1
|
Zagst H, Elgert C, Behrends S, Wätzig H. Combination of strong anion exchange liquid chromatography with microchip capillary electrophoresis sodium dodecyl sulfate for rapid two-dimensional separations of complex protein mixtures. Anal Bioanal Chem 2022; 414:1699-1712. [PMID: 34870722 PMCID: PMC8761713 DOI: 10.1007/s00216-021-03797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022]
Abstract
Two-dimensional separations provide a simple way to increase the resolution and peak capacity of complex protein separations. The feasibility of a recently developed instrumental approach for two-dimensional separations of proteins was evaluated. The approach is based on the general principle of two-dimensional gel electrophoresis. In the first dimension, semi-preparative strong anion exchange high-performance liquid chromatography is utilized and fractions are collected by means of a fraction collector. They are subsequently analyzed in the second dimension with microchip capillary electrophoresis sodium dodecyl sulfate. Microchip capillary electrophoresis provides the necessary speed (approximately 1 min/fraction) for short analysis. In this study, three different samples were investigated. Different constructs of soluble guanylyl cyclase were expressed in Sf9-cells using the baculovirus expression system. Cell lysates were analyzed and the resulting separations were compared. In our experimental setup, the soluble guanylyl cyclase was identified among hundreds of other proteins in these cell lysates, indicating its potential for screening, process control, or analysis. The results were validated by immunoblotting. Samples from Chinese hamster ovary cell culture before and after a purification step were investigated and approximately 9% less impurities could be observed. The separation patterns obtained for human plasma are closely similar to patterns obtained with two-dimensional gel electrophoresis and a total of 218 peaks could be observed. Overall, the approach was well applicable to all samples and, based on these results, further directions for improvements were identified. .
Collapse
Affiliation(s)
- Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Christin Elgert
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Sönke Behrends
- Technische Universität Braunschweig, Institute of Pharmacology, Toxicology and Clinical Pharmacy, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Kumar R, Guttman A, Rathore AS. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 2021; 43:143-166. [PMID: 34591322 DOI: 10.1002/elps.202100182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Capillary electrophoresis (CE), after being introduced several decades ago, has carved out a niche for itself in the field of analytical characterization of biopharmaceutical products. It does not only offer fast separation, high resolution in miniaturized format, but equally importantly represents an orthogonal separation mechanism to high-performance liquid chromatography. Therefore, it is not surprising that CE-based methods can be found in all major pharmacopoeias and are recommended for the analysis of biopharmaceutical products during process development, characterization, quality control, and release testing. Different separation formats of CE, such as capillary gel electrophoresis, capillary isoelectric focusing, and capillary zone electrophoresis are widely used for size and charge heterogeneity characterization as well as purity and stability testing of therapeutic proteins. Hyphenation of CE with MS is emerging as a promising bioanalytical tool to assess the primary structure of therapeutic proteins along with any impurities. In this review, we confer the latest developments in capillary electrophoresis, used for the characterization of critical quality attributes of biopharmaceutical products covering the past 6 years (2015-2021). Monoclonal antibodies, due to their significant share in the market, have been given prioritized coverage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Andras Guttman
- Horváth Csaba Memorial Laboratories of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Kumar R, Shah RL, Ahmad S, Rathore AS. Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for analysis of host cell proteins in monoclonal antibody producing CHO cell line. Electrophoresis 2021; 42:735-741. [PMID: 33348443 DOI: 10.1002/elps.202000252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 11/05/2022]
Abstract
Host cell proteins (HCPs) are widely regarded as a critical quality attribute for a biotherapeutic product. Bottom up MS is the present gold standard for HCP analysis but suffers from incomplete protein identification due to complex nature of the HCP mixture and limited separation efficiency of the preceding LC-based systems. In this paper, we present for the first time an application involving use of LC-CE-MS/MS platform for analysis of HCPs. It has been demonstrated that the proposed platform has been able to successfully identify 397 HCPs from the supernatants of recombinant Chinese hamster ovary cells, twice and thrice the number of proteins identified by the state-of-the-art LC-MS/MS (189 HCPs) and CE-MS/MS (128 HCPs) analyses, respectively. Of these, 225 HCPs were unique to the LC-CE-MS/MS approach and were not identified by either LC-MS/MS or CE-MS/MS. It is observed that the LC-CE-MS/MS platform combines the benefits of LC-MS/MS and CE-MS/MS techniques and identifies peptides in a wider range of size, pI, and hydrophobicity. Additionally, LC-CE-MS/MS also identified more HCPs associated with cellular components, molecular functions, biological processes, peptidases, and secretory proteins. The proposed approach would thus be a useful addition in HCP analysis and secretome studies of mAb-producing Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohan L Shah
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Groves K, Cryar A, Cowen S, Ashcroft AE, Quaglia M. Mass Spectrometry Characterization of Higher Order Structural Changes Associated with the Fc-glycan Structure of the NISTmAb Reference Material, RM 8761. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:553-564. [PMID: 32008322 DOI: 10.1021/jasms.9b00022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As monoclonal antibodies (mAbs) rapidly emerge as a dominant class of therapeutics, so does the need for suitable analytical technologies to monitor for changes in protein higher order structure (HOS) of these biomolecules. Reference materials (RM) serve a key analytical purpose of benchmarking the suitability and robustness of both established and emerging analytical procedures for both drug producers and regulators. Here, two simple enzymatic protocols for generating Fc-glycan variants from the NISTmAb RM are described and both global and localized changes in HOS between the RM and these Fc-glycan variants are characterized using hydrogen deuterium exchange-mass spectrometry (HDX-MS) and ion mobility spectrometry-mass spectrometry (IMS-MS) measurements. An alternative statistical approach is described where measurement thresholds that differentiate between measurement variability and significant structural changes were established on the basis of experimental data. Measurements revealed decreases in structural stability correlating with the degree of Fc-glycan structure loss, especially at the CH2/CH3 domain interface. These data promote the use of this RM and these Fc-glycan variants for establishing the sensitivity of and validating analytical methods for the detection of HOS measurements of mAbs.
