1
|
Mermans C, Dermauw W, Geibel S, Van Leeuwen T. Activity, selection response and molecular mode of action of the isoxazoline afoxolaner in Tetranychus urticae. PEST MANAGEMENT SCIENCE 2023; 79:183-193. [PMID: 36116012 DOI: 10.1002/ps.7187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Afoxolaner is a novel representative of the isoxazolines, a class of ectoparasiticides which has been commercialized for the control of tick and flea infestations in dogs. In this study, the biological efficacy of afoxolaner against the two-spotted spider mite Tetranychus urticae was evaluated. Furthermore, as isoxazolines are known inhibitors of γ-aminobutyric acid-gated chloride channels (GABACls), the molecular mode of action of afoxolaner on T. urticae GABACls (TuRdls) was studied using functional expression in Xenopus oocytes followed by two-electrode voltage-clamp (TEVC) electrophysiology, and results were compared with inhibition by fluralaner, fipronil and endosulfan. To examine the influence of known GABACl resistance mutations, H301A, I305T and A350T substitutions in TuRdl1 and a S301A substitution in TuRdl2 were introduced. RESULTS Bioasassays revealed excellent efficacy of afoxolaner against all developmental stages and no cross-resistance was found in a panel of strains resistant to most currently used acaricides. Laboratory selection over a period of 3 years did not result in resistance. TEVC revealed clear antagonistic activity of afoxolaner and fluralaner for all homomeric TuRdl1/2/3 channels. The introduction of single, double or triple mutations to TuRdl1 and TuRdl2 did not lower channel sensitivity. By contrast, both endosulfan and fipronil had minimal antagonistic activities against TuRdl1/2/3, and channels carrying single mutations, whereas the sensitivity of double and triple TuRdl1 mutants was significantly increased. CONCLUSIONS Our results demonstrate that afoxolaner is a potent antagonist of GABACls of T. urticae and has a powerful mode of action to control spider mites. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Catherine Mermans
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Sven Geibel
- CropScience Division, Bayer AG, Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops | Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Liu G, Zhou C, Zhang Z, Wang C, Luo X, Ju X, Zhao C, Ozoe Y. Novel insecticidal 1,6-dihydro-6-iminopyridazine derivatives as competitive antagonists of insect RDL GABA receptors. PEST MANAGEMENT SCIENCE 2022; 78:2872-2882. [PMID: 35396824 DOI: 10.1002/ps.6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The ionotropic γ-aminobutyric acid (GABA) receptor (iGABAR) is an important target for insecticides and parasiticides. Our previous studies showed that competitive antagonists (CAs) of insect iGABARs have the potential to be used for developing novel insecticides and that the structural modification of gabazine (a representative CA of mammalian iGABARs) could lead to the identification of novel CAs of insect iGABARs. RESULTS In the present study, a novel series of 1,3-di- and 1,3,5-trisubstituted 1,6-dihydro-6-iminopyridazines (DIPs) was designed using a versatile strategy and synthesized using facile methods. Electrophysiological studies showed that several target DIPs (30 μM) exhibited excellent antagonistic activities against common cutworm and housefly iGABARs consisting of RDL subunits. The IC50 values of 3-(4-methoxyphenyl), 3-(4-trifluoromethoxyphenyl), 3-(4-biphenylylphenyl), 3-(2-naphthyl), 3-(3,4-methylenedioxyphenyl), and 3,5-(4-methoxyphenyl) analogs ranged from 2.2 to 24.8 μM. Additionally, several 1,3-disubstituted DIPs, especially 3-(4-trifluoromethoxyphenyl) and 3-(3,4-methylenedioxyphenyl) analogs, exhibited moderate insecticidal activity against common cutworm larvae, with >60% mortality at a concentration of 100 mg kg-1 . Molecular docking studies showed that the oxygen atom on the three-substituted aromatic ring could form a hydrogen bond with Arg254, which may enhance the activity of these DIPs against housefly iGABARs. CONCLUSION This systematic study indicated that the presence of a carboxyl side chain shorter by one methylene than that of gabazine at the 1-position of the pyridazine ring is effective for maintaining the stable binding of these DIPs in insect iGABARs. Our study provides important information for the design of novel insect iGABAR CAs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Congwei Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Zhisong Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, PR China
| | - Chunqing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| |
Collapse
|
3
|
Marcombe S, Thammavong P, Luangamath P, Chonephetsarath S, Phommavanh N, Lakeomany K, Nilaxay S, Rahmani Z, Saverton PJ, Abdullateef OH, Forward J, Jacob AE, Khadam S, Ali W, Boer C, Kakinuma H, Hawkins J, Longstreeth R, Portwood NM, Smee M, Brown N, Kuyucu NC, Lechmere S, Stieger G, Maithaviphet S, Nambanya S, Brey PT, Jones AK. Malaria and Dengue Mosquito Vectors from Lao PDR Show a Lack of the rdl Mutant Allele Responsible for Cyclodiene Insecticide Resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:815-823. [PMID: 31807752 DOI: 10.1093/jme/tjz227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The gamma-aminobutyric acid (GABA) receptor, RDL, plays important roles in neuronal signaling and is the target of highly effective insecticides. A mutation in RDL, commonly A296S, underlies resistance to several insecticides such as cyclodienes. Even though the use of cyclodienes has been banned, the occurrence of mutations substituting A296 is notably high in mosquitoes from several countries. Here, we report a survey investigating the prevalence of the Rdl mutant allele in mosquitoes from Laos, a country where mosquito-borne diseases such as malaria and dengue fever are health concerns. Anopheles and Aedes mosquitoes were collected from 12 provinces in Laos. Adult bioassays on Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) showed that all the populations tested were susceptible to dieldrin (4%) following WHO protocols. Exon 7 from a total of 791 mosquitoes was sequenced to identify the amino acid encoded for at 296 of RDL. Only one of these mosquitoes, Anopheles maculatus rampae Harbach and Somboon (Diptera: Culicidae) from Attapeu, carried the mutant allele being heterozygous for A296S. We therefore found a general lack of the Rdl mutant allele indicating that mosquitoes from Laos are not exposed to insecticides that act on the GABA receptor compared to mosquitoes in several other countries. Identifying the prevalence of the Rdl mutation may help inform the potential use of alternative insecticides that act on the GABA receptor should there be a need to replace pyrethroids in order to prevent/manage resistance.
