1
|
Kabir S, Hossain MAA, Jahan I, Ahmed B, Malik A, Goni MA, Hoque MA, Anis-Ul-Haque KM. Exploration of the micellization behavior of sodium dodecyl sulfate in aqueous solution of gastric enzyme pepsin: Assessment of the consequences of sodium electrolytes and temperature. Int J Biol Macromol 2025; 291:138990. [PMID: 39716714 DOI: 10.1016/j.ijbiomac.2024.138990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
This study explores the interactions between pepsin and sodium dodecyl sulfate (SDS) using conductometric analysis and molecular docking to deepen our understanding of the role of pepsin. Conductometric studies were conducted to examine the micellization behavior of SDS with pepsin in aqueous solutions of various sodium electrolytes (NaBr, Na₂SO₄, Na₃PO₄, and CH₃COONa) at temperatures ranging from 300.55 K to 320.55 K in 5 K increments. The critical micelle concentration (CMC) of the SDS-pepsin system was influenced by pepsin concentration, electrolyte type, and temperature. Pepsin was found to inhibit SDS micellization, increasing the CMC, while electrolytes promoted micellization, decreasing the CMC. Thermodynamic parameters-Gibbs free energy (∆Gm0), enthalpy (∆Hm0), and entropy (∆Sm0)-were analyzed to identify the driving forces behind micellization. The negative ∆Gm0 indicated spontaneous aggregation, with ∆Hm0 and ∆Sm0 suggesting hydrophobic and electrostatic interactions. Molecular docking further confirmed these interactions, revealing binding between the hydrophobic tail of SDS and nonpolar binding pocket of pepsin at the interdomain cleft. These findings provide insights into surfactant-enzyme interactions, with potential applications in biochemistry, pharmacology, and food science.
Collapse
Affiliation(s)
- Shahanaz Kabir
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Al Amin Hossain
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Israt Jahan
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Bulbul Ahmed
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Ajamaluddin Malik
- Department of Biochemistry, Collage of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Md Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117, USA
| | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - K M Anis-Ul-Haque
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
2
|
Hjalte J, Diehl C, Leung AE, Poon JF, Porcar L, Dalgliesh R, Sjögren H, Wahlgren M, Sanchez-Fernandez A. Modulating protein unfolding and refolding via the synergistic association of an anionic and a nonionic surfactant. J Colloid Interface Sci 2024; 672:244-255. [PMID: 38838632 DOI: 10.1016/j.jcis.2024.05.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
HYPOTHESIS Nonionic surfactants can counter the deleterious effect that anionic surfactants have on proteins, where the folded states are retrieved from a previously unfolded state. However, further studies are required to refine our understanding of the underlying mechanism of the refolding process. While interactions between nonionic surfactants and tightly folded proteins are not anticipated, we hypothesized that intermediate stages of surfactant-induced unfolding could define new interaction mechanisms by which nonionic surfactants can further alter protein conformation. EXPERIMENTS In this work, the behavior of three model proteins (human growth hormone, bovine serum albumin, and β-lactoglobulin) was investigated in the presence of the anionic surfactant sodium dodecylsulfate, the nonionic surfactant β-dodecylmaltoside, and mixtures of both surfactants. The transitions occurring to the proteins were determined using intrinsic fluorescence spectroscopy and far-UV circular dichroism. Based on these results, we developed a detailed interaction model for human growth hormone. Using nuclear magnetic resonance and contrast-variation small-angle neutron scattering, we studied the amino acid environment and the conformational state of the protein. FINDINGS The results demonstrate the key role of surfactant cooperation in defining the conformational state of the proteins, which can shift away or toward the folded state depending on the nonionic-to-ionic surfactant ratio. Dodecylmaltoside, initially a non-interacting surfactant, can unexpectedly associate with sodium dodecylsulfate-unfolded proteins to further impact their conformation at low nonionic-to-ionic surfactant ratio. When this ratio increases, the protein begins to retrieve the folded state. However, the native conformation cannot be fully recovered due to remnant surfactant molecules still adsorbed to the protein. This study demonstrates that the conformational landscape of the protein depends on a delicate interplay between the surfactants, ultimately controlled by the ratio between them, resulting in unpredictable changes in the protein conformation.
