1
|
Vitali V, Ackermann K, Hagelueken G, Bode BE. Spectroscopically Orthogonal Labelling to Disentangle Site-Specific Nitroxide Label Distributions. APPLIED MAGNETIC RESONANCE 2023; 55:187-205. [PMID: 38357007 PMCID: PMC10861635 DOI: 10.1007/s00723-023-01611-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 02/16/2024]
Abstract
Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with CuII chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis CuII labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01611-1.
Collapse
Affiliation(s)
- Valentina Vitali
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| | - Gregor Hagelueken
- Institute of Structural Biology, Biomedical Center, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| |
Collapse
|
2
|
Sebők-Nagy K, Blastyák A, Juhász G, Páli T. Reversible binding of divalent cations to Ductin protein assemblies-A putative new regulatory mechanism of membrane traffic processes. Front Mol Biosci 2023; 10:1195010. [PMID: 37228584 PMCID: PMC10203432 DOI: 10.3389/fmolb.2023.1195010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Ductins are a family of homologous and structurally similar membrane proteins with 2 or 4 trans-membrane alpha-helices. The active forms of the Ductins are membranous ring- or star-shaped oligomeric assemblies and they provide various pore, channel, gap-junction functions, assist in membrane fusion processes and also serve as the rotor c-ring domain of V-and F-ATPases. All functions of the Ductins have been reported to be sensitive to the presence of certain divalent metal cations (Me2+), most frequently Cu2+ or Ca2+ ions, for most of the better known members of the family, and the mechanism of this effect is not yet known. Given that we have earlier found a prominent Me2+ binding site in a well-characterised Ductin protein, we hypothesise that certain divalent cations can structurally modulate the various functions of Ductin assemblies via affecting their stability by reversible non-covalent binding to them. A fine control of the stability of the assembly ranging from separated monomers through a loosely/weakly to tightly/strongly assembled ring might render precise regulation of Ductin functions possible. The putative role of direct binding of Me2+ to the c-ring subunit of active ATP hydrolase in autophagy and the mechanism of Ca2+-dependent formation of the mitochondrial permeability transition pore are also discussed.
Collapse
Affiliation(s)
- Krisztina Sebők-Nagy
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - András Blastyák
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| |
Collapse
|
3
|
Ackermann K, Chapman A, Bode BE. A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy. Molecules 2021; 26:7534. [PMID: 34946616 PMCID: PMC8706713 DOI: 10.3390/molecules26247534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.
Collapse
Affiliation(s)
| | | | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (K.A.); (A.C.)
| |
Collapse
|
4
|
Páli T, Kóta Z. Studying Lipid-Protein Interactions with Electron Paramagnetic Resonance Spectroscopy of Spin-Labeled Lipids. Methods Mol Biol 2019; 2003:529-561. [PMID: 31218632 DOI: 10.1007/978-1-4939-9512-7_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin-label EPR spectroscopy is the technique of choice to characterize the protein solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin-labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intramembranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to a so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intramembranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature (see ref. Marsh, Eur Biophys J 39:513-525, 2010 for a recent review), here we focus more on how to spin label model membranes and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a previous methodological paper (Marsh, Methods 46:83-96, 2008). The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
Affiliation(s)
- Tibor Páli
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary.
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| |
Collapse
|
5
|
Ferencz CM, Petrovszki P, Dér A, Sebők-Nagy K, Kóta Z, Páli T. Oscillating Electric Field Measures the Rotation Rate in a Native Rotary Enzyme. Sci Rep 2017; 7:45309. [PMID: 28345665 PMCID: PMC5366918 DOI: 10.1038/srep45309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
Rotary enzymes are complex, highly challenging biomolecular machines whose biochemical working mechanism involves intersubunit rotation. The true intrinsic rate of rotation of any rotary enzyme is not known in a native, unmodified state. Here we use the effect of an oscillating electric (AC) field on the biochemical activity of a rotary enzyme, the vacuolar proton-ATPase (V-ATPase), to directly measure its mean rate of rotation in its native membrane environment, without any genetic, chemical or mechanical modification of the enzyme, for the first time. The results suggest that a transmembrane AC field is able to synchronise the steps of ion-pumping in individual enzymes via a hold-and-release mechanism, which opens up the possibility of biotechnological exploitation. Our approach is likely to work for other transmembrane ion-transporting assemblies, not only rotary enzymes, to determine intrinsic in situ rates of ion pumping.
