1
|
My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy. Biophys Rev 2023; 15:103-110. [PMID: 36909952 PMCID: PMC9995631 DOI: 10.1007/s12551-023-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
H.G. Khorana's seminal contributions to molecular biology are well-known. He also had a lesser known but still major influence on current application of advanced vibrational spectroscopic techniques such as FTIR difference spectroscopy to explore the mechanism of bacteriorhodopsin and other integral membrane proteins. In this review, I provide a personal perspective of my collaborative research and interactions with Gobind, from 1982 to 1995 when our groups published over 25 papers together which resulted in an early picture of key features of the bacteriorhodopsin proton pump mechanism. Much of this early work served as a blueprint for subsequent advances based on combining protein bioengineering and vibrational spectroscopic techniques to study integral membrane proteins.
Collapse
|
2
|
Dai G, Geng X, Chaoluomeng, Tamogami J, Kikukawa T, Demura M, Kamo N, Iwasa T. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species. Photochem Photobiol 2018. [PMID: 29512821 DOI: 10.1111/php.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. This work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII.
Collapse
Affiliation(s)
- Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Chaoluomeng
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Jun Tamogami
- College of Pharmaceutical Science, Matsuyama University, Matsuyama, 790-8578, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, 001-0021, Japan
| | - Naoki Kamo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, 050-8585, Japan
| |
Collapse
|
3
|
Sasaki J, Takahashi H, Furutani Y, Sineshchekov OA, Spudich JL, Kandori H. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I. Biochemistry 2014; 53:5923-9. [PMID: 25162914 PMCID: PMC4172204 DOI: 10.1021/bi500831n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.
Collapse
Affiliation(s)
- Jun Sasaki
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Spudich JL, Sineshchekov OA, Govorunova EG. Mechanism divergence in microbial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:546-52. [PMID: 23831552 DOI: 10.1016/j.bbabio.2013.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
A fundamental design principle of microbial rhodopsins is that they share the same basic light-induced conversion between two conformers. Alternate access of the Schiff base to the outside and to the cytoplasm in the outwardly open "E" conformer and cytoplasmically open "C" conformer, respectively, combined with appropriate timing of pKa changes controlling Schiff base proton release and uptake make the proton path through the pumps vectorial. Phototaxis receptors in prokaryotes, sensory rhodopsins I and II, have evolved new chemical processes not found in their proton pump ancestors, to alter the consequences of the conformational change or modify the change itself. Like proton pumps, sensory rhodopsin II undergoes a photoinduced E→C transition, with the C conformer a transient intermediate in the photocycle. In contrast, one light-sensor (sensory rhodopsin I bound to its transducer HtrI) exists in the dark as the C conformer and undergoes a light-induced C→E transition, with the E conformer a transient photocycle intermediate. Current results indicate that algal phototaxis receptors channelrhodopsins undergo redirected Schiff base proton transfers and a modified E→C transition which, contrary to the proton pumps and other sensory rhodopsins, is not accompanied by the closure of the external half-channel. The article will review our current understanding of how the shared basic structure and chemistry of microbial rhodopsins have been modified during evolution to create diverse molecular functions: light-driven ion transport and photosensory signaling by protein-protein interaction and light-gated ion channel activity. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA.
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| |
Collapse
|
5
|
A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å. J Mol Biol 2012; 415:455-63. [PMID: 22123198 PMCID: PMC3628824 DOI: 10.1016/j.jmb.2011.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 01/07/2023]
Abstract
Bacteriorhodopsin (BR) and sensory rhodopsin II (SRII), homologous photoactive proteins in haloarchaea, have different molecular functions. BR is a light-driven proton pump, whereas SRII is a phototaxis receptor that transmits a light-induced conformational change to its transducer HtrII. Despite these distinctly different functions, a single residue substitution, Ala215 to Thr215 in the BR retinal-binding pocket, enables its photochemical reactions to transmit signals to HtrII and mediate phototaxis. We pursued a crystal structure of the signaling BR mutant (BR_A215T) to determine the structural changes caused by the A215T mutation and to assess what new photochemistry is likely to be introduced into the BR photoactive site. We crystallized BR_A215T from bicelles and solved its structure to 3.0 Å resolution to enable an atomic-level comparison. The analysis was complemented by molecular dynamics simulation of BR mutated in silico. Three main conclusions regarding the roles of photoactive site residues in signaling emerge from the comparison of BR_A215T, BR, and SRII structures: (i) the Thr215 residue in signaling BR is positioned nearly identically with respect to the retinal chromophore as in SRII, consistent with its role in producing a steric conflict with the retinal C₁₄ group during photoisomerization, proposed earlier to be essential for SRII signaling from vibrational spectroscopy and motility measurements; (ii) Tyr174-Thr204 hydrogen bonding, critical in SRII signaling and mimicked in signaling BR, is likely auxiliary, for example, to maintain Thr204 in the proper position for the steric trigger to occur; and (iii) the primary role of Arg72 in SRII is spectral tuning and not signaling.
