1
|
Yu L, Min Z, Liu M, Xin Y, Liu A, Kuang J, Wu W, Wu J, He H, Xin J, Blankenship RE, Tian C, Xu X. A cytochrome c 551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii. PLANT COMMUNICATIONS 2024; 5:100715. [PMID: 37710959 PMCID: PMC10873879 DOI: 10.1016/j.xplc.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.
Collapse
Affiliation(s)
- Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Sci Rep 2022; 12:14298. [PMID: 35995915 PMCID: PMC9395421 DOI: 10.1038/s41598-022-18399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants (cycA, cytC4 and pufC) of Rubrivivax gelatinosus and Rhodobacter sphaeroides. Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.
Collapse
|
3
|
Kyndt JA, Aviles FA, Imhoff JF, Künzel S, Neulinger SC, Meyer TE. Comparative Genome Analysis of the Photosynthetic Betaproteobacteria of the Genus Rhodocyclus: Heterogeneity within Strains Assigned to Rhodocyclus tenuis and Description of Rhodocyclus gracilis sp. nov. as a New Species. Microorganisms 2022; 10:microorganisms10030649. [PMID: 35336224 PMCID: PMC8954225 DOI: 10.3390/microorganisms10030649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
The genome sequences for Rhodocyclus purpureus DSM 168T and four strains assigned to Rhodocyclus tenuis (DSM 110, DSM 111, DSM 112, and IM 230) have been determined. One of the strains studied (IM 230) has an average nucleotide identity (ANI) of 97% to the recently reported genome of the type strain DSM 109 of Rcy. tenuis and is regarded as virtually identical at the species level. The ANI of 80% for three other strains (DSM 110, DSM 111, DSM 112) to the type strain of Rcy. tenuis points to a differentiation of these at the species level. Rcy. purpureus is equidistant from Rcy. tenuis and the new species, based on both ANI (78–80%) and complete proteome comparisons (70% AAI). Strains DSM 110, DSM 111, and DSM 112 are very closely related to each other based on ANI, whole genome, and proteome comparisons but clearly distinct from the Rcy. tenuis type strain DSM 109. In addition to the whole genome differentiation, these three strains also contain unique genetic differences in cytochrome genes and contain genes for an anaerobic cobalamin synthesis pathway that is lacking from both Rcy. tenuis and Rcy. purpureus. Based on genomic and genetic differences, these three strains should be considered to represent a new species, which is distinctly different from both Rcy. purpureus and Rcy. tenuis, for which the new name Rhodocyclus gracilis sp. nov. is proposed.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
- Correspondence:
| | - Fabiola A. Aviles
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
| | | | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
4
|
Exchange and complementation of genes coding for photosynthetic reaction center core subunits among purple bacteria. J Mol Evol 2014; 79:52-62. [PMID: 25080366 DOI: 10.1007/s00239-014-9634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
A mutant of the phototrophic species belonging to the β-proteobacteria, Rubrivivax gelatinosus, lacking the photosynthetic growth ability was constructed by the removal of genes coding for the L, M, and cytochrome subunits of the photosynthetic reaction center complex. The L, M, and cytochrome genes derived from five other species of proteobacteria, Acidiphilium rubrum, Allochromatium vinosum, Blastochloris viridis, Pheospirillum molischianum, and Roseateles depolymerans, and the L and M subunits from two other species, Rhodobacter sphaeroides and Rhodopseudomonas palustris, respectively, have been introduced into this mutant. Introduction of the genes from three of these seven species, Rte. depolymerans, Ach. vinosum, and Psp. molischianum, restored the photosynthetic growth ability of the mutant of Rvi. gelatinosus, although the growth rates were 1.5, 9.4, and 10.7 times slower, respectively, than that of the parent strain. Flash-induced kinetic measurements for the intact cells of these three mutants showed that the photo-oxidized cytochrome c bound to the introduced reaction center complex could be rereduced by electron donor proteins of Rvi. gelatinosus with a t1/2 of less than 10 ms. The reaction center core subunits of photosynthetic proteobacteria appear to be exchangeable if the sequence identities of the LM core subunits between donor and acceptor species are high enough, i.e., 70% or more.