Collapse
Affiliation(s)
- Johanna Hjalte
- Food Technology, Engineering and Nutrition, Lund University, Box 124, 221 00 Lund, Sweden
| | - Carl Diehl
- SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden
| | - Anna E Leung
- European Spallation Source, Box 176, 221 00 Lund, Sweden
| | - Jia-Fei Poon
- Food Technology, Engineering and Nutrition, Lund University, Box 124, 221 00 Lund, Sweden; European Spallation Source, Box 176, 221 00 Lund, Sweden
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Rob Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Helen Sjögren
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, 2770 Kastrup, Denmark
| | - Marie Wahlgren
- Food Technology, Engineering and Nutrition, Lund University, Box 124, 221 00 Lund, Sweden
| | - Adrian Sanchez-Fernandez
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain.
| |
Collapse
|
3
|
Nickerson JL, Sheridan LV, Doucette AA. Impact of Surfactants on Cumulative Trypsin Activity in Bottom-Up Proteome Analysis. J Proteome Res 2024; 23:3542-3551. [PMID: 38973097 DOI: 10.1021/acs.jproteome.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Trypsin digestion plays a pivotal role in successful bottom-up peptide characterization and quantitation. While denaturants are often incorporated to enhance protein solubility, surfactants are recognized to inhibit enzyme activity. However, several reports have suggested that incorporating surfactants or other solvent additives may enhance digestion and MS detection. Here, we assess the impacts of ionic surfactants on cumulative trypsin activity and subsequently evaluate the total digestion efficiency of a proteome mixture by quantitative MS. Although low surfactant concentrations, such as 0.01% SDS or 0.2% SDC, significantly enhanced the initial trypsin activity (by 14 or 42%, respectively), time course assays revealed accelerated enzyme deactivation, evident by 10- or 40-fold reductions in trypsin activity half-life at these respective surfactant concentrations. Despite enhanced initial tryptic activity, quantitative MS analysis of a common liver proteome extract, digested with various surfactants (0.01 or 0.1% SDS, 0.5% SDC), consistently revealed decreased peptide counts and signal intensity, indicative of a lower digestion efficiency compared to a nonsurfactant control. Furthermore, including detergents for digestion did not improve the detection of membrane proteins, nor hydrophobic peptides. These results stress the importance of assessing cumulative enzyme activity when optimizing the digestion of a proteome mixture, particularly in the presence of denaturants.
Collapse
Affiliation(s)
- Jessica L Nickerson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Allumiqs Corporation, Halifax, Nova Scotia B3H 0A8, Canada
| | - Liam V Sheridan
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
4
|
Das S, Roy P, Sardar PS, Ghosh S. Addressing the interaction of stem bromelain with different anionic surfactants, below, at and above the critical micelle concentration (cmc) in phosphate buffer at pH 7: Physicochemical, spectroscopic, & molecular docking study. Int J Biol Macromol 2024; 271:132368. [PMID: 38761912 DOI: 10.1016/j.ijbiomac.2024.132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The structural stability and therapeutic activity of Stem Bromelain (BM) have been explored by unravelling the interaction of stem BM in presence of two different types of anionic surfactants namely, bile salts, NaC and NaDC and the conventional anionic surfactants, SDDS and SDBS, below, at and above the critical micelle concentration (cmc) in aqueous phosphate buffer of pH 7. Different physicochemical parameters like, surface excess (Γcmc), minimum area of surfactants at air water interface (Amin) etc. are calculated from tensiometry both in absence and presence of BM. Several inflection points (C1, C2 and C3) have been found in tensiometry profile of surfactants in presence of BM due to the conformational change of BM assisted by surfactants. Similar observation also found in isothermal titration calorimetry (ITC) profiles where the enthalpy of micellization (ΔH0obs) of surfactants in absence and presence of BM have calculated. Further, steady state absorption and fluorescence spectra monitoring the tryptophan (Trp) emission of free BM and in presence of all the surfactants at three different temperatures (288.15 K, 298.15 K, and 308.15 K) reveal the nature of fluorescence quenching of BM in presence of bile salts/surfactants. Time resolved fluorescence studies at room temperature also support to determine the several quenching parameters. The binding constant (Kb) of BM with all the surfactants and free energy of binding (∆G0 of bile salts/surfactants with BM at different temperatures have been calculated exploiting steady state fluorescence technique. It is observed that, the binding of NaC with BM is greater as compared to other surfactants while Stern-Volmer quenching constant (KSV) is found greater in presence of SDBS as compared with others which supports the surface tension and ITC data with the fact that surface activity of surfactant(s) is decreasing with the binding of the surfactants at the core or binding pocket of BM. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C3, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS which also supports the more involvement of bile salts in binding rather than surfactants. The molecular docking studies have also been substantiated for better understanding the several experimental investigations interaction of BM with the bile salts/surfactants.