Collapse
|
6
|
Bayraktar H, Fields AP, Kralj JM, Spudich JL, Rothschild KJ, Cohen AE. Ultrasensitive measurements of microbial rhodopsin photocycles using photochromic FRET. Photochem Photobiol 2012; 88:90-7. [PMID: 22010969 PMCID: PMC3253248 DOI: 10.1111/j.1751-1097.2011.01011.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial rhodopsins are an important class of light-activated transmembrane proteins whose function is typically studied on bulk samples. Herein, we apply photochromic fluorescence resonance energy transfer to investigate the dynamics of these proteins with sensitivity approaching the single-molecule limit. The brightness of a covalently linked organic fluorophore is modulated by changes in the absorption spectrum of the endogenous retinal chromophore that occur as the molecule undergoes a light-activated photocycle. We studied the photocycles of blue-absorbing proteorhodopsin and sensory rhodopsin II (SRII). Clusters of 2-3 molecules of SRII clearly showed a light-induced photocycle. Single molecules of SRII showed a photocycle upon signal averaging over several illumination cycles.
Collapse
Affiliation(s)
| | | | | | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas
| | - Kenneth J. Rothschild
- Department of Physics and Photonics Center, Boston University, Boston, Massachusetts
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology
- Department of Physics, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
7
|
Sasaki J, Takahashi H, Furutani Y, Kandori H, Spudich JL. Sensory rhodopsin-I as a bidirectional switch: opposite conformational changes from the same photoisomerization. Biophys J 2011; 100:2178-83. [PMID: 21539785 DOI: 10.1016/j.bpj.2011.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022] Open
Abstract
The phototaxis receptor sensory rhodopsin I (SRI) exists in two protein conformations, each of which is converted to the other by light absorption by the protein's retinylidene chromophore. One conformer inhibits a histidine-kinase attached to its bound transducer HtrI and its formation induces attractant motility responses, whereas the other conformer activates the kinase and its formation induces repellent responses. We performed Fourier transform infrared spectroscopy with temperature, pH, and mutation-induced shifts in the conformer equilibrium, and found that both conformers when present in the unphotolyzed dark state contain an all-trans retinal configuration that is photoisomerized to 13-cis, i.e., the same photoisomerization causes the opposite conformational change in the photointerconvertible pair of conformers depending on which conformer is present in the dark. Therefore, switching between the protein global conformations that define the two conformers is independent of the direction of isomerization. Insights into this phenomenon are gained from analysis of the evolution of the receptor from light-driven proton pumps, which use similar conformers for transport. The versatility of the conformational changes of microbial rhodopsins, including conformer interexchangeability in the photocycle as shown here, is likely a significant factor in the evolution of the diverse functionality of this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
8
|
Sasaki J, Tsai AL, Spudich JL. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes. J Biol Chem 2011; 286:18868-77. [PMID: 21454480 DOI: 10.1074/jbc.m110.200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
9
|
Sineshchekov OA, Sasaki J, Wang J, Spudich JL. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes. Biochemistry 2010; 49:6696-704. [PMID: 20590098 PMCID: PMC2914491 DOI: 10.1021/bi100798w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI−HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∼1.5 units from that of the inwardly connected conformer. The pKa difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI−HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI−HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII−HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI−HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin−transducer complexes.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
10
|
Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL. His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J Biol Chem 2008; 284:2836-2843. [PMID: 19015272 DOI: 10.1074/jbc.m803792200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteorhodopsins (PRs), photoactive retinylidene membrane proteins ubiquitous in marine eubacteria, exhibit light-driven proton transport activity similar to that of the well studied bacteriorhodopsin from halophilic archaea. However, unlike bacteriorhodopsin, PRs have a single highly conserved histidine located near the photoactive site of the protein. Time-resolved Fourier transform IR difference spectroscopy combined with visible absorption spectroscopy, isotope labeling, and electrical measurements of light-induced charge movements reveal participation of His-75 in the proton translocation mechanism of PR. Substitution of His-75 with Ala or Glu perturbed the structure of the photoactive site and resulted in significantly shifted visible absorption spectra. In contrast, His-75 substitution with a positively charged Arg did not shift the visible absorption spectrum of PR. The mutation to Arg also blocks the light-induced proton transfer from the Schiff base to its counterion Asp-97 during the photocycle and the acid-induced protonation of Asp-97 in the dark state of the protein. Isotope labeling of histidine revealed that His-75 undergoes deprotonation during the photocycle in the proton-pumping (high pH) form of PR, a reaction further supported by results from H75E. Finally, all His-75 mutations greatly affect charge movements within the PR and shift its pH dependence to acidic values. A model of the proteorhodopsin proton transport process is proposed as follows: (i) in the dark state His-75 is positively charged (protonated) over a wide pH range and interacts directly with the Schiff base counterion Asp-97; and (ii) photoisomerization-induced transfer of the Schiff base proton to the Asp-97 counterion disrupts its interaction with His-75 and triggers a histidine deprotonation.