Collapse
Affiliation(s)
- Csilla-Maria Ferencz
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Pál Petrovszki
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Krisztina Sebők-Nagy
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6726, Szeged, Hungary
| |
Collapse
|
6
|
Gölz JP, NejatyJahromy Y, Bauer M, Muhammad A, Schnakenburg G, Grimme S, Schiemann O, Menche D. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids. Chemistry 2016; 22:9591-8. [PMID: 27272435 DOI: 10.1002/chem.201600528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/17/2023]
Abstract
Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses.
Collapse
Affiliation(s)
- Jan Philipp Gölz
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Yaser NejatyJahromy
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Mirko Bauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Ashraf Muhammad
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
7
|
Gölz JP, Bockelmann S, Mayer K, Steinhoff HJ, Wieczorek H, Huss M, Klare JP, Menche D. EPR Studies of V-ATPase with Spin-Labeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunit c. ChemMedChem 2015; 11:420-8. [DOI: 10.1002/cmdc.201500500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Jan Philipp Gölz
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Svenja Bockelmann
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Kerstin Mayer
- Institut für Organische Chemie; Ruprecht-Karls-Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | | | - Helmut Wieczorek
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Markus Huss
- Fachbereich Biologie/Chemie; Universität Osnabrück; 49069 Osnabrück Germany
| | - Johann P. Klare
- Fachbereich Physik; Universität Osnabrück; 49069 Osnabrück Germany
| | - Dirk Menche
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
8
|
Abstract
Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.
Collapse
|
9
|
Ferencz C, Petrovszki P, Kóta Z, Fodor-Ayaydin E, Haracska L, Bóta A, Varga Z, Dér A, Marsh D, Páli T. Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:147-58. [PMID: 23160754 DOI: 10.1007/s00249-012-0871-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022]
Abstract
The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6-32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8-48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.
Collapse
Affiliation(s)
- Csilla Ferencz
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Balogh G, Maulucci G, Gombos I, Horváth I, Török Z, Péter M, Fodor E, Páli T, Benkő S, Parasassi T, De Spirito M, Harwood JL, Vígh L. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells. PLoS One 2011; 6:e21182. [PMID: 21698159 PMCID: PMC3116874 DOI: 10.1371/journal.pone.0021182] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/22/2011] [Indexed: 02/05/2023] Open
Abstract
Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benkő
- First Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | | - Marco De Spirito
- Istituto di Fisica, Universitá Cattolica Sacro Cuore, Rome, Italy
| | - John L. Harwood
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- * E-mail: (LV); (JLH)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (LV); (JLH)
| |
Collapse
|
11
|
Marsh D. Electron spin resonance in membrane research: protein-lipid interactions from challenging beginnings to state of the art. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2010; 39:513-25. [PMID: 19669751 PMCID: PMC2841276 DOI: 10.1007/s00249-009-0512-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/10/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid-protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10x slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments.