Collapse
|
5
|
Verméglio A, Nagashima S, Alric J, Arnoux P, Nagashima KVP. Photo-induced electron transfer in intact cells of Rubrivivax gelatinosus mutants deleted in the RC-bound tetraheme cytochrome: insight into evolution of photosynthetic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:689-96. [PMID: 22305913 DOI: 10.1016/j.bbabio.2012.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 11/25/2022]
Abstract
Deletion of two of the major electron carriers, the reaction center-bound tetrahemic cytochrome and the HiPIP, involved in the light-induced cyclic electron transfer pathway of the purple photosynthetic bacterium, Rubrivivax gelatinosus, significantly impairs its anaerobic photosynthetic growth. Analysis on the light-induced absorption changes of the intact cells of the mutants shows, however, a relatively efficient photo-induced cyclic electron transfer. For the single mutant lacking the reaction center-bound cytochrome, we present evidence that the electron carrier connecting the reaction center and the cytochrome bc(1) complex is the High Potential Iron-sulfur Protein. In the double mutant lacking both the reaction center-bound cytochrome and the High Potential Iron-sulfur Protein, this connection is achieved by the high potential cytochrome c(8). Under anaerobic conditions, the halftime of re-reduction of the photo-oxidized primary donor by these electron donors is 3 to 4 times faster than the back reaction between P(+) and the reduced primary quinone acceptor. This explains the photosynthetic growth of these two mutants. The results are discussed in terms of evolution of the type II RCs and their secondary electron donors.
Collapse
Affiliation(s)
- André Verméglio
- CEA, DSV, IBEB, Laboratoire de Bioénergétique Cellulaire, Saint-Paul-lez-Durance, France.
| | | | | | | | | |
Collapse
|
6
|
Weissgerber T, Zigann R, Bruce D, Chang YJ, Detter JC, Han C, Hauser L, Jeffries CD, Land M, Munk AC, Tapia R, Dahl C. Complete genome sequence of Allochromatium vinosum DSM 180(T). Stand Genomic Sci 2011; 5:311-30. [PMID: 22675582 PMCID: PMC3368242 DOI: 10.4056/sigs.2335270] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allochromatium vinosum formerly Chromatium vinosum is a mesophilic purple sulfur bacterium belonging to the family Chromatiaceae in the bacterial class Gammaproteobacteria. The genus Allochromatium contains currently five species. All members were isolated from freshwater, brackish water or marine habitats and are predominately obligate phototrophs. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the Chromatiaceae within the purple sulfur bacteria thriving in globally occurring habitats. The 3,669,074 bp genome with its 3,302 protein-coding and 64 RNA genes was sequenced within the Joint Genome Institute Community Sequencing Program.
Collapse
Affiliation(s)
- Thomas Weissgerber
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Renate Zigann
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - David Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Yun-juan Chang
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Christiane Dahl
- Institute for Microbiology & Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
7
|
Nagashima S, Shimada K, Verméglio A, Nagashima KVP. The cytochrome c₈ involved in the nitrite reduction pathway acts also as electron donor to the photosynthetic reaction center in Rubrivivax gelatinosus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:189-96. [PMID: 21055386 DOI: 10.1016/j.bbabio.2010.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/26/2022]
Abstract
The purple photosynthetic bacterium Rubrivivax gelatinosus has, at least, four periplasmic electron carriers, i.e., HiPIP, two cytochromes c₈with low- and high-midpoint potentials, and cytochrome c₄ as electron donors to the photochemical reaction center. The quadruple mutant lacking all four electron carrier proteins showed extremely slow photosynthetic growth. During the long-term cultivation of this mutant under photosynthetic conditions, a suppressor strain recovering the wild-type growth level appeared. In the cells of the suppressor strain, we found significant accumulation of a soluble c-type cytochrome that has not been detected in wild-type cells. This cytochrome c has a redox midpoint potential of about +280 mV and could function as an electron donor to the photochemical reaction center in vitro. The amino acid sequence of this cytochrome c was 65% identical to that of the high-potential cytochrome c₈of this bacterium. The gene for this cytochrome c was identified as nirM on the basis of its location in the newly identified nir operon, which includes a gene coding cytochrome cd₁-type nitrite reductase. Phylogenetic analysis and the well-conserved nir operon gene arrangement suggest that the origin of the three cytochromes c₈ in this bacterium is NirM. The two other cytochromes c₈, of high and low potentials, proposed to be generated by gene duplication from NirM, have evolved to function in distinct pathways.