Collapse
Affiliation(s)
- Vladislav B Bergo
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215; Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Joel M Kralj
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215
| | - Ranga Partha
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Elena N Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, Massachusetts 02215.
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, Texas 77030.
| |
Collapse
|
11
|
Sasaki J, Nara T, Spudich EN, Spudich JL. Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain. Mol Microbiol 2007; 66:1321-30. [PMID: 17986191 DOI: 10.1111/j.1365-2958.2007.05983.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Halobacterium salinarum sensory rhodopsin II (HsSRII) is a phototaxis receptor for blue-light avoidance that relays signals to its tightly bound transducer HsHtrII (H. salinarum haloarchaeal transducer for SRII). We found that disruption of the salt bridge between the protonated Schiff base of the receptor's retinylidene chromophore and its counterion Asp73 by residue substitutions D73A, N or Q constitutively activates HsSRII, whereas the corresponding Asp75 counterion substitutions do not constitutively activate Natronomonas pharaonis SRII (NpSRII) when complexed with N. pharaonis haloarchaeal transducer for SRII (NpHtrII). However, NpSRII(D75Q) in complex with HsHtrII is fully constitutively active, showing that transducer sensitivity to the receptor signal contributes to the phenotype. The swimming behaviour of cells expressing chimeras exchanging portions of the two homologous transducers localizes their differing sensitivities to the HtrII transmembrane domains. Furthermore, deletion constructs show that the known contact region in the cytoplasmic domain of the NpSRII-NpHtrII complex is not required for phototaxis, excluding the domain as a site for signal transmission. These results distinguish between the prevailing models for SRII-HtrII signal relay, strongly supporting the 'steric trigger-transmembrane relay model', which proposes that retinal isomerization directly signals HtrII through the mid-membrane SRII-HtrII interface, and refuting alternative models that propose signal relay in the cytoplasmic membrane-proximal domain.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Iwamoto M, Sudo Y, Shimono K, Kamo N. Illumination Accelerates the Decay of the O-intermediate of pharaonis Phoborhodopsin (Sensory Rhodopsin II)¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760462iatdot2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. A Fourier Transform Infrared Study of Neurospora Rhodopsin: Similarities with Archaeal Rhodopsins¶†. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760341aftiso2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Coureux PD, Genick UK. Triggering and Monitoring Light‐Sensing Reactions in Protein Crystals. Methods Enzymol 2007; 422:305-37. [PMID: 17628146 DOI: 10.1016/s0076-6879(06)22015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many bacterial photoreceptors signal via histidine kinases. The light-activated nature of these proteins provides unique experimental opportunities to study their molecular mechanisms of signal transduction. One of these opportunities is the combined application of X-ray crystallography and optical spectroscopy in protein crystals. By combining these two methods it is possible to correlate protein structure to protein function in a way that is exceedingly difficult or impossible to achieve in most other experimental systems. This chapter is divided into two parts. The first part provides a brief overview of light-regulated histidine kinases and the most important techniques for studying the structure of photocycle intermediates by crystallography. The second part of the chapter is dedicated to practical advice on how to select, mount, activate, and monitor the structural and spectroscopic responses of photoreceptor crystals. This chapter is intended for readers who want to start using these experimental tools themselves or who wish to understand enough about the techniques to critically evaluate the work of others.