Collapse
Affiliation(s)
- Derek Marsh
- Abteilung Spektroskopie, Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
12
|
Electron spin resonance in membrane research: Protein–lipid interactions. Methods 2008; 46:83-96. [DOI: 10.1016/j.ymeth.2008.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/03/2008] [Accepted: 07/03/2008] [Indexed: 11/20/2022] Open
|
13
|
Marsh D. Protein modulation of lipids, and vice-versa, in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1545-75. [DOI: 10.1016/j.bbamem.2008.01.015] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 11/29/2022]
|
14
|
Kóta Z, Páli T, Dixon N, Kee TP, Harrison MA, Findlay JBC, Finbow ME, Marsh D. Incorporation of Transmembrane Peptides from the Vacuolar H+-ATPase in Phospholipid Membranes: Spin-Label Electron Paramagnetic Resonance and Polarized Infrared Spectroscopy. Biochemistry 2008; 47:3937-49. [DOI: 10.1021/bi7025112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoltán Kóta
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Neil Dixon
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Terry P. Kee
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Michael A. Harrison
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - John B. C. Findlay
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Malcolm E. Finbow
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| | - Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany, Institute of Biophysics, Biological Research Centre, 6701 Szeged, Hungary, School of Chemistry and School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, U.K
| |
Collapse
|
15
|
Marsh D. Reaction fields and solvent dependence of the EPR parameters of nitroxides: the microenvironment of spin labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:60-67. [PMID: 17977036 DOI: 10.1016/j.jmr.2007.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/02/2007] [Accepted: 10/08/2007] [Indexed: 05/25/2023]
Abstract
The sensitivity of nitroxide spin-label EPR to the polarity of aprotic environments arises from the reaction field produced by polarisation of the surrounding dielectric by the nitroxide electric dipole moment. The performances of three different reaction fields that have been proposed as improvements on the original Onsager model are compared for representative spin-label nitroxides in a range of apolar and dipolar aprotic solvents. Explicit allowance is made for the polarisability of the nitroxide, which effectively renormalises the reaction field but has been neglected in previous analyses of nitroxide hyperfine couplings when using the improved reaction fields. It is found that the model of Block and Walker, which incorporates an exponential dependence of the dielectric permittivity on inverse radial distance from the nitroxide, gives the best description of the solvent dependence of the isotropic (14)N-hyperfine couplings. These results should be useful not only for calibration of environmental polarity using homogeneous solvents, but also for transferring polarity scales and polarity profiles (e.g., in membranes) between different nitroxide spin labels (e.g., of the TEMPO and DOXYL variety).
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37077 Göttingen, Germany.
| |
Collapse
|
16
|
Páli T, Finbow ME, Marsh D. A divalent-ion binding site on the 16-kDa proton channel from Nephrops norvegicus—revealed by EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:206-12. [PMID: 16545340 DOI: 10.1016/j.bbamem.2006.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/20/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
As purified from the hepatopancreas of Nephrops norvegicus, the 16-kDa proton channel proteolipid is found to contain an endogenous divalent ion binding site that is occupied by Cu2+. The EPR spectrum has g-values and hyperfine splittings that are characteristic of type 2 Cu2+. The copper may be removed by extensive washing with EDTA. Titration with Ni2+ then induces spin-spin interactions with nitroxyl spin labels that are attached either to the unique Cys54, or to fatty acids intercalated in the membrane. Paramagnetic relaxation enhancement by the fast-relaxing Ni2+ is used to characterise the binding and to estimate distances from the dipolar interactions. The Ni2+-binding site on the protein is situated around 14-18 A from the spin label on Cys54, and is at a similar distance from a lipid chain spin-labelled on the 5 C-atom, but is more remote from the C-9 and C-14 positions of the lipid chains.
Collapse
Affiliation(s)
- Tibor Páli
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37070 Göttingen, Germany
| | | | | |
Collapse
|
17
|
Dixon N, Páli T, Kee TP, Marsh D. Spin-labelled vacuolar-ATPase inhibitors in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1665:177-83. [PMID: 15471583 DOI: 10.1016/j.bbamem.2004.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 08/05/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Two spin-labelled derivatives of the 5-(2-indolyl)-2,4-pentadienoyl class of inhibitors of the vacuolar ATPase have been synthesised and their EPR properties characterised in phospholipid membranes. One spin-labelled inhibitor is the amide derivative of pentadienic acid and 4-amino-TEMPO (INDOL6), and the other is the 3-hydroxymethyl-PROXYL ester (INDOL5). The response of the EPR spectra to the chain-melting transition of dimyristoyl phosphatidylcholine (DMPC) bilayers demonstrates that both derivatives incorporate in phospholipid membranes. The axially anisotropic EPR spectra of INDOL6 in fluid DMPC membranes indicate that the indolyl-pentadienoyl inhibitors intercalate between the lipid chains, in the membrane. INDOL5, designed to possess additional internal segmental mobility, exhibits more nearly isotropic motion of the spin-label moiety in fluid membranes than does INDOL6. The EPR characteristics of INDOL5 are therefore well suited to detecting specific ligand-protein interactions. Progressive saturation EPR experiments with polar and hydrophobic relaxation agents (aqueous Ni2+ and oxygen) show that the nitroxide group is buried in the membrane, with the indole moiety providing the anchor at the membrane polar-apolar interface. Rates of spin-label reduction by externally added ascorbate confirm this assignment. These two spin-labelled derivatives provide complementary EPR probes of the lipid environment (INDOL6), and of ligand-protein interactions (INDOL5), for this class of V-ATPase inhibitor.
