1
|
Necolau MI, Ionita M, Pandele AM. Poly(propylene fumarate) Composite Scaffolds for Bone Tissue Engineering: Innovation in Fabrication Techniques and Artificial Intelligence Integration. Polymers (Basel) 2025; 17:1212. [PMID: 40362996 PMCID: PMC12073892 DOI: 10.3390/polym17091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Over the past three decades, the biodegradable polymer known as poly(propylene fumarate) (PPF) has been the subject of numerous research due to its unique properties. Its biocompatibility and controllable mechanical properties have encouraged numerous scientists to manufacture and produce a wide range of PPF-based materials for biomedical purposes. Additionally, the ability to tailor the degradation rate of the scaffold material to match the rate of new bone tissue formation is particularly relevant in bone tissue engineering, where synchronized degradation and tissue regeneration are critical for effective healing. This review thoroughly summarizes the advancements in different approaches for PPF and PPF-based composite scaffold preparation for bone tissue engineering. Additionally, the challenges faced by each approach, such as biocompatibility, degradation, mechanical features, and crosslinking, were emphasized, and the noteworthy benefits of the most pertinent synthesis strategies were highlighted. Furthermore, the synergistic outcome between tissue engineering and artificial intelligence (AI) was addressed, along with the advantages brought by the implication of machine learning (ML) as well as the revolutionary impact on regenerative medicines. Future advances in bone tissue engineering could be facilitated by the enormous potential for individualized and successful regenerative treatments that arise from the combination of tissue engineering and artificial intelligence. By assessing a patient's reaction to a certain drug and choosing the best course of action depending on the patient's genetic and clinical characteristics, AI can also assist in the treatment of illnesses. AI is also used in drug research and discovery, target identification, clinical trial design, and predicting the safety and effectiveness of novel medications. Still, there are ethical issues including data protection and the requirement for reliable data management systems. AI adoption in the healthcare sector is expensive, involving staff and facility investments as well as training healthcare professionals on its application.
Collapse
Affiliation(s)
- Madalina I. Necolau
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
| | - Mariana Ionita
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
| | - Andreea M. Pandele
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania; (M.I.N.); (M.I.)
- Department of Analytical Chemistry and Environmental Engineering, National University of Science and Technology Politehnica Bucharest, Gh. Polizu Street, 011062 Bucharest, Romania
| |
Collapse
|
2
|
Brehm PC, Frontera A, Streubel R. On metal coordination of neutral open-shell P-ligands focusing on phosphanoxyls, their electron residence and reactivity. Chem Commun (Camb) 2022; 58:6270-6279. [PMID: 35579028 DOI: 10.1039/d2cc01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article highlights the discovery and development of phosphanoxyl complex chemistry starting from (neutral) low-coordinate phosphorus radicals and the quest of metal ligation effects. We describe synthesis and reactions of precursors, namely 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) substituted phosphane tungsten(0) complexes. Trapping reactions of transient phosphanoxyl complexes, formed via thermal homolytic N-O bond cleavage, as well as their use in radical polymerisations are illustrated, thus revealing an interesting reactivity dichotomy. DFT calculations provide insight into thermal stabilities of precursors and the resulting spin density distributions (SDDs) in these reactive intermediates. Systematic studies on the dependance of the electron delocalisation in phosphanoxyl complexes have been performed examining different substitution pattern at phosphorus and different co-ligand combinations at the tungsten(0) center. Preliminary results on Mn and Fe complexes are reported.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa, 07122 Palma, Baleares, Spain
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
3
|
Pearce HA, Jiang EY, Swain JWR, Navara AM, Guo JL, Kim YS, Woehr A, Hartgerink JD, Mikos AG. Evaluating the physicochemical effects of conjugating peptides into thermogelling hydrogels for regenerative biomaterials applications. Regen Biomater 2021; 8:rbab073. [PMID: 34934509 PMCID: PMC8684499 DOI: 10.1093/rb/rbab073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Thermogelling hydrogels, such as poly(N-isopropylacrylamide) [P(NiPAAm)], provide tunable constructs leveraged in many regenerative biomaterial applications. Recently, our lab developed the crosslinker poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol), which crosslinks P(NiPAAm-co-glycidyl methacrylate) via thiol-epoxy reaction and can be functionalized with azide-terminated peptides via alkyne-azide click chemistry. This study's aim was to evaluate the impact of peptides on the physicochemical properties of the hydrogels. The physicochemical properties of the hydrogels including the lower critical solution temperature, crosslinking times, swelling, degradation, peptide release and cytocompatibility were evaluated. The gels bearing peptides increased equilibrium swelling indicating hydrophilicity of the hydrogel components. Comparable sol fractions were found for all groups, indicating that inclusion of peptides does not impact crosslinking. Moreover, the inclusion of a matrix metalloproteinase-sensitive peptide allowed elucidation of whether release of peptides from the network was driven by hydrolysis or enzymatic cleavage. The hydrophilicity of the network determined by the swelling behavior was demonstrated to be the most important factor in dictating hydrogel behavior over time. This study demonstrates the importance of characterizing the impact of additives on the physicochemical properties of hydrogels. These characteristics are key in determining design considerations for future in vitro and in vivo studies for tissue regeneration.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Joseph W R Swain