Collapse
|
15
|
Bergo VB, Ntefidou M, Trivedi VD, Amsden JJ, Kralj JM, Rothschild KJ, Spudich JL. Conformational Changes in the Photocycle of Anabaena Sensory Rhodopsin. J Biol Chem 2006; 281:15208-14. [PMID: 16537532 DOI: 10.1074/jbc.m600033200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anabaena sensory rhodopsin (ASR) is a novel microbial rhodopsin recently discovered in the freshwater cyanobacterium Anabaena sp. PCC7120. This protein most likely functions as a photosensory receptor as do the related haloarchaeal sensory rhodopsins. However, unlike the archaeal pigments, which are tightly bound to their cognate membrane-embedded transducers, ASR interacts with a soluble cytoplasmic protein analogous to transducers of animal vertebrate rhodopsins. In this study, infrared spectroscopy was used to examine the molecular mechanism of photoactivation in ASR. Light adaptation of the pigment leads to a phototransformation of an all-trans/15-anti to 13-cis/15-syn retinylidene-containing species very similar in chromophore structural changes to those caused by dark adaptation in bacteriorhodopsin. Following 532 nm laser-pulsed excitation, the protein exhibits predominantly an all-trans retinylidene photocycle containing a deprotonated Schiff base species similar to those of other microbial rhodopsins such as bacteriorhodopsin, sensory rhodopsin II, and Neurospora rhodopsin. However, no changes are observed in the Schiff base counterion Asp-75, which remains unprotonated throughout the photocycle. This result along with other evidence indicates that the Schiff base proton release mechanism differs significantly from that of other known microbial rhodopsins, possibly because of the absence of a second carboxylate group at the ASR photoactive site. Several conformational changes are detected during the ASR photocycle including in the transmembrane helices E and G as indicated by hydrogen-bonding alterations of their native cysteine residues. In addition, similarly to animal vertebrate rhodopsin, perturbations of the polar head groups of lipid molecules are detected.
Collapse
Affiliation(s)
- Vladislav B Bergo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Shi L, Yoon SR, Bezerra AG, Jung KH, Brown LS. Cytoplasmic Shuttling of Protons in Anabaena Sensory Rhodopsin: Implications for Signaling Mechanism. J Mol Biol 2006; 358:686-700. [PMID: 16530786 DOI: 10.1016/j.jmb.2006.02.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 11/22/2022]
Abstract
It was found recently that Anabaena sensory rhodopsin (ASR), which possibly serves as a photoreceptor for chromatic adaptation, interacts with a soluble cytoplasmic transducer. The X-ray structure of the transducer-free protein revealed an extensive hydrogen-bonded network of amino acid residues and water molecules in the cytoplasmic half of ASR, in high contrast to its haloarchaeal counterparts. Using time-resolved spectroscopy of the wild-type and mutant ASR in the visible and infrared ranges, we tried to determine whether this hydrogen-bonded network is used to translocate protons and whether those proton transfers are important for interaction with the transducer. We found that the retinal Schiff base deprotonation, which occurs in the M intermediate of the photocycle of all-trans-ASR, results in protonation of Asp217 on the cytoplasmic side of the protein. The deprotonation of the Schiff base induces a conformational change of ASR observed through the perturbation of associated lipids. We suggest that the cytoplasmic shuttling of protons in the photocycle of all-trans-ASR and the ensuing conformational changes might activate the transducer. Consequently, the M intermediate may be the signaling state of ASR.
Collapse
Affiliation(s)
- Lichi Shi
- Department of Physics University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
17
|
Bergo VB, Spudich EN, Rothschild KJ, Spudich JL. Photoactivation perturbs the membrane-embedded contacts between sensory rhodopsin II and its transducer. J Biol Chem 2005; 280:28365-9. [PMID: 15951432 DOI: 10.1074/jbc.m505555200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The photoactivation mechanism of the sensory rho-dopsin II (SRII)-HtrII receptor-transducer complex of Natronomonas pharaonis was investigated by time-resolved Fourier transform infrared difference spectroscopy to identify structural changes associated with early events in the signal relay mechanism from the receptor to the transducer. Several prominent bands in the wild-type SRII-HtrII spectra are affected by amino acid substitutions at the receptor Tyr(199) and transducer Asn(74) residues, which form a hydrogen bond between the two proteins near the middle of the bilayer. Our results indicate disappearance of this hydrogen bond in the M and O photointermediates, the likely signaling states of the complex. This event represents one of the largest light-induced alterations in the binding contacts between the receptor and transducer. The vibrational frequency changes suggest that Asn(74) and Tyr(199) form other stronger hydrogen bonds in the M state. The light-induced disruption of the Tyr(199)-Asn(74) bond also occurs when the Schiff base counterion Asp(75) is replaced with a neutral asparagine. We compared the decrease in intensity of difference bands assigned to the Tyr(199)-Asn(74) pair and to chromophore and protein groups of the receptor at various time points during the recovery of the initial state. All difference bands exhibit similar decay kinetics indicating that reformation of the Tyr(199)-Asn(74) hydrogen bond occurs concomitantly with the decay of the M and O photointermediates. This work demonstrates that the signal relay from SRII to HtrII involves early structural alterations in the deeply membrane-embedded domain of the complex and provides a spectroscopic signal useful for correlation with the downstream events in signal transduction.