Collapse
Affiliation(s)
- Kate Groves
- LGC, Queens Road, Teddington TW11 0LY, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Adam Cryar
- LGC, Queens Road, Teddington TW11 0LY, UK
| | | | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
5
|
Nupur N, Rathore AS. Usability of NISTmAb reference material for biosimilar analytical development. Anal Bioanal Chem 2019; 411:2867-2883. [DOI: 10.1007/s00216-019-01735-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
|
6
|
Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem 2018; 410:2111-2126. [PMID: 29411091 PMCID: PMC5830484 DOI: 10.1007/s00216-018-0848-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022]
Abstract
Peptide mapping is a component of the analytical toolbox used within the biopharmaceutical industry to aid in the identity confirmation of a protein therapeutic and to monitor degradative events such as oxidation or deamidation. These methods offer the advantage of providing site-specific information regarding post-translational and chemical modifications that may arise during production, processing or storage. A number of such variations may also be induced by the sample preparation methods themselves which may confound the ability to accurately evaluate the true modification levels. One important focus when developing a peptide mapping method should therefore be the use of sample preparation conditions that will minimize the degree of artificial modifications induced. Unfortunately, the conditions that are amenable to effective reduction, alkylation and digestion are often the same conditions that promote unwanted modifications. Here we describe the optimization of a tryptic digestion protocol used for peptide mapping of the NISTmAb IgG1κ which addresses the challenge of balancing maximum digestion efficiency with minimum artificial modifications. The parameters on which we focused include buffer concentration, digestion time and temperature, as well as the source and type of trypsin (recombinant vs. pancreatic; bovine vs porcine) used. Using the optimized protocol we generated a peptide map of the NISTmAb which allowed us to confirm its identity at the level of primary structure. Graphical abstract Peptide map of the NISTmAb RM 8671 monoclonal antibody. Tryptic digestion was performed using an optimized protocol and followed by LC-UV-MS analysis. The trace represents the total ion chromatogram. Each peak was mapped to peptides identified using mass spectrometry data.
Collapse
Affiliation(s)
- Trina Mouchahoir
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - John E Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| |
Collapse
|
7
|
Turner A, Schiel JE. Qualification of NISTmAb charge heterogeneity control assays. Anal Bioanal Chem 2018; 410:2079-2093. [PMID: 29423598 PMCID: PMC5830499 DOI: 10.1007/s00216-017-0816-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/22/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
The NISTmAb is a monoclonal antibody Reference Material from the National Institute of Standards and Technology; it is a class-representative IgG1κ intended serve as a pre-competitive platform for harmonization and technology development in the biopharmaceutical industry. The publication series of which this paper is a part describes NIST's overall control strategy to ensure NISTmAb quality and availability over its lifecycle. In this paper, the development and qualification of methods for monitoring NISTmAb charge heterogeneity are described. Capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF) assays were optimized and evaluated as candidate assays for NISTmAb quality control. CIEF was found to be suitable as a structural characterization assay yielding information on the apparent pI of the NISTmAb. CZE was found to be better suited for routine monitoring of NISTmAb charge heterogeneity and was qualified for this purpose. This paper is intended to provide relevant details of NIST's charge heterogeneity control strategy to facilitate implementation of the NISTmAb as a test molecule in the end user's laboratory. Graphical Abstract Representative capillary zone electropherogram of the NIST monoclonal antibody (NISTmAb). The NISTmAb is a publicly available research tool intended to facilitate advancement of biopharmaceutical analytics.
Collapse
Affiliation(s)
- Abigail Turner
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
- Medimmune, LLC, 55 Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| | - John E Schiel
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA.
| |
Collapse
|