Collapse
Affiliation(s)
- Sourav Das
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India; Department of Chemistry, The Bhawanipur Education Society College, Kolkata 700020, India
| | - Pritam Roy
- Laboratory of Molecular Bacteriology (Rega Institute), University: Katholieke Universiteit Leuven (KU Leuven), Herestraat 49, Leuven 3000, Belgium
| | - Pinki Saha Sardar
- Department of Chemistry, The Bhawanipur Education Society College, Kolkata 700020, India.
| | - Soumen Ghosh
- Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
5
|
Hossain MAA, Islam T, Joy MTR, Kowser Z, Ahmed MZ, Rehman MT, AlAjmi MF, Mahbub S, Goni MA, Hoque MA, Kabir SE. Interaction between gastric enzyme pepsin and tetradecyltrimethylammonium bromide in presence of sodium electrolytes: Exploration of micellization behavior. Int J Biol Macromol 2023; 253:127478. [PMID: 37866567 DOI: 10.1016/j.ijbiomac.2023.127478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Pepsin is a proteolytic enzyme used in the treatment of digestive disorders. In this study, we investigated the physicochemical properties of the tetradecyltrimethylammonium bromide (TTAB) and pepsin protein mixture in various sodium salt media within a temperature range of 300.55-320.55 K with 5 K intervals. The conductometric study of the TTAB+pepsin mixture revealed a reduction in the critical micelle concentration (CMC) in electrolyte media. The micellization of TTAB was delayed in the presence of pepsin. The CMC of the TTAB + pepsin mixture was found to depend on the concentrations of electrolytes and protein, as well as the temperature variations. The aggregation of the TTAB+pepsin mixture was hindered as a function of [pepsin] and increasing temperatures, while micellization was promoted in aqueous electrolyte solutions. The negative free energy changes (∆Gm0) indicated the spontaneous aggregation of the TTAB+pepsin mixture. Changes in enthalpy, entropy, molar heat capacities, transfer properties, and enthalpy-entropy compensation variables were calculated and illustrated rationally. The interaction forces between TTAB and pepsin protein in the experimental solvents were primarily hydrophobic and electrostatic (ion-dipole) in nature. An analysis of molecular docking revealed hydrophobic interactions as the main stabilizing forces in the TTAB-pepsin complex.
Collapse
Affiliation(s)
- Md Al Amin Hossain
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tamanna Islam
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tuhinur R Joy
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Zannatul Kowser
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shamim Mahbub
- Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| | - Md Abdul Goni
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC 29117, USA
| | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Shariff E Kabir
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| |
Collapse
|
6
|
Banjare BS, Banjare MK. Impact of carbocyclic sugar-based myo-inositol on conventional surfactants. J Mol Liq 2023; 384:122278. [DOI: 10.1016/j.molliq.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
7
|
Fatma I, Sharma V, Ahmad Malik N, Assad H, Cantero-López P, Sánchez J, López-Rendón R, Yañez O, Chand Thakur R, Kumar A. Influence of HSA on micellization of NLSS and BC: An experimental-theoretical approach of its binding characteristics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Halder S, Aggrawal R, Jana S, Saha SK. Binding interactions of cationic gemini surfactants with gold nanoparticles-conjugated bovine serum albumin: A FRET/NSET, spectroscopic, and docking study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 225:112351. [PMID: 34763228 DOI: 10.1016/j.jphotobiol.2021.112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022]
Abstract
This work demonstrates binding interactions of two cationic gemini surfactants, 12-4-12,2Br- and 12-8-12,2Br- with gold nanoparticles (AuNPs)-conjugated bovine serum albumin (BSA) presenting binding isotherms from specific binding to saturation binding regions of surfactants. The binding isotherm has been successfully constructed using Förster's resonance energy transfer (FRET) and nanometal surface energy transfer (NSET) parameters calculated based on fluorescence quenching of donor, tryptophan (Trp) residue by acceptor, AuNP. Energy transfer efficiency (ET) changes due to alteration in the donor-acceptor distance when surfactants interact with bioconjugates. A solid reverse relationship between α-helix and β-turn contents of BSA-AuNPs-conjugates is noted while interacting with surfactants. 12-8-12,2Br- shows stronger binding interactions with BSA-bioconjugates than 12-4-12,2Br-. The effect of bioconjugation on secondary/tertiary structures of BSA in the absence and presence of a surfactant is studied through circular dichroism, fluorescence, and Fourier transform infrared spectroscopic measurements. Motional restrictions imposed by AuNPs on Trp residues of folded and unfolded BSA have been investigated using red edge emission shift (REES) measurements. Finally, the molecular docking results present the modes of interactions of 12-4-12,2Br- and 12-8-12,2Br-, and Au-nanoclusters (Au92) with BSA. An approach to describe the binding isotherms of surfactants using AuNPs-bioconjugates as optical-based molecular ruler and possible effects of AuNPs on microenvironment and conformations of the protein is presented.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Srabanti Jana
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior 474005, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
9
|
Fatma I, Sharma V, Thakur RC, Kumar A. Current trends in protein-surfactant interactions: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Wang J, Yu X, Zheng X. Influence of zinc doping on the molecular biocompatibility of cadmium-based quantum dots: Insights from the interaction with trypsin. Chem Biol Interact 2021; 351:109716. [PMID: 34688612 DOI: 10.1016/j.cbi.2021.109716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the "one-pot" method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn2+ QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| |
Collapse
|
11
|
Tesmar A, Kogut MM, Żamojć K, Grabowska O, Chmur K, Samsonov SA, Makowska J, Wyrzykowski D, Chmurzyński L. Physicochemical nature of sodium dodecyl sulfate interactions with bovine serum albumin revealed by interdisciplinary approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Zhang J, Wang C, Zhang F, Lin W. Anionic surfactant sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen by ultrasensitive microcalorimetry. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00063-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
In this communication, sulfate dodecyl sodium (SDS)-induced thermodynamics and conformational changes of collagen were studied. We used ultrasensitive differential scanning calorimetry (US-DSC) to directly monitor the thermal transition of collagen in the presence of SDS. The results show that SDS affects the conformation and thermal stability of collagen very differently depending on its concentrations. At CSDS ≤ 0.05 mM, the enhanced thermal stability of collagen indicates the stabilizing effect by SDS. However, a further increase of SDS leads to the denaturation of collagen, verifying the well-known ability of SDS to unfold proteins. This striking difference in thermodynamics and conformational changes of collagen caused by SDS concentrations can be explained in terms of their interactions. With increasing SDS, the binding of SDS to collagen can be dominated by electrostatic interaction shifting to hydrophobic interaction, and the latter plays a key role in loosening and unfolding the triple-helix structure of collagen. The important finding in the present study is the stabilizing effect of SDS on collagen molecules at extreme low concentration.