Collapse
Affiliation(s)
- Sakiko Nagashima
- Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
8
|
Ohmine M, Matsuura K, Shimada K, Alric J, Verméglio A, Nagashima KVP. Cytochrome c4 can be involved in the photosynthetic electron transfer system in the purple bacterium Rubrivivax gelatinosus. Biochemistry 2009; 48:9132-9. [PMID: 19697907 DOI: 10.1021/bi901202m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three periplasmic electron carriers, HiPIP and two cytochromes c8 with low- and high-midpoint potentials, are present in the purple photosynthetic bacterium Rubrivivax gelatinosus. Comparison of the growth rates of mutants lacking one, two, or all three electron carrier proteins showed that HiPIP is the main electron donor to the photochemical reaction center and that high-potential cytochrome c8 plays a subsidiary role in the electron donation in photosynthetically growing cells. However, the triple deletion mutant was still capable of photosynthetic growth, indicating that another electron donor could be present. A new soluble cytochrome c, which can reduce the photooxidized reaction center in vitro, was purified. Based on amino acid sequence comparisons to known cytochromes, this cytochrome was identified as a diheme cytochrome c of the family of cytochromes c4. The quadruple mutant lacking this cytochrome and three other electron carriers showed about three times slower growth than the triple mutant under photosynthetic growth conditions. In conclusion, cytochrome c4 can function as a physiological electron carrier in the photosynthetic electron transport chain in R. gelatinosus.
Collapse
Affiliation(s)
- Makito Ohmine
- Department of Biological Science, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Kimura Y, Alric J, Verméglio A, Masuda S, Hagiwara Y, Matsuura K, Shimada K, Nagashima KVP. A new membrane-bound cytochrome c works as an electron donor to the photosynthetic reaction center complex in the purple bacterium, Rhodovulum sulfidophilum. J Biol Chem 2006; 282:6463-72. [PMID: 17197696 DOI: 10.1074/jbc.m604452200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new type of membrane-bound cytochrome c was found in a marine purple photosynthetic bacterium, Rhodovulum sulfidophilum. This cytochrome c was significantly accumulated in cells growing under anaerobic photosynthetic conditions and showed an apparent molecular mass of approximately 100 kDa when purified and analyzed by SDS-PAGE. The midpoint potential of this cytochrome c was 369 mV. Flash-induced kinetic measurements showed that this new cytochrome c can work as an electron donor to the photosynthetic reaction center. The gene coding for this cytochrome c was cloned and analyzed. The deduced molecular mass was nearly equal to 50 kDa. Its C-terminal heme-containing region showed the highest sequence identity to the water-soluble cytochrome c(2), although its predicted secondary structure resembles that of cytochrome c(y). Phylogenetic analyses suggested that this new cytochrome c has evolved from cytochrome c(2). We, thus, propose its designation as cytochrome c(2m). Mutants lacking this cytochrome or cytochrome c(2) showed the same growth rate as the wild type. However, a double mutant lacking both cytochrome c(2) and c(2m) showed no growth under photosynthetic conditions. It was concluded that either the membrane-bound cytochrome c(2m) or the water-soluble cytochrome c(2) work as a physiological electron carrier in the photosynthetic electron transfer pathway of Rvu. sulfidophilum.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Biological Science, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kobayashi M, Saito T, Takahashi K, Wang ZY, Nozawa T. Electronic Properties and Thermal Stability of Soluble Redox Proteins from a Thermophilic Purple Sulfur Photosynthetic Bacterium,Thermochromatium tepidum. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.2164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Ouchane S, Nitschke W, Bianco P, Vermeglio A, Astier C. Multiple Rieske genes in prokaryotes: exchangeable Rieske subunits in the cytochrome bc-complex of Rubrivivax gelatinosus. Mol Microbiol 2005; 57:261-75. [PMID: 15948965 DOI: 10.1111/j.1365-2958.2005.04685.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial cytochrome bc1-complex encoded by the petABC operon consists of three subunits, the Rieske iron-sulphur protein, the b-type cytochrome, and the c1-type cytochrome. Disruption of the petA gene of Rubrivivax gelatinosus is not lethal under photosynthetic growth conditions. However, deletion of both petA and petB results in a photosynthesis-deficient strain, suggesting the presence of a second gene encoding a Rieske protein and rescuing a functional cytochrome bc1-complex in the PETA1 mutant. The corresponding petA2 gene was identified and the PETA2 mutant could also grow under photosynthetic conditions. The double mutant PETA12, however, was unable to grow photosynthetically. The presence of a photo-induced cyclic electron transfer was tested by monitoring the kinetics of cytochrome photo-oxidation on intact cells; the data confirm the capacity of petA2 to replace petA1 in the bc1-complex to support photosynthesis. Soluble forms of both PetA1 and PetA2 Rieske proteins were purified from Escherichia coli and found to contain correctly inserted [2Fe-2S] clusters. Electron paramagnetic resonance (EPR) spectroscopy and midpoint potential measurements showed typical [2Fe-2S] signals and E(m) values of +275 mV for both Rieske proteins. The high amino acid sequence similarity and the obtained midpoint potential values argue for a functional role of these proteins in the cytochrome bc1-complex. The presence of duplicated Rieske genes is not restricted to R. gelatinosus. Phylogenetic trees of Rieske genes from Rubrivivax and other proteobacteria as well as from cyanobacteria were reconstructed. On the basis of the phylogenetic analyses, differing evolutionary origins of duplicated Rieske genes in proteo- and cyanobacteria are proposed.