Collapse
Affiliation(s)
- Neil Dixon
- Department of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
18
|
Harrison M, Durose L, Song CF, Barratt E, Trinick J, Jones R, Findlay JBC. Structure and function of the vacuolar H+-ATPase: moving from low-resolution models to high-resolution structures. J Bioenerg Biomembr 2004; 35:337-45. [PMID: 14635779 DOI: 10.1023/a:1025728915565] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the absence of a high-resolution structure for the vacuolar H+-ATPase, a number of approaches can yield valuable information about structure/function relationships in the enzyme. Electron microscopy can provide not only a representation of the overall architecture of the complex, but also a low-resolution map onto which structures solved for individually expressed subunits can be fitted. Here we review the possibilities for electron microscopy of the Saccharomyces V-ATPase and examine the suitability of V-ATPase subunits for expression in high yield prokaryotic systems, a key step towards high-resolution structural studies. We also review the role of experimentally-derived structural models in understanding structure/function relationships in the V-ATPase, with particular reference to the complex of proton-translocating 16 kDa proteolipids in the membrane domain of the V-ATPase. This model in turn makes testable predictions about the sites of binding of bafilomycins and the functional interactions between the proteolipid and the single-copy membrane subunit Vph1p, with implications for the constitution of the proton translocation pathway.
Collapse
Affiliation(s)
- Michael Harrison
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ashby ADM, Meagher L, Campo MS, Finbow ME. E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H(+)-ATPase. J Gen Virol 2001; 82:2353-2362. [PMID: 11562529 DOI: 10.1099/0022-1317-82-10-2353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Papillomaviruses contain a gene, E5, that encodes a short hydrophobic polypeptide that has transforming activity. E5 proteins bind to the 16 kDa subunit c (proteolipid) of the eukaryotic vacuolar H(+)-ATPase (V-ATPase) and this binding is thought to disturb the V-ATPase and to be part of transformation. This link has been examined in the yeast Saccharomyces cerevisiae. The E5 proteins from human papillomavirus (HPV) type 16, bovine papillomavirus (BPV) type 1, BPV-4 E5 and various mutants of E5 and the p12' polypeptide from human T-lymphotropic virus (HTLV) type I all bound to the S. cerevisiae subunit c (Vma3p) and could be found in vacuolar membranes. However, none affected the activity of the V-ATPase. In contrast, a dominant-negative mutant of Vma3p (E137G) inactivated the enzyme and gave the characteristic VMA phenotype. A hybrid V-ATPase containing a subunit c from Norway lobster also showed no disruption. Sedimentation showed that HPV-16 E5 was not part of the active V-ATPase. It is concluded that the binding of E5 and E5-related proteins to subunit c does not affect V-ATPase activity or function and it is proposed that the binding may be due to a chaperone function of subunit c.
Collapse
Affiliation(s)
- Andrew D M Ashby
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Switchback Road, Garscube Estate, Bearsden, Glasgow G61 1BD, UK1
| | - Liam Meagher
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Switchback Road, Garscube Estate, Bearsden, Glasgow G61 1BD, UK1
| | - M Saveria Campo
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Switchback Road, Garscube Estate, Bearsden, Glasgow G61 1BD, UK1
| | - Malcolm E Finbow
- CRC Beatson Laboratories, Beatson Institute for Cancer Research, Switchback Road, Garscube Estate, Bearsden, Glasgow G61 1BD, UK1
| |
Collapse
|