Collapse
Affiliation(s)
- Vladislav B Bergo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
18
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. Conformational changes detected in a sensory rhodopsin II-transducer complex. J Biol Chem 2003; 278:36556-62. [PMID: 12821665 DOI: 10.1074/jbc.m303719200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sensory rhodopsins (SRs) are light receptors that belong to the growing family of microbial rhodopsins. SRs have now been found in all three major domains of life including archaea, bacteria, and eukaryotes. One of the most extensively studied sensory rhodopsins is SRII, which controls a blue light avoidance motility response in the halophilic archaeon Natronobacterium pharaonis. This seven-helix integral membrane protein forms a tight intermolecular complex with its cognate transducer protein, HtrII. In this work, the structural changes occurring in a fusion complex consisting of SRII and the two transmembrane helices (TM1 and TM2) of HtrII were investigated by time-resolved Fourier transform infrared difference spectroscopy. Although most of the structural changes observed in SRII are conserved in the fusion complex, several distinct changes are found. A reduction in the intensity of a prominent amide I band observed for SRII indicates that its structural changes are altered in the fusion complex, possibly because of the close interaction of TM2 with the F helix, which interferes with the F helix outward tilt. Deprotonation of at least one Asp/Glu residue is detected in the transducer-free receptor with a pKa near 7 that is abolished or altered in the fusion complex. Changes are also detected in spectral regions characteristic of Asn and Tyr vibrations. At high hydration levels, transducer-fusion interactions lead to a stabilization of an M-like intermediate that most likely corresponds to an active signaling form of the transducer. These findings are discussed in the context of a recently elucidated x-ray structure of the fusion complex.
Collapse
Affiliation(s)
- Vladislav Bergo
- Department of Physics and Molecular Biophysics Laboratory, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
19
|
Rivas L, Hippler-Mreyen S, Engelhard M, Hildebrandt P. Electric-field dependent decays of two spectroscopically different M-states of photosensory rhodopsin II from Natronobacterium pharaonis. Biophys J 2003; 84:3864-73. [PMID: 12770892 PMCID: PMC1302968 DOI: 10.1016/s0006-3495(03)75114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Accepted: 01/22/2003] [Indexed: 10/21/2022] Open
Abstract
Sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis was studied by resonance Raman (RR) spectroscopic techniques. Using gated 413-nm excitation, time-resolved RR measurements of the solubilized photoreceptor were carried out to probe the photocycle intermediates that are formed in the submillisecond time range. For the first time, two M-like intermediates were identified on the basis of their C=C stretching bands at 1568 and 1583 cm(-1), corresponding to the early M(L)(400) state with a lifetime of 30 micro s and the subsequent M(1)(400) state with a lifetime of 2 ms, respectively. The unusually high C=C stretching frequency of M(1)(400) has been attributed to an unprotonated retinal Schiff base in a largely hydrophobic environment, implying that the M(L)(400) --> M(1)(400) transition is associated with protein structural changes in the vicinity of the chromophore binding pocket. Time-resolved surface enhanced resonance Raman experiments of NpSRII electrostatically bound onto a rotating Ag electrode reveal that the photoreceptor runs through the photocycle also in the immobilized state. Surface enhanced resonance Raman spectra are very similar to the RR spectra of the solubilized protein, ruling out adsorption-induced structural changes in the retinal binding pocket. The photocycle kinetics, however, is sensitively affected by the electrode potential such that at 0.0 V (versus Ag/AgCl) the decay times of M(L)(400) and M(1)(400) are drastically slowed down. Upon decreasing the potential to -0.4 V, that corresponds to a decrease of the interfacial potential drop and thus of the electric field strength at the protein binding site, the photocycle kinetics becomes similar to that of NpSRII in solution. The electric-field dependence of the protein structural changes associated with the M-state transitions, which in the present spectroscopic work is revealed on a molecular level, appears to be related to the electric-field control of bacteriorhodopsin's photocycle, which has been shown to be of functional relevance.