Collapse
Affiliation(s)
- Soufian Ouchane
- Centre de Génétique Moléculaire CNRS (UPR-2167) associéà l'Université Pierre et Marie Curie et Paris XI, France.
| | | | | | | | | |
Collapse
|
13
|
Ciurli S, Musiani F. High potential iron-sulfur proteins and their role as soluble electron carriers in bacterial photosynthesis: tale of a discovery. PHOTOSYNTHESIS RESEARCH 2005; 85:115-31. [PMID: 15977063 DOI: 10.1007/s11120-004-6556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Accepted: 11/22/2001] [Indexed: 05/03/2023]
Abstract
This review is an attempt to retrace the chronicle of the discovery of the role of high-potential iron-sulfur proteins (HiPIPs) as electron carriers in the photosynthetic chain of bacteria. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this class of proteins over the years. The tale is divided into four main periods: the seeds, the blooming, the ripening, and the harvest, representing the times from the discovery of these proteins to the most recent advancements in the understanding of the relationship between their structure and their function.
Collapse
Affiliation(s)
- Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Agro-Environmental Science and Technology, University of Bologna Viale Giuseppe Fanin 40, 40127, Bologna, Italy.
| | | |
Collapse
|
14
|
Nogi T, Hirano Y, Miki K. Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: the possible docking mechanisms during the electron transfer reaction. PHOTOSYNTHESIS RESEARCH 2005; 85:87-99. [PMID: 15977061 DOI: 10.1007/s11120-004-2416-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Accepted: 08/30/2004] [Indexed: 05/03/2023]
Abstract
The photosynthetic reaction centers (RCs) classified as the group II possess a peripheral cytochrome (Cyt) subunit, which serves as the electron mediator to the special-pair. In the cycle of the photosynthetic electron transfer reactions, the Cyt subunit accepts electrons from soluble electron carrier proteins, and re-reduces the photo-oxidized special-pair of the bacteriochlorophyll. Physiologically, high-potential cytochromes such as the cytochrome c2 and the high-potential iron-sulfur protein (HiPIP) function as the electron donors to the Cyt subunit. Most of the Cyt subunits possess four heme c groups, and it was unclear which heme group first accepts the electron from the electron donor. The most distal heme to the special-pair, the heme-1, has a lower redox potential than the electron donors, which makes it difficult to understand the electron transfer mechanism mediated by the Cyt subunit. Extensive mutagenesis combined with kinetic studies has made a great contribution to our understanding of the molecular interaction mechanisms, and has demonstrated the importance of the region close to the heme-1 in the electron transfer. Moreover, crystallographic studies have elucidated two high-resolution three-dimensional structures for the RCs containing the Cyt subunit, the Blastochloris viridis and Thermochromatium tepidum RCs, as well as the structures of their electron donors. An examination of the structural data also suggested that the binding sites for both the cytochrome c2 and the HiPIP are located adjacent to the solvent-accessible edge of the heme-1. In addition, it is also indicated by the structural and biochemical data that the cytochrome c2 and the HiPIP dock with the Cyt subunit by c2 is recognized through electrostatic interactions while hydrophobic interactions are important in the HiPIP docking.