Graphical abstract
Collapse
|
13
|
Zhou Y, Huang L, Yang B, He C, Xu B. Contrastive Study of the Foaming Properties of N-Acyl Amino Acid Surfactants with Bovine Serum Albumin and Gelatin. J Oleo Sci 2021; 70:807-816. [PMID: 33967168 DOI: 10.5650/jos.ess20313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A detailed study on the foamability, foam stability, foam liquid-carrying capacity, and foam morphology of two N-acyl amino acid surfactants with bovine serum albumin (BSA) and gelatin were performed by foam scanning. The results showed that the foamability of the mixed system increased gradually and then tended to be stable with increasing surfactant concentration. The foamability of the high-concentration BSA system was stronger than that of the low-concentration BSA system. The foamability and foam stability of sodium N-lauroyl phenylpropanoic acid (N-C12P)/BSA were better than those of sodium N-lauroyl propylamino acid (N-C12A)/BSA, and the foamability and foam stability of N-C12A/gelatin was better than those of N-C12P/gelatin. The liquid-carrying capacity of the foam initially increased and then decreased with increasing time, and the maximum liquid-carrying capacity increased with increasing surfactant concentration. When the concentration of the surfactant was 8 mM, the drainage rate of N-C12A/protein was higher than that of N-C12P/protein. The morphology of the bubble gradually changed from spherical to polyhedron and the number of bubbles gradually decreased with time increasing. Differences in surfactant structure and protein type had an important effect on the number and area of foam.
Collapse
Affiliation(s)
- Yawen Zhou
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University
| | - Luyang Huang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University
| | - Bo Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University
| | - Chengxuan He
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University
| | - Baocai Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University
| |
Collapse
|
14
|
Kumar Singh Tanwar L, Kumar Banjare M, Sharma S, Ghosh KK. Physicochemical studies on the micellization of anionic surfactants in the presence of long alkyl chain ionic liquid. Chem Phys Lett 2021; 769:138399. [DOI: 10.1016/j.cplett.2021.138399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kumar Singh Tanwar L, Kumar Banjare M, Sharma S, Ghosh KK. Physicochemical studies on the micellization of anionic surfactants in the presence of long alkyl chain ionic liquid. Chem Phys Lett 2021; 769:138399. [DOI: https:/doi.org/10.1016/j.cplett.2021.138399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
16
|
Najar MH, Chat OA, Bhat PA, Mir MA, Rather GM, Dar AA. Structural changes in trypsin induced by the bile salts: An effect of amphiphile hydrophobicity. Int J Biol Macromol 2021; 180:121-128. [PMID: 33713773 DOI: 10.1016/j.ijbiomac.2021.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023]
Abstract
The present study reports the multi-technique results of the interaction of a series of bile salts, sodium cholate (NaC), sodium taurocholate (NaTC), sodium deoxycholate (NaDC), and sodium taurodeoxycholate (NaTDC) with trypsin under the experimental conditions of 25 °C and pH 7.0. The interactions between trypsin and the bile salts were characterized by the surface tension measurements and various spectroscopic techniques like UV-Visible absorption, steady-state fluorescence, and circular dichroism. The results of surface tension measurements reveal a strong interaction of trypsin (50 μM) with the increasing concentration of bile salts, being higher with the bile salt of greater hydrophobicity. The critical aggregation concentration of bile salts in the presence of trypsin (C1) showed that the bile salts interact strongly with the trypsin in the order of NaTDC > NaDC > NaTC > NaC. UV-visible, steady-state fluorescence, and circular dichroism spectroscopic results confirmed significant unfolding of trypsin due to its interaction with the bile salts, the extent of which followed the same sequence as observed in the surface tension results. It could be concluded that the hydrophobic bile salts that show lower C1 values and have less delocalized charge, are more effective in unfolding the trypsin. The study would help understand the hydrophobicity-driven unfolding of proteins aided by biological surfactants like bile salts and help devise efficient proteolytic enzyme-based detergent formulations and understand the role of such amphiphiles as antimicrobial agents.
