1
|
Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
2
|
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111:666-675. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS.
Collapse
Affiliation(s)
- Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Masoumeh Eslamifar
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran.
| | - Khadijeh Khezri
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran..
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Xu L, Yang H. Folate-Decorated Polyamidoamine Dendrimer Nanoparticles for Head and Neck Cancer Gene Therapy. Methods Mol Biol 2019; 1974:393-408. [PMID: 31099016 DOI: 10.1007/978-1-4939-9220-1_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene delivery systems have been developed on the basis of dendrimers and many other types of nanoparticle carriers, but few have been developed for head and neck squamous cell carcinomas (HNSCC). Herein, we describe the design and synthesis of fluorescently labeled, folic acid-decorated polyamidoamine (PAMAM) generation 4 (G4) dendrimer conjugates for HNSCC-targeted gene delivery. This delivery system comprises a dendrimer as the carrier that is conjugated with folic acid (FA) as HNSCC targeting moiety and imaging agents fluorescein isothiocyanate (FITC) or IRDye 800CW (NIR) for in vitro trafficking or bioimaging, respectively. By complexing with plasmid or siRNA, G4-FA/plasmid (or siRNA) significantly enhances gene transfection or knockdown efficiency in HNSCC cells. In a mouse xenograft model of HNSCC, this versatile G4-FA vector shows high biocompatibility, tumor targeting, high uptake, and sustained retention, making it a suitable platform for HNSCC gene therapy.
Collapse
Affiliation(s)
- Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Xu L, Cooper RC, Wang J, Yeudall WA, Yang H. Synthesis and Application of Injectable Bioorthogonal Dendrimer Hydrogels for Local Drug Delivery. ACS Biomater Sci Eng 2017; 3:1641-1653. [PMID: 29147682 DOI: 10.1021/acsbiomaterials.7b00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We developed novel dendrimer hydrogels (DH)s on the basis of bioorthogonal chemistry, in which polyamidoamine (PAMAM) dendrimer generation 4.0 (G4) functionalized with strained alkyne dibenzocyclooctyne (DBCO) via PEG spacer (Mn = 2,000 g/mol) underwent strain-promoted azide-alkyne cycloaddition (SPAAC) with polyethylene glycol bisazide (PEG-BA) (Mn= 20,000 g/mol) to generate a dendrimer-PEG cross-linked network. This platform offers a high degree of functionality and modularity. A wide range of structural parameters including dendrimer generation, degree of PEGylation, loading density of clickable DBCO groups, PEG-BA chain length as well as the ratio of clickable dendrimer to PEG-BA and their concentrations can be readily manipulated to tune chemical and physical properties of DHs. We used this platform to prepare an injectable liquid DH. This bioorthogonal DH exhibited high cytocompatibility and enabled sustained release of the anticancer drug 5-fluorouracil (5-FU). Following intratumoral injection, the DH/5-FU formulation significantly suppressed tumor growth and improved survival of HN12 tumor-bearing mice by promoting tumor cell death as well as by reducing tumor cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States
| | - Remy C Cooper
- Department of Biomedical Engineering, 601 West Main Street, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States
| | - W Andrew Yeudall
- Department of Oral Biology, Augusta University, 1120 15 Street, Augusta, Georgia 30912, United States.,Molecular Oncology and Biomarkers Program, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta University, Augusta, Georgia 30912, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States.,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States.,Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| |
Collapse
|
5
|
Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 2014; 5:2-13. [PMID: 24274162 DOI: 10.1021/cn400182z] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
Collapse
Affiliation(s)
- Leyuan Xu
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hao Zhang
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Yue Wu
- Department
of Biomedical Engineering, ‡Department of Mechanical and Nuclear Engineering, §Department of Chemical
and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|