binding domain overlaps with the protein region involved in chaperon activity and this domain is hydrated only in a very small central region. This localized hydration seems to favor intermolecular approaches from a large variety of ligands. Conversely, high water density was found in surface regions of the protein where the ATP binding site is located, suggesting that surface water molecules play a role in protecting the protein from unspecific interactions.
Collapse
Affiliation(s)
- Andrea Bernini
- Dipartimento di Biotecnologie, Università degli Studi di Siena, via Fiorentina 1, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu X, Su J, Chen W, Wang C. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation. J Biomol Struct Dyn 2011; 28:717-27. [PMID: 21294584 DOI: 10.1080/07391102.2011.10508601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.
Collapse
Affiliation(s)
- Xianjin Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | |
Collapse
|
11
|
Gera N, Hussain M, Wright RC, Rao BM. Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 2011; 409:601-16. [PMID: 21515282 DOI: 10.1016/j.jmb.2011.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/08/2011] [Indexed: 12/16/2022]
Abstract
We have shown that highly stable binding proteins for a wide spectrum of targets can be generated through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Sso7d is a small (~7 kDa, 63 amino acids) DNA-binding protein that lacks cysteine residues and has a melting temperature of nearly 100 °C. We generated a library of 10(8) Sso7d mutants by randomizing 10 amino acid residues on the DNA-binding surface of Sso7d, using yeast surface display. Binding proteins for a diverse set of model targets could be isolated from this library; our chosen targets included a small organic molecule (fluorescein), a 12 amino acid peptide fragment from the C-terminus of β-catenin, the model proteins hen egg lysozyme and streptavidin, and immunoglobulins from chicken and mouse. Without the application of any affinity maturation strategy, the binding proteins isolated had equilibrium dissociation constants in the nanomolar to micromolar range. Further, Sso7d-derived binding proteins could discriminate between closely related immunoglobulins. Mutant proteins based on Sso7d were expressed at high yields in the Escherichia coli cytoplasm. Despite extensive mutagenesis, Sso7d mutants have high thermal stability; five of six mutants analyzed have melting temperatures >89 °C. They are also resistant to chemical denaturation by guanidine hydrochloride and retain their secondary structure after extended incubation at extreme pH values. Because of their favorable properties, such as ease of recombinant expression, and high thermal, chemical and pH stability, Sso7d-derived binding proteins will have wide applicability in several areas of biotechnology and medicine.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
12
|
Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 2010; 79:830-8. [PMID: 21287615 DOI: 10.1002/prot.22921] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 09/08/2010] [Accepted: 10/13/2010] [Indexed: 11/06/2022]
Abstract
The prediction of changes in protein stability and structure resulting from single amino acid substitutions is both a fundamental test of macromolecular modeling methodology and an important current problem as high throughput sequencing reveals sequence polymorphisms at an increasing rate. In principle, given the structure of a wild-type protein and a point mutation whose effects are to be predicted, an accurate method should recapitulate both the structural changes and the change in the folding-free energy. Here, we explore the performance of protocols which sample an increasing diversity of conformations. We find that surprisingly similar performances in predicting changes in stability are achieved using protocols that involve very different amounts of conformational sampling, provided that the resolution of the force field is matched to the resolution of the sampling method. Methods involving backbone sampling can in some cases closely recapitulate the structural changes accompanying mutations but not surprisingly tend to do more harm than good in cases where structural changes are negligible. Analysis of the outliers in the stability change calculations suggests areas needing particular improvement; these include the balance between desolvation and the formation of favorable buried polar interactions, and unfolded state modeling.
Collapse
Affiliation(s)
- Elizabeth H Kellogg
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | | | |
Collapse
|
13
|
Two amino acid substitutions within the first external loop of CCR5 induce human immunodeficiency virus-blocking antibodies in mice and chickens. J Virol 2008; 82:4125-34. [PMID: 18256149 DOI: 10.1128/jvi.02232-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antibodies to the first loop (ECL1) of CCR5 have been identified in human immunodeficiency virus (HIV)-exposed uninfected individuals (ESN) and in HIV-positive nonprogressing subjects. Thus, these antibodies may confer resistance against HIV infection. To define which amino acids are involved in antibody binding to CCR5, we performed a peptide-scanning assay and studied the immunogenicity of peptides in animal models. A panel of synthetic peptides spanning the CCR5-ECL1 region and displaying glycine or alanine substitutions was assayed for antibody binding with a pool of natural anti-CCR5 antibodies. We used mice and chickens to study the immunogenicity of mutagenized peptide. Structural characterization by nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations were performed to better understand the structural and conformational features of the mutagenized peptide. Amino acid substitutions in positions Ala95 and Ala96 (A(95)-A(96)) increased antibody-peptide binding compared to that of the wild-type peptide (Asp(95)-Phe(96)). The Ala95-96 peptide was shown to induce, in mice and chickens, antibodies displaying biological activity at very low concentrations. Strikingly, chicken antibodies to the Ala95-96 peptide specifically recognize human CCR5 molecules, downregulate receptors from lymphocytes, inhibit CCR5-dependent chemotaxis, and prevent infection by several R5 viruses, displaying 50% inhibitory concentrations of less than 3 ng/ml. NMR spectroscopy and molecular dynamics simulations proved the high flexibility of isolated epitopes and suggested that A(95)-A(96) substitutions determine a slightly higher tendency to generate helical conformations combined with a lower steric hindrance of the side chains in the peptides. These findings may be relevant to the induction of strong and efficient HIV-blocking antibodies.