Collapse
Affiliation(s)
| | - Oyais Ahmad Chat
- Department of Chemistry, Government Degree College Kupwara, J&K 193222, India.
| | - Parvaiz Ahmad Bhat
- Department of Chemistry, Government Degree College Pulwama, J&K 192301, India
| | - Mohammad Amin Mir
- Department of Chemistry, Government Degree College Pulwama, J&K 192301, India
| | - Ghulam Mohamamd Rather
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, J&K 190006, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar, J&K 190006, India.
| |
Collapse
|
17
|
Ma H, Zou T, Li H, Cheng H. The interaction of sodium dodecyl sulfate with trypsin: Multi-spectroscopic analysis, molecular docking, and molecular dynamics simulation. Int J Biol Macromol 2020; 162:1546-1554. [PMID: 32781131 DOI: 10.1016/j.ijbiomac.2020.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
The bioactivity of enzymes is sensitive to certain factors in their application environment, such as the pH, temperature, ionic strength, and additives, which can alter the native conformation of enzymes. To determine the mechanism by which the interaction of SDS influences the structure and activity of trypsin, molecular docking, molecular dynamics simulations, DSC, and multi-spectroscopic measures including UV absorption, fluorescence, and circular dichroism were used. The results show that the hydrolytic activity towards casein could be dramatically restrained by SDS. UV absorption, CD, and fluorescence spectra demonstrated the formation of a trypsin-SDS complex. Thermodynamic parameters and molecular docking data revealed that the binding process was spontaneous, and that the main binding forces between SDS and trypsin were hydrogen bonds and van der Waals forces. In addition, molecular docking predicted that the binding site of SDS on trypsin was located at the active center. Molecular dynamic simulations showed that treatment with SDS resulted in the structure of trypsin becoming unstable and unfolded near its active center. This work provides insights into the interaction of SDS with trypsin on the molecular level and is beneficial to understanding of how SDS affects the conformation and activity of trypsin in application processes.
Collapse
Affiliation(s)
- Haichuan Ma
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ting Zou
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - He Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
| | - Haiming Cheng
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
18
|
Peng YY, Liao YF, Gan W, Tong QX, Yuan QH. Hydroxyl group modifies aggregation behavior of a non-ionic hydro-fluorocarbon hybrid surfactant by disrupting interfacial water. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ying-ying Peng
- Flexible Printed Electronics Technology Center, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Department of Chemistry, and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yi-fan Liao
- Department of Chemistry, and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wei Gan
- Flexible Printed Electronics Technology Center, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qing-xiao Tong
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qun-hui Yuan
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
19
|
Li X, Huo M, Zhao L, Cao Z, Xu M, Wan J, Niu Q, Huo C, Tang J, Liu R. Study of the effects of ultrafine carbon black on the structure and function of trypsin. J Mol Recognit 2020; 34:e2874. [DOI: 10.1002/jmr.2874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Mengling Huo
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Lining Zhao
- College of Life Sciences Hebei University Baoding PR China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering Shandong University Jinan PR China
| | - Mengchen Xu
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Chenqian Huo
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering Nankai University Tianjin PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China—America CRC for Environment & Health Shandong University Qingdao PR China
| |
Collapse
|
20
|
Pathania L, Chauhan S. Modulation in Aggregation Behavior of Cationic Surfactant in Presence of Fluoroquinolone Drug: A Physicochemical Approach. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lalita Pathania
- Department of ChemistryHimachal Pradesh University Summer Hill Shimla 171005 India
| | - Suvarcha Chauhan
- Department of ChemistryHimachal Pradesh University Summer Hill Shimla 171005 India
| |
Collapse
|
21
|
Mondal S, Banerjee A, Das B. Spectroscopic and interfacial investigation on the interaction of hemoglobin with conventional and ionic liquid surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Srivastava R, Alam MS. Influence of micelles on protein's denaturation. Int J Biol Macromol 2020; 145:252-261. [PMID: 31874269 DOI: 10.1016/j.ijbiomac.2019.12.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/05/2019] [Accepted: 12/17/2019] [Indexed: 11/15/2022]
Abstract
To evaluate the role of micelles for protein-surfactant interaction, we have studied the binding modes of serum albumin proteins (human (HSA) and rabbit (RSA)) with anionic-surfactant, sodium dodecyl sulfate (SDS) by using UV-visible, fluorescence, circular dichroism, fluorescence lifetime, atomic force microscopy (AFM) techniques. The study performed with three different pHs (below (4.0), at (4.7), and above (7.0) isoelectric point). Hydrocarbon chain of the surfactant, dominant role of hydrophobic forces and electrostatic interactions helped in polar interaction on protein on binding surfaces. The change above and below the critical micelle concentration (CMC) in fluorescence spectra was due to polarity of the microenvironment. The CD spectra different binding aspects as below CMC and above CMC, explain about folding and unfolding in secondary structure. Surfactant's binding induces fluctuations in the microenvironment of aromatic amino acid's residues of both proteins at different pHs. AFM images clarify the structural changes in both proteins (HSA & RSA). AFM images also indicate some different interesting conformational and structural changes in both proteins below/above the CMC of the surfactant. The molecular docking studies indicate the binding energy -4.8 kcal mol-1 and -4.7 kcal mol-1 for HSA-SDS and RSA-SDS, respectively. Structural changes can be seen above and below the CMC.