Collapse
Affiliation(s)
- Laura Rivas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, P-2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
20
|
Hein M, Wegener AA, Engelhard M, Siebert F. Time-resolved FTIR studies of sensory rhodopsin II (NpSRII) from Natronobacterium pharaonis: implications for proton transport and receptor activation. Biophys J 2003; 84:1208-17. [PMID: 12547800 PMCID: PMC1302696 DOI: 10.1016/s0006-3495(03)74935-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The photocycle of the photophobic receptor from Natronobacterium pharaonis, NpSRII, is studied by static and time-resolved step-scan Fourier transform infrared spectroscopy. Both low-temperature static and time-resolved spectra resolve a K-like intermediate, and the corresponding spectra show little difference within the noise of the time-resolved data. As compared to intermediate K of bacteriorhodopsin, relatively large amide I bands indicate correspondingly larger distortions of the protein backbone. The time-resolved spectra identify an intermediate L-like state with surprisingly small additional molecular alterations. With the formation of intermediate M, the Schiff-base proton is transferred to the counterion Asp-75. This state is characterized by larger amide bands indicating larger distortions of the protein. We can identify a second M state that differs only in small-protein bands. Reisomerization of the chromophore to all-trans occurs with the formation of intermediate O. The accelerated decay of intermediate M caused by azide results in another red-shifted intermediate with a protonated Schiff base. The chromophore in this state, however, still has 13-cis geometry. Nevertheless, the reisomerization is still as slow as under the conditions without azide. The results are discussed with respect to mechanisms of the observed proton pumping and the possible roles of the intermediates in receptor activation.
Collapse
Affiliation(s)
- Michael Hein
- Sektion Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert Ludwigs Universität, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
21
|
Bergo V, Mamaev S, Olejnik J, Rothschild KJ. Methionine changes in bacteriorhodopsin detected by FTIR and cell-free selenomethionine substitution. Biophys J 2003; 84:960-6. [PMID: 12547777 PMCID: PMC1302673 DOI: 10.1016/s0006-3495(03)74912-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bacteriorhodopsin (BR) is an integral membrane protein, which functions as a light-driven proton pump in Halobacterium salinarum. We report evidence that one or more methionine residues undergo a structural change during the BR-->M portion of the BR photocycle. Selenomethionine was incorporated into BR using a cell-free protein translation system containing an amino acid mixture with selenomethionine substituted for methionine. BR-->M FTIR difference spectra recorded for unlabeled and selenomethionine-labeled cell-free expressed BR closely resemble the spectra of in vivo expressed BR. However, reproducible changes occur in two regions near 1,284 and 900 cm(-1) due to selenomethionine incorporation. Isotope labeled tyrosine was also co-incorporated with selenomethionine in order to confirm these assignments. Based on recent x-ray crystallographic studies, likely methionines which give rise to the FTIR difference bands are Met-118 and Met-145, which are located inside the retinal binding pocket and in a position to constrain the motion of retinal during photoisomerization. The assignment of methionine bands in the FTIR difference spectrum of BR provides a means to study methionine-chromophore interaction under physiological conditions. More generally, combining cell-free incorporations of selenomethionine into proteins with FTIR difference spectroscopy provides a useful method for investigating the role of methionines in protein structure and function.