Collapse
|
14
|
Consonni R, Arosio I, Recca T, Fusi P, Zetta L. Structural determinants responsible for the thermostability of Sso7d and its single point mutants. Proteins 2007; 67:766-75. [PMID: 17340638 DOI: 10.1002/prot.21256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Roberto Consonni
- Istituto per lo Studio delle Macromolecole, lab. NMR, C.N.R., v. Bassini 15, I-20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
15
|
Abbate S, Barlati S, Colombi M, Fornili SL, Francescato P, Gangemi F, Lebon F, Longhi G, Manitto P, Recca T, Speranza G, Zoppi N. Study of conformational properties of a biologically active peptide of fibronectin by circular dichroism, NMR and molecular dynamics simulation. Phys Chem Chem Phys 2006; 8:4668-77. [PMID: 17047765 DOI: 10.1039/b604807b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism (CD), and NMR spectra have been recorded and molecular dynamics (MD) simulations have been performed in water and water-trifluoroethanol (TFE) mixed solvent for a synthetic biologically active 13-amino-acid fragment of human fibronectin and two related peptides. The CD results are interpreted on the basis of statistical analyses of MD trajectories and of ensuing calculations of CD spectra based on Schellman's matrix method. It is observed that the peptide conformation is quite variable in water and loses its mobility with the addition of TFE. (1)H-NOE data were found to be consistent with the most abundant calculated conformation.
Collapse
Affiliation(s)
- Sergio Abbate
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Granata V, Vecchio PD, Barone G, Shehi E, Fusi P, Tortora P, Graziano G. Guanidine-induced unfolding of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Int J Biol Macromol 2004; 34:195-201. [PMID: 15225992 DOI: 10.1016/j.ijbiomac.2004.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
The unfolding induced by guanidine hydrochloride of the small protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus has been investigated by means of circular dichroism and fluorescence measurements. At neutral pH and room temperature the midpoint of the transition occurred at 4M guanidine hydrochloride. Thermodynamic information was obtained by means of both the linear extrapolation model and the denaturant binding model, in the assumption of a two-state N<==>D transition. A comparison with thermodynamic data determined from the thermal unfolding of Sso7d indicated that the denaturant binding model has to be preferred. Finally, it is shown that Sso7d is the most stable against both temperature and guanidine hydrochloride among a set of globular proteins possessing a very similar 3D structure.
Collapse
Affiliation(s)
- Vincenzo Granata
- Dipartimento di Chimica, Università di Napoli Federico II, Via Cinthia, 45-80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Merlino A, Graziano G, Mazzarella L. Structural and dynamic effects of α-Helix deletion in Sso7d: Implications for protein thermal stability. Proteins 2004; 57:692-701. [PMID: 15317021 DOI: 10.1002/prot.20270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Antonello Merlino
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
18
|
Lima SMB, Peabody DS, Silva JL, De Oliveira AC. Mutations in the hydrophobic core and in the protein-RNA interface affect the packing and stability of icosahedral viruses. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1033.2003.03911.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ceruso MA, Grottesi A, Di Nola A. Dynamic effects of mutations within two loops of cytochrome c551 from Pseudomonas aeruginosa. Proteins 2003; 50:222-9. [PMID: 12486716 DOI: 10.1002/prot.10269] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, we investigated the structural and dynamic consequences of two substitutions, P58A and G36P, located in two different solvent-exposed loops of cytochrome c551. The results show that both mutations affect regions that are distant from the site of mutation. Here, the two loops appear to be dynamically coupled to each other, because the substitution at one site affects the structure and the dynamics of the other site. However, the substitutions at Gly-36 and Pro-58 presented substantial differences, which were related to the mechanical (rigidity and deformability) properties of the site surrounding the mutation. Although the P58A mutant conserved a significant dynamic similarity to the wild-type protein as the immediate surroundings of position 58 became more rigid, the G36P mutant, which had deformed its flexible surroundings, presented a dynamic behavior that was markedly different from that of the wild-type protein. These results suggest that perturbation of sterically isolated and flexible regions, such as solvent-exposed loops, can have strong dynamic consequences on the protein as a whole, raising the possibility that these effects could in turn affect the stability or the function of the protein.