Collapse
Affiliation(s)
- Terukazu Nogi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, 565-0871, Japan
| | | | | |
Collapse
|
15
|
Alric J, Yoshida M, Nagashima KVP, Hienerwadel R, Parot P, Verméglio A, Chen SWW, Pellequer JL. Two distinct binding sites for high potential iron-sulfur protein and cytochrome c on the reaction center-bound cytochrome of Rubrivivax gelatinosus. J Biol Chem 2004; 279:32545-53. [PMID: 15155756 DOI: 10.1074/jbc.m401784200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The photosynthetic cyclic electron transfer of the purple bacterium Rubrivivax gelatinosus, involving the cytochrome bc(1) complex and the reaction center, can be carried out via two pathways. A high potential iron-sulfur protein (HiPIP) acts as the in vivo periplasmic electron donor to the reaction center (RC)-bound cytochrome when cells are grown under anaerobic conditions in the light, while cytochrome c is the soluble electron carrier for cells grown under (8)aerobic conditions in the dark. A spontaneous reversion of R. gelatinosus C244, a defective mutant in synthesis of the RC-bound cytochrome by insertion of a Km(r) cassette leading to gene disruption with a slow growth rate, restores the normal photosynthetic growth. This revertant, designated C244-P1, lost the Km(r) cassette but synthesized a RC-bound cytochrome with an external 77-amino acid insertion derived from the cassette. We characterized the RC-bound cytochrome of this mutant by EPR, time-resolved optical spectroscopy, and structural analysis. We also investigated the in vivo electron transfer rates between the two soluble electron donors and this RC-bound cytochrome. Our results demonstrated that the C244-P1 RC-bound cytochrome is still able to receive electrons from HiPIP, but it is no longer reducible by cytochrome c(8). Combining these experimental and theoretical protein-protein docking results, we conclude that cytochrome c(8) and HiPIP bind the RC-bound cytochrome at two distinct but partially overlapping sites.
Collapse
Affiliation(s)
- Jean Alric
- Laboratoire de Génétique et Biophysique des Plantes, UMR 6191 CNRS-Commissariat à l'Energie Atomique-Aix-Marseille II, 163 avenue de Luminy, Marseille 13288, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Maki H, Matsuura K, Shimada K, Nagashima KVP. Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatinosus and the cytochrome subunit of Blastochloris viridis. J Biol Chem 2003; 278:3921-8. [PMID: 12464624 DOI: 10.1074/jbc.m209069200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene coding for the photosynthetic reaction center-bound cytochrome subunit, pufC, of Blastochloris viridis, which belongs to the alpha-purple bacteria, was introduced into Rubrivivax gelatinosus, which belongs to the beta-purple bacteria. The cytochrome subunit of B. viridis was synthesized in the R. gelatinosus cells, in which the native pufC gene was knocked out, and formed a chimeric reaction center (RC) complex together with other subunits of R. gelatinosus. The transformant was able to grow photosynthetically. Rapid photo-oxidization of the hemes in the cytochrome subunit was observed in the membrane of the transformant. The soluble electron carrier, cytochrome c(2), isolated from B. viridis was a good electron donor to the chimeric RC. The redox midpoint potentials and the redox difference spectra of four hemes in the cytochrome subunit of the chimeric RC were almost identical with those in the B. viridis RC. The cytochrome subunit of B. viridis seems to retain its structure and function in the R. gelatinosus cell. The chimeric RC and its mutagenesis system should be useful for further studies about the cytochrome subunit of B. viridis.
Collapse
Affiliation(s)
- Hideaki Maki
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Japan
| | | | | | | |
Collapse
|
17
|
Nogi T, Fathir I, Kobayashi M, Nozawa T, Miki K. Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci U S A 2000; 97:13561-6. [PMID: 11095707 PMCID: PMC17615 DOI: 10.1073/pnas.240224997] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction center (RC) of photosynthetic bacteria is a membrane protein complex that promotes a light-induced charge separation during the primary process of photosynthesis. In the photosynthetic electron transfer chain, the soluble electron carrier proteins transport electrons to the RC and reduce the photo-oxidized special-pair of bacteriochlorophyll. The high-potential iron-sulfur protein (HiPIP) is known to serve as an electron donor to the RC in some species, where the c-type cytochrome subunit, the peripheral subunit of the RC, directly accepts electrons from the HiPIP. Here we report the crystal structures of the RC and the HiPIP from Thermochromatium (Tch.) tepidum, at 2.2-A and 1.5-A resolution, respectively. Tch. tepidum can grow at the highest temperature of all known purple bacteria, and the Tch. tepidum RC shows some degree of stability to high temperature. Comparison with the RCs of mesophiles, such as Blastochloris viridis, has shown that the Tch. tepidum RC possesses more Arg residues at the membrane surface, which might contribute to the stability of this membrane protein. The RC and the HiPIP both possess hydrophobic patches on their respective surfaces, and the HiPIP is expected to interact with the cytochrome subunit by hydrophobic interactions near the heme-1, the most distal heme to the special-pair.
Collapse
Affiliation(s)
- T Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|