Collapse
Affiliation(s)
- Vladislav Bergo
- Physics Deptartment, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
22
|
Furutani Y, Iwamoto M, Shimono K, Kamo N, Kandori H. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin. Biophys J 2002; 83:3482-9. [PMID: 12496114 PMCID: PMC1302422 DOI: 10.1016/s0006-3495(02)75347-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | |
Collapse
|
23
|
Iwamoto M, Sudo Y, Shimono K, Kamo N. Illumination accelerates the decay of the O-intermediate of pharaonis phoborhodopsin (sensory rhodopsin II). Photochem Photobiol 2002; 76:462-6. [PMID: 12405157 DOI: 10.1562/0031-8655(2002)076<0462:iatdot>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II [psRII]) is a member of the archaeal rhodopsin family and acts as a repellent phototaxis receptor of Natronobacterium pharaonis. Upon illumination, ppR is excited and undergoes a linear cyclic photoreaction, namely, a photocycle that constitutes photointermediates such as M- and O-intermediates (ppRM and ppRO, respectively). Under a constant background illumination (>600 nm) that irradiates ppRO, the decay rate of the flash-induced ppRO increased with an increase in the background light intensity, indicating the photoreactivity of ppRO. Azide did not influence the light-accelerated ppRO decay, but the time required for the cycle to be completed became shortened in an azide concentration-dependent manner because of acceleration of ppRM decay. Hence, the turnover rate of photocycling increased appreciably in the presence of both the background illumination and the azide. The observation reported previously (Schmies, G. et al. 2000, Biophys. J. 78:967-976) is discussed in connection with the present observations.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
24
|
Bergo V, Spudich EN, Spudich JL, Rothschild KJ. A Fourier transform infrared study of Neurospora rhodopsin: similarities with archaeal rhodopsins. Photochem Photobiol 2002; 76:341-9. [PMID: 12403457 DOI: 10.1562/0031-8655(2002)076<0341:aftiso>2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NOP-1 gene from the eukaryote Neurospora crassa, a filamentous fungus, has recently been shown to encode an archaeal rhodopsin-like protein NOP-1. To explore the functional mechanism of NOP-1 and its possible similarities to archaeal and visual rhodopsins, static and time-resolved Fourier transform infrared difference spectra were measured from wild-type NOP-1 and from a mutant containing an Asp-->Glu substitution in the Schiff base (SB) counterion, Asp131 (D131E). Several conclusions could be drawn about the molecular mechanism of NOP-1: (1) the NOP-1 retinylidene chromophore undergoes an all-trans to 13-cis isomerization, which is typical of archaeal rhodopsins, and closely resembles structural changes of the chromophore in sensory rhodopsin II; (2) the NOP-1 SB counterion, Asp131, has a very similar environment and behavior compared with the SB counterions in bacteriorhodopsin (BR) and sensory rhodopsin II; (3) the O-H stretching of a structurally active water molecule(s) in NOP-1 is similar to water detected in BR and is most likely located near the SB and SB counterion in these proteins; and (4) one or more cysteine residues undergo structural changes during the NOP-1 photocycle. Overall, these results indicate that many features of the active sites of the archaeal rhodopsins are conserved in NOP-1, despite its eukaryotic origin.
Collapse
Affiliation(s)
- Vladislav Bergo
- Department of Physics, Molecular Biophysics Laboratory, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
25
|
Iwamoto M, Furutani Y, Sudo Y, Shimono K, Kandori H, Kamo N. Role of Asp193 in chromophore-protein interaction of pharaonis phoborhodopsin (sensory rhodopsin II). Biophys J 2002; 83:1130-5. [PMID: 12124292 PMCID: PMC1302214 DOI: 10.1016/s0006-3495(02)75236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. By spectroscopic titration of D193N and D193E mutants, the pK(a) of the Schiff base was evaluated. Asp193 corresponds to Glu204 of bacteriorhodopsin (bR). The pK(a) of the Schiff base (SBH(+)) of D193N was approximately 10.1-10.0 (at XH(+)) and approximately 11.4-11.6 (at X) depending on the protonation state of a certain residue (designated by X) and independent of Cl(-), whereas those of the wild type and D193E were >12. The pK(a) values of XH(+) were approximately 11.8-11.2 at the state of SB, 10.5 at SBH(+) state in the presence of Cl(-), and 9.6 at SBH(+) without Cl(-). These imply the presence of a long-range interaction in the extracellular channel. Asp193 was suggested to be deprotonated in the present dodecyl-maltoside (DDM) solubilized wild-type ppR, which is contrary to Glu204 of bR. In the absence of salts, the irreversible denaturation of D193N (but not the wild type and D193E) occurred via a metastable state, into which the addition of Cl(-) reversed the intact pigment. This suggests that the negative charge at residue 193, which can be substituted by Cl(-), is necessary to maintain the proper conformation in the DDM-solubilized ppR.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Edman K, Royant A, Nollert P, Maxwell CA, Pebay-Peyroula E, Navarro J, Neutze R, Landau EM. Early structural rearrangements in the photocycle of an integral membrane sensory receptor. Structure 2002; 10:473-82. [PMID: 11937052 DOI: 10.1016/s0969-2126(02)00736-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sensory rhodopsins are the primary receptors of vision in animals and phototaxis in microorganisms. Light triggers the rapid isomerization of a buried retinal chromophore, which the protein both accommodates and amplifies into the larger structural rearrangements required for signaling. We trapped an early intermediate of the photocycle of sensory rhodopsin II from Natronobacterium pharaonis (pSRII) in 3D crystals and determined its X-ray structure to 2.3 A resolution. The observed structural rearrangements were localized near the retinal chromophore, with a key water molecule becoming disordered and the retinal's beta-ionone ring undergoing a prominent movement. Comparison with the early structural rearrangements of bacteriorhodopsin illustrates how modifications in the retinal binding pocket of pSRII allow subtle differences in the early relaxation of photoisomerized retinal.