Collapse
Affiliation(s)
- Rachana Srivastava
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India
| | - Md Sayem Alam
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
23
|
Ishtikhar M, Siddiqui Z, Husain FM, Khan RA, Hassan I. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117510. [PMID: 31520999 DOI: 10.1016/j.saa.2019.117510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we report the cooperative refolding/renaturation behaviour of guanidinium hydrochloride (GdnHCl) denatured bovine serum albumin (BSA) in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecyl sulphate (SDS) and their catanionic mixture in the solution of 60 mM sodium phosphate buffer of physiological pH 7.4, using artificial chaperone-assisted two-step method. Here, we have employed biophysical techniques to characterize the refolding mechanism of denatured BSA after 200 times of dilution in the presence of cationic, anionic surfactants and their catanionic mixture, separately. We have found that minimum refolding of diluted BSA in the presence of 1:1 rational mixture of CTAB and SDS (CTAB/SDS = 50/50), it may be due to the micelles formation which is responsible for the unordered microstructure aggregate formation. Other mixtures (CTAB/SDS = 20/80 and 80/20) slightly played an effective role during refolding process in the presence of methyl-β-cyclodextrin. On other hand, CTAB and SDS are more effective and reflect a good renaturation tendency of denatured BSA solution separately and in existence of methyl-β-cyclodextrin as compare to their mixture compositions. But overall, CTAB has the better renaturation tendency as compare to SDS in the existence of methyl-β-cyclodextrin. These results ascribed the presence of charge head group and length of hydrophobic tail of CTAB surfactant that plays an important task during electrostatic and hydrophobic interactions at pH 7.4 at which BSA carries negative charge on their surface. These biophysical parameters suggest that, CTAB surfactant assisted artificial chaperone protocol may be utilized in the protein renaturation/refolding studies, which may address the associated problems of biotechnological industries for the development of efficient and inexpensive folding aides, which may also be used to produced genetically engineered cells related diseases, resulting from protein misfolding/aggregation.
Collapse
Affiliation(s)
- Mohd Ishtikhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Hirlekar S, Ray D, Aswal VK, Prabhune A, Nisal A, Ravindranathan S. Silk Fibroin-Sodium Dodecyl Sulfate Gelation: Molecular, Structural, and Rheological Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14870-14878. [PMID: 31625756 DOI: 10.1021/acs.langmuir.9b02402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A gelling agent is necessary to accelerate sol to gel transition in an aqueous solution of silk fibroin (SF), which otherwise takes several days to complete. In this paper, we investigate the mechanism of gelation of Bombyx mori SF by a model anionic surfactant, sodium dodecyl sulfate (SDS). Even though interactions between SDS and proteins have been extensively investigated, most of these studies have focused on globular proteins, which undergo denaturation. The interaction with a fibrous protein such as SF is different and results in an altered secondary structure leading to gelation. In this work, the concentration-dependent gelation process of the SF-SDS system is examined using rheology, SANS, FTIR, and NMR. We observed preferential binding of SDS to specific regions on the SF chain, which aids structural changes favoring β-sheet formation. We propose a mechanism for the accelerated sol-gel transition in the SF-SDS system.
Collapse
Affiliation(s)
| | - Debes Ray
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | - Vinod K Aswal
- Solid State Physics Division , Bhabha Atomic Research Centre , Mumbai 400085 , India
| | | | | | | |
Collapse
|
25
|
Mondal S, Raposo ML, Ghosh A, Prieto G, Ghosh S. Physicochemical and conformational studies on interaction of myoglobin with an amino-acid based anionic surfactant, sodium N-dodecanoyl sarcosinate (SDDS). Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Srivastava R, Alam MS. Role of (single/double chain surfactant) micelles on the protein aggregation. Int J Biol Macromol 2019; 122:72-81. [DOI: 10.1016/j.ijbiomac.2018.10.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022]
|
27
|
Wang X, Fan M. Interaction behaviors and structural characteristics of zein/NaTC nanoparticles. RSC Adv 2019; 9:5748-5755. [PMID: 35515926 PMCID: PMC9060807 DOI: 10.1039/c9ra00005d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022] Open
Abstract
Bile salts are biosurfactants distributed in the human gastrointestinal tract, which can significantly influence the structure and functions of orally administrated components.