Collapse
Affiliation(s)
- Sebastien Marcombe
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Phoutmany Thammavong
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Phonesavanh Luangamath
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | | | - Nothasin Phommavanh
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Khaitong Lakeomany
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Somphat Nilaxay
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Zuhal Rahmani
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Penelope J Saverton
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Omobolanle H Abdullateef
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Jordan Forward
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Anna E Jacob
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Safina Khadam
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Wlaa Ali
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Chloé Boer
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Hayato Kakinuma
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Joseph Hawkins
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Rosie Longstreeth
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Natalie M Portwood
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Madeleine Smee
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Natasha Brown
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Nursu C Kuyucu
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Susannah Lechmere
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Gabriela Stieger
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Santi Maithaviphet
- Center for Malariology, Parasitology and Entomology, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Simone Nambanya
- Center for Malariology, Parasitology and Entomology, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Paul T Brey
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| |
Collapse
|
4
|
Liu G, Wu Y, Gao Y, Ju X, Ozoe Y. Potential of Competitive Antagonists of Insect Ionotropic γ-Aminobutyric Acid Receptors as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4760-4768. [PMID: 32243147 DOI: 10.1021/acs.jafc.9b08189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionotropic γ-aminobutyric acid (GABA) receptors (GABARs) represent an important insecticide target. Currently used GABAR-targeting insecticides are non-competitive antagonists (NCAs) of these receptors. Recent studies have demonstrated that competitive antagonists (CAs) of GABARs have functions of inhibiting insect GABARs similar to NCAs and that they also exhibit insecticidal activity. CAs have different binding sites and different mechanisms of action compared to those of NCAs. Therefore, GABAR CAs should have the potential to be developed into novel insecticides, which could be used to overcome the developed resistance of insect pests to conventional NCA insecticides. Although research on insect GABAR CAs has lagged behind that on mammalian GABAR CAs, research on the CAs of insect ionotropic GABARs has made great progress in recent years, and several series of heterocyclic compounds, such as 3-isoxazolols and 6-iminopyridazines, have been identified as insect GABAR CAs. In this review, we briefly summarize the design strategies, structures, and biological activities of the novel GABAR CAs that have been found in the past decade. Updated information about GABAR CAs may benefit the design and development of novel GABAR-targeting insecticides.
Collapse
Affiliation(s)
- Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Yoshihisa Ozoe
- Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
5
|
Kita T, Mino H, Ozoe F, Ozoe Y. Spatiotemporally different expression of alternatively spliced GABA receptor subunit transcripts in the housefly Musca domestica. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21541. [PMID: 30821008 DOI: 10.1002/arch.21541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Insect γ-aminobutyric acid (GABA) receptors are important as major inhibitory neurotransmitter receptors and targets for insecticides. The housefly GABA receptor subunit gene MdRdl is alternatively spliced at exons 3 (a or b) and 6 (c or d) to yield the variants of ac, ad, bc, and bd combinations. In the present study, the expression of the MdRdl transcript in the body parts and in the developmental stages of the housefly Musca domestica was examined by quantitative polymerase chain reaction using specific primers that amplify the combinations of alternative exons. The results indicated that the transcripts of MdRdl, including four combinations, were highly expressed in the adult stage. MdRdlbd was the most abundant in the adult head. The expression pattern did not change in the adult stage over 7 days after eclosion. The expression level of the MdRdl bd transcript in the female head was similar to that of the male head. In contrast, MdRdl bc was the predominant transcript in the pupal head and the adult leg. Because the homomeric Rdl bc GABA receptor has a high affinity for GABA, our results provide grounds for designing agonist or competitive-antagonist insecticides that target the orthosteric site of the GABA receptor containing this Rdl variant.
Collapse
Affiliation(s)
- Tomo Kita
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Hayata Mino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Fumiyo Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| | - Yoshihisa Ozoe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|