Collapse
Affiliation(s)
- Karl Edman
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, S-40530 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwamoto M, Sudo Y, Shimono K, Kamo N. Selective reaction of hydroxylamine with chromophore during the photocycle of pharaonis phoborhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:152-8. [PMID: 11513812 DOI: 10.1016/s0005-2736(01)00380-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phoborhodopsin (pR; also called sensory rhodopsin II, sRII) is a receptor of negative phototaxis of Halobacterium salinarum, and pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. These receptors contain retinal as a chromophore which binds to a lysine residue via Schiff base. This Schiff base can be cleaved with hydroxylamine to loose their color (bleaching). In dark, the bleaching rate of ppR was very slow whereas illumination accelerated considerably the bleaching rate. Addition of azide accelerated the decay of the M-intermediate while its formation (decay of the L-intermediate) is not affected. The bleaching rate of ppR under illumination was decreased by addition of azide. Essentially no reactivity with hydroxylamine under illumination was observed in the case of D75N mutant which lacks the M-intermediate in its photocycle. Moreover, we provided illumination by flashes to ppR in the presence of varying concentrations of azide to measure the bleaching rate per one flash. A good correlation was obtained between the rate and the mean residence time, MRT, which was calculated from flash photolysis data of the M-decay. These findings reveal that water-soluble hydroxylamine reacts selectively with the M-intermediate and its implication was discussed.
Collapse
Affiliation(s)
- M Iwamoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
28
|
Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 2001; 276:32495-505. [PMID: 11435422 DOI: 10.1074/jbc.m102652200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It was recently found that NOP-1, a membrane protein of Neurospora crassa, shows homology to haloarchaeal rhodopsins and binds retinal after heterologous expression in Pichia pastoris. We report on spectroscopic properties of the Neurospora rhodopsin (NR). The photocycle was studied with flash photolysis and time-resolved Fourier-transform infrared spectroscopy in the pH range 5-8. Proton release and uptake during the photocycle were monitored with the pH-sensitive dye, pyranine. Kinetic and spectral analysis revealed six distinct states in the NR photocycle, and we describe their spectral properties and pH-dependent kinetics in the visible and infrared ranges. The phenotypes of the mutant NR proteins, D131E and E142Q, in which the homologues of the key carboxylic acids of the light-driven proton pump bacteriorhodopsin, Asp-85 and Asp-96, were replaced, show that Glu-142 is not involved in reprotonation of the Schiff base but Asp-131 may be. This implies that, if the NR photocycle is associated with proton transport, it has a low efficiency, similar to that of haloarchaeal sensory rhodopsin II. Fourier-transform Raman spectroscopy revealed unexpected differences between NR and bacteriorhodopsin in the configuration of the retinal chromophore, which may contribute to the less effective reprotonation switch of NR.
Collapse
Affiliation(s)
- L S Brown
- Department of Physiology & Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
29
|
Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 2001; 16:365-92. [PMID: 11031241 DOI: 10.1146/annurev.cellbio.16.1.365] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
Collapse
Affiliation(s)
- J L Spudich
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
30
|
Metzler DE, Metzler CM, Sauke DJ. Light and Life. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J Mol Biol 2000; 301:881-91. [PMID: 10966793 DOI: 10.1006/jmbi.2000.4008] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sensory rhodopsin II (also called phoborhodopsin) from the archaeal Natronobacterium pharaonis (pSRII) functions as a repellent phototaxis receptor. The excitation of the receptor by light triggers the activation of a transducer molecule (pHtrII) which has close resemblance to the cytoplasmic domain of bacterial chemotaxis receptors. In order to elucidate the first step of the signal transduction chain, the accessibility as well as static and transient mobility of cytoplasmic residues in helices F and G were analysed by electron paramagnetic resonance spectroscopy. The results indicate an outward tilting of helix F during the early steps of the photocycle which is sustained until the reformation of the initial ground state. Co-expression of pSRII with a truncated fragment of pHtrII affects the accessibility and/or the mobility of certain spin-labelled residues on helices F and G. The results suggest that these sites are located within the binding surface of the photoreceptor with its transducer.
Collapse
Affiliation(s)
- A A Wegener
- Max-Planck-Institut für Molekulare Physiologie, Otto Hahn-Str.11, Dortmund, D-44227, Germany
| | | | | | | |
Collapse
|