Collapse
Affiliation(s)
- Xiaoyong Wang
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Fan
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
28
|
Selivanovitch E, Koliyatt R, Douglas T. Chemically Induced Morphogenesis of P22 Virus-like Particles by the Surfactant Sodium Dodecyl Sulfate. Biomacromolecules 2018; 20:389-400. [PMID: 30462501 DOI: 10.1021/acs.biomac.8b01357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the infectious P22 bacteriophage, the packaging of DNA into the initially formed procapsid triggers a remarkable morphological transformation where the capsid expands from 58 to 62 nm. Along with the increase in size, this maturation also provides greater stability to the capsid and initiates the release of the scaffolding protein (SP). (2,4) In the P22 virus-like particle (VLP), this transformation can be mimicked in vitro by heating the procapsid particles to 65 °C or by treatment with sodium dodecyl sulfate (SDS). (5,6) Heating the P22 particles at 65 °C for 20 min is well established to trigger the transformation of P22 to the expanded (EX) P22 VLP but does not always result in a fully expanded population. Incubation with SDS resulted in a >80% expanded population for all P22 variants used in this work. This study elucidates the importance of the stoichiometric ratio between P22 subunits and SDS, the charge of the headgroup, and length of the carbon chain for the transformation. We propose a mechanism by which the expansion takes place, where both the negatively charged sulfate group and hydrophobic tail interact with the coat protein (CP) monomers within the capsid shell in a process that is facilitated by an internal osmotic pressure generated by an encapsulated macromolecular cargo.
Collapse
Affiliation(s)
| | - Ranjit Koliyatt
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Trevor Douglas
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
29
|
Chauhan S, Sharma V, Pathania L. Probing effect of maltodextrin on micellar properties of bile salts at varying temperatures: A physico-chemical approach. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Bhat IA, Roy B, Kabir-ud-Din. Synthesis and biophysical analysis of a novel gemini surfactant with lysozyme: Industrial perspective. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Mondal S, Das B. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:278-282. [PMID: 29554518 DOI: 10.1016/j.saa.2018.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.
Collapse
Affiliation(s)
- Satyajit Mondal
- Department of Chemistry, Presidency University, Kolkata 700 073, India
| | - Bijan Das
- Department of Chemistry, Presidency University, Kolkata 700 073, India.
| |
Collapse
|
32
|
Chabba S, Vashishat R, Mahajan RK. Characterization of interactions between β-lactoglobulin with surface active ionic liquids in aqueous medium. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Srivastava R, Alam MS. Effect of pH and surfactant on the protein: A perspective from theory and experiments. Int J Biol Macromol 2018; 107:1519-1527. [DOI: 10.1016/j.ijbiomac.2017.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
|
34
|
Interactions between surfactants and hydrolytic enzymes. Colloids Surf B Biointerfaces 2017; 168:169-177. [PMID: 29248277 DOI: 10.1016/j.colsurfb.2017.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/23/2022]
Abstract
Hydrolytic enzymes are combined with surfactants in many types of formulations, for instance detergents and personal care products. If the surfactant interacts with the enzyme there may be conformational changes that eventually lead to loss of the enzymatic activity. From a practical point of view it is important to understand the nature and magnitude of these interactions. After an introduction of the topic the review briefly discusses enzyme catalyzed reactions where surfactants are substrates for the enzyme. The rest of the review relates to associations between surfactants and hydrolytic enzymes without the surfactant being a substrate in the reaction. A discussion about general principles for such interactions is followed by a survey of the relevant literature related to four important types of hydrolytic enzymes: lipases, proteases, amylases and cellulases. It is shown in the review that the effect exerted by the surfactant differs between the different types of enzymes; it is therefore difficult to make general statements about which surfactants are most detrimental to the activity of hydrolytic enzymes. However, as a general rule nonionic surfactants can be regarded as more benign to an enzyme than anionic and cationic surfactants. This difference can be ascribed to the difference in binding mode. Whereas a nonionic surfactant only binds to the enzyme through hydrophobic interactions, an ionic surfactant can bind by a combination of electrostatic attraction and hydrophobic interaction. This latter type of binding can be strong and lead to conformational changes already at very low surfactant concentration, often far below its critical micelle concentration.
