1
|
Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Tsuji NM, Ohno T. Biodegradable Metal Ion-Doped Mesoporous Silica Nanospheres Stimulate Anticancer Th1 Immune Response in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43538-43544. [PMID: 29192493 DOI: 10.1021/acsami.7b16118] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Modern vaccines usually require accompanying adjuvants to increase the immune response to antigens. Aluminum (alum) compounds are the most commonly used adjuvants in human vaccinations for infection diseases. However, alum adjuvants are nondegradable, cause side effects due to the persistence of alum at injection sites, and are rather ineffective for cancer immunotherapy, which requires the Th1 immune response. Recently, we have shown that a plain mesoporous silica (MS) adjuvant can stimulate Th1 anticancer immunity for cancer vaccines. Herein, MS nanospheres doped with Ca, Mg, and Zn (MS-Ca, MS-Mg, and MS-Zn) showed significantly higher degradation rates than pure MS. Moreover, MS-Ca, MS-Mg, and MS-Zn nanospheres stimulated anticancer immune response and increased the CD4+ and CD8+ T cell populations in spleen. The MS-Ca, MS-Mg, and MS-Zn nanospheres with improved biodegradability and excellent ability to induce Th1 anticancer immunity show potential for clinical applications as cancer immunoadjuvants.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Xia Li
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsuo Ito
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yohei Watanabe
- Biomedical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Noriko M Tsuji
- Biomedical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tadao Ohno
- School of Life Dentistry at Tokyo, The Nippon Dental University , Fujimi, Chiyoda-ku, Tokyo 102-0071, Japan
| |
Collapse
|
2
|
Wang X, Li X, Ito A, Watanabe Y, Sogo Y, Hirose M, Ohno T, Tsuji NM. Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion. Colloids Surf B Biointerfaces 2016; 139:10-6. [DOI: 10.1016/j.colsurfb.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
|
3
|
Wang X, Li X, Ito A, Watanabe Y, Tsuji NM. Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo. Chem Commun (Camb) 2016; 52:7078-81. [DOI: 10.1039/c6cc02848a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rod-shaped and fluorine-substituted hydroxyapatite nanoparticles significantly increased the cellular uptake of a model antigen by BMDCs, improved antigen presentation, stimulated immune-related cytokine secretion, and enhanced the anti-cancer immunity.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Xia Li
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Atsuo Ito
- Health Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
- Japan
| | - Yohei Watanabe
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| | - Noriko M. Tsuji
- Immune Homeostasis Lab
- Biomedical Research Institute
- Department of Life Science and Biotechnology
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba
| |
Collapse
|