Collapse
|
20
|
Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320:369-87. [PMID: 12079393 DOI: 10.1016/s0022-2836(02)00442-4] [Citation(s) in RCA: 1302] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a computer algorithm, FOLDEF (for FOLD-X energy function), to provide a fast and quantitative estimation of the importance of the interactions contributing to the stability of proteins and protein complexes. The predictive power of FOLDEF was tested on a very large set of point mutants (1088 mutants) spanning most of the structural environments found in proteins. FOLDEF uses a full atomic description of the structure of the proteins. The different energy terms taken into account in FOLDEF have been weighted using empirical data obtained from protein engineering experiments. First, we considered a training database of 339 mutants in nine different proteins and optimised the set of parameters and weighting factors that best accounted for the changes in stability of the mutants. The predictive power of the method was then tested using a blind test mutant database of 667 mutants, as well as a database of 82 protein-protein complex mutants. The global correlation obtained for 95 % of the entire mutant database (1030 mutants) is 0.83 with a standard deviation of 0.81 kcal mol(-1) and a slope of 0.76. The present energy function uses a minimum of computational resources and can therefore easily be used in protein design algorithms, and in the field of protein structure and folding pathways prediction where one requires a fast and accurate energy function. FOLDEF is available via a web-interface at http://fold-x.embl-heidelberg.de
Collapse
|
21
|
Yano JK, Koo LS, Schuller DJ, Li H, Ortiz de Montellano PR, Poulos TL. Crystal structure of a thermophilic cytochrome P450 from the archaeon Sulfolobus solfataricus. J Biol Chem 2000; 275:31086-92. [PMID: 10859321 DOI: 10.1074/jbc.m004281200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the first P450 identified in Archaea, CYP119 from Sulfolobus solfataricus, has been solved in two different crystal forms that differ by the ligand (imidazole or 4-phenylimidazole) coordinated to the heme iron. A comparison of the two structures reveals an unprecedented rearrangement of the active site to adapt to the different size and shape of ligands bound to the heme iron. These changes involve unraveling of the F helix C-terminal segment to extend a loop structure connecting the F and G helices, allowing the longer loop to dip down into the active site and interact with the smaller imidazole ligand. A comparison of CYP119 with P450cam and P450eryF indicates an extensive clustering of aromatic residues may provide the structural basis for the enhanced thermal stability of CYP119. An additional feature of the 4-phenylimidazole-bound structure is a zinc ion tetrahedrally bound by symmetry-related His and Glu residues.
Collapse
Affiliation(s)
- J K Yano
- Department of Molecular Biology and Biochemistry and Program in Macromolecular Structure, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | |
Collapse
|
22
|
Botelho MM, Valente-Mesquita VL, Oliveira KM, Polikarpov I, Ferreira ST. Pressure denaturation of beta-lactoglobulin. Different stabilities of isoforms A and B, and an investigation of the Tanford transition. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2235-41. [PMID: 10759846 DOI: 10.1046/j.1432-1327.2000.01226.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Beta-lactoglobulin, the main whey protein in bovine milk, exists in several isoforms of which the most abundant are isoforms A and B. We have previously reported the denaturation of beta-lactoglobulin A by hydrostatic pressure [Valente-Mesquita, V.L., Botelho, M.M. & Ferreira, S.T. (1998) Biophys. J. 75, 471-476]. Here, we compare the pressure stabilities of isoforms A and B. These isoforms differ by two amino-acid substitutions: Asp64 and Val118 in isoform A are replaced by glycine and alanine, respectively, in isoform B. Replacement of the buried Val118 residue by the smaller alanine side-chain is not accompanied by significant structural rearrangements of the neighbouring polypeptide chain and creates a cavity in the core of beta-lactoglobulin. Pressure denaturation experiments revealed different stabilities of the two isoforms. Standard volume changes (DeltaVunf) of - 49 +/- 8 mL.mol-1 and -75 +/- 3 mL.mol-1, and unfolding free energy changes (DeltaGunf) of 8.5 +/- 1.3 kJ.mol-1 and 11.3 +/- 0.4 kJ.mol-1 were obtained for isoforms A and B, respectively. The volume occupied by the two methyl groups of Val118 removed in the V118A substitution is approximately 40 A3 per monomer of beta-lactoglobulin, in excellent agreement with the experimentally measured difference in DeltaVunf for the two isoforms (DeltaDeltaVunf = 26 mL.mol-1, corresponding to approximately 43 A3 per monomer). Thus, the existence of a core cavity in beta-lactoglobulin B may explain its enhanced pressure sensitivity relative to beta-lactoglobulin A. beta-Lactoglobulin undergoes a reversible pH-induced conformational change around pH 7, known as the Tanford transition. We have compared the pressure denaturation of beta-lactoglobulin A at pH 7 and 8. Unfolding free energy changes of 8.5 +/- 1.3 and 8.3 +/- 0.3 kJ.mol-1 were obtained at pH 7 and 8, respectively, showing that the thermodynamic stability of beta-lactoglobulin is identical at these pH values. Interestingly, DeltaVunf was dependent on pH, and varied from -49 +/- 8 mL.mol-1 to -68 +/- 2 mL.mol-1 at pH 7 and 8, respectively. The large increase in DeltaVunf at pH 8 relative to pH 7 appears to be associated with an overall expansion of the protein structure and could explain the increased pressure sensitivity of beta-lactoglobulin at alkaline pH.
Collapse
Affiliation(s)
- M M Botelho
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|