Collapse
|
35
|
The effect of the presence of Sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) on the interactions between Sodium dodecyl sulfate (SDS) and protein papain. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Sonu, Halder S, Kumari S, Aggrawal R, Aswal VK, Saha SK. Study on interactions of cationic gemini surfactants with folded and unfolded bovine serum albumin: Effect of spacer group of surfactants. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Gupta BS, Shen CR, Lee MJ. Effect of biological buffers on the colloidal behavior of sodium dodecyl sulfate (SDS). Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Maurya JK, Khan AB, Dohare N, Ali A, Kumar A, Patel R. Effect of aromatic amino acids on the surface properties of 1-dodecyl-3-(4-(3-dodecylimidazolidin-1-yl)butyl)imidazolidine bromide gemini surfactant. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1306782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi
| | - Abbul Bashar Khan
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi
| | - Anwar Ali
- Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi
| |
Collapse
|
39
|
Hoque MA, Patoary MOF, Molla MR, Halim MA, Khan MA, Rub MA. Interaction between cetylpyridinium chloride and amino acids: A conductomertic and computational method study. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2016.1262779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Md. Anamul Hoque
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | | | - Mohammad A. Halim
- Division of Quantum Chemistry, BICCB, Green Research Centre, Dhaka, Bangladesh
- Institut Lumière Matière, Université Lyon 1 – CNRS, Université de Lyon, Villeurbanne Cedex, France
| | | | - Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Siddiqi MK, Shahein YE, Hussein N, Khan RH. Effect of surfactants on Ra-sHSPI – A small heat shock protein from the cattle tick Rhipicephalus annulatus. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Sinha S, Tikariha D, Lakra J, Yadav T, Kumari S, Saha SK, Ghosh KK. Interaction of bovine serum albumin with cationic monomeric and dimeric surfactants: A comparative study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Akram M, Bhat IA, Anwar S, Kabir-ud-Din. Molecular interaction of an ester-functionalized biodegradable gemini surfactant with lysozyme: Insights from spectroscopy, calorimetry and molecular docking. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity. J Colloid Interface Sci 2015; 458:284-92. [DOI: 10.1016/j.jcis.2015.07.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 11/21/2022]
|
44
|
Ali MS, Al-Lohedan HA. Biophysical characterization of the interaction between human serum albumin and n-dodecyl β-d-maltoside: A multi-technique approach. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Misra PK, Dash U, Maharana S. Investigation of bovine serum albumin-surfactant aggregation and its physicochemical characteristics. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Ghosh S, Dolai S, Patra T, Dey J. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies. J Phys Chem B 2015; 119:12632-43. [DOI: 10.1021/acs.jpcb.5b07072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhajit Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Subhrajyoti Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Trilochan Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| | - Joykrishna Dey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur - 721 302, India
| |
Collapse
|
47
|
Liu Y, Zhang G, Liao Y, Wang Y. Binding characteristics of psoralen with trypsin: Insights from spectroscopic and molecular modeling studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:498-505. [PMID: 26162336 DOI: 10.1016/j.saa.2015.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Psoralen (PSO) is a naturally occurring furanocoumarin with a variety of pharmacological activities, however very limited information on the interaction of PSO with trypsin is available. In this study, the binding characteristics between PSO and trypsin at physiological pH were investigated using a combination of fluorescence, UV-vis absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic, chemometric and molecular modeling approaches. It was found that the fluorescence quenching of trypsin by PSO was a static quenching procedure, ascribing the formation of a PSO-trypsin complex. The binding of PSO to trypsin was driven mainly by hydrophobic forces as the positive enthalpy change and entropy change values. The molecular docking showed that PSO inserted into the active site pocket of trypsin to interact with the catalytic residues His57, Asp102 and Ser195 and may cause a decrease in trypsin activity. The results of CD and FT-IR spectra along with the temperature-induced denaturation studies indicated that the addition of PSO to trypsin led to the changes in the secondary structure of the enzyme. The concentration profiles and spectra of the three components (PSO, trypsin, and PSO-trypsin complex) obtained by multivariate curve resolution-alternating least squares analysis exhibited the kinetic processes of PSO-trypsin interaction. This study will be helpful to understand the mechanism of PSO that affects the conformation and activity of trypsin in biological processes.
Collapse
Affiliation(s)
- Yingying Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yijing Liao
- College of Pharmacy, Nanchang University, Nanchang 330047, China
| | - Yaping Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
48
|
Ren H, Xin X, Wang L, Ju H, Zhamanding A, Xu G. A direct comparison of the interaction of bovine serum albumin and gelatin with sodium deoxycholate in aqueous solutions. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Hierrezuelo JM, Carnero Ruiz C. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:156-65. [PMID: 26042703 DOI: 10.1016/j.msec.2015.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.
Collapse
Affiliation(s)
- J M Hierrezuelo
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain
| | - C Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain.
| |
Collapse
|
50
|
Effect of Polar Organic Solvents on Self-Aggregation of Some Cationic Monomeric and Dimeric Surfactants. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1686-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|