- Depatment of Chemistry, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Adam M Navara
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Jason L Guo
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Andrew Woehr
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
- Depatment of Chemistry, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
4
|
Razazpour F, Najafi F, Moshaverinia A, Fatemi SM, Sima S. Synthesis and characterization of a photo-cross-linked bioactive polycaprolactone-based osteoconductive biocomposite. J Biomed Mater Res A 2021; 109:1858-1868. [PMID: 33830598 DOI: 10.1002/jbm.a.37178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In this study, a light cross-linkable biocomposite scaffold based on a photo-cross-linkable poly (propylene fumarate) (PPF)-co-polycaprolactone (PCL) tri-block copolymer was synthesized and characterized. The developed biodegradable scaffold was further modified with β-tricalcium phosphate (β-TCP) bioceramic for bone tissue engineering applications. The developed biocomposite was characterized using H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Moreover, the bioceramic particle size distribution and morphology were evaluated using Brunauer-Emmett-Teller method, X-ray diffraction, and scanning electron microscopy. The mechanical properties and biodegradation of the scaffolds were also evaluated. Cytotoxicity and mineralization assays were performed to analyze the biocompatibility and bioactivity capacity of the developed biocomposite. The characterization data confirmed the development of a biodegradable and photo-cross-linkable PCL-based biocomposite reinforced with β-TCP bioceramic. In vitro analyses demonstrated the biocompatibility and mineralization potential of the synthesized bioceramic. Altogether, the results of the present study suggest that the photo-cross-linkable PCL-PPF-PCL tri-block copolymer reinforced with β-TCP is a promising biocomposite for bone tissue engineering applications. According to the results, this newly synthesized material has a proper chemical composition for further clinically-relevant studies in tissue engineering.
Collapse
Affiliation(s)
- Fateme Razazpour
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, California, USA
| | - Seyyed Mostafa Fatemi
- Department of Dental Materials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Laser Research Center, ACER, Tehran, Iran
| | - Shahabi Sima
- Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Dental Biomaterials Association, Tehran, Iran
| |
Collapse
|
5
|
Shen C, Witek L, Flores RL, Tovar N, Torroni A, Coelho PG, Kasper FK, Wong M, Young S. Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Eng Part A 2020; 26:1303-1311. [PMID: 32842918 DOI: 10.1089/ten.tea.2020.0186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The basic concepts from the fields of biology and engineering are integrated into tissue engineering to develop constructs for the repair of damaged and/or absent tissues, respectively. The field has grown substantially over the past two decades, with particular interest in bone tissue engineering (BTE). Clinically, there are circumstances in which the quantity of bone that is necessary to restore form and function either exceeds the patient's healing capacity or bone's intrinsic regenerative capabilities. Vascularized osseous or osteocutaneous free flaps are the standard of care with autologous bone remaining the gold standard, but is commonly associated with donor site morbidity, graft resorption, increased operating time, and cost. Regardless of the size of a craniofacial defect, from trauma, pathology, and osteonecrosis, surgeons and engineers involved with reconstruction need to consider the complex three-dimensional (3D) geometry of the defect and its relationship to local structures. Three-dimensional printing has garnered significant attention and presents opportunities to use craniofacial BTE as a technology that offers a personalized approach to bony reconstruction. Clinicians and engineers are able to work together to produce patient-specific space-maintaining scaffolds tailored to site-specific defects, which are osteogenic, osseoconductive, osseoinductive, encourage angiogenesis/vasculogenesis, and mechanically stable upon implantation to prevent immediate failure. In this work, we review biological and engineering principles important in applying 3D printing technology to BTE for craniofacial reconstruction as well as present recent translational advancements in 3D printed bioactive ceramic scaffold technology.
Collapse
Affiliation(s)
- Chen Shen
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering and New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA.,Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - F Kurtis Kasper
- Department of Orthodontics and School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110:68-81. [PMID: 32305447 PMCID: PMC7294167 DOI: 10.1016/j.actbio.2020.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/05/2023]
Abstract
Autologous grafts are the current gold standard of care for coronary artery bypass graft surgeries, but are limited by availability and plagued by high failure rates. Similarly, tissue engineering approaches to small diameter vascular grafts using naturally derived and synthetic materials fall short, largely due to inappropriate mechanical properties. Alternatively, decellularized extracellular matrix from tissue is biocompatible and has comparable strength to vessels, while poly(propylene fumarate) (PPF) has shown promising results for vascular grafts. This study investigates the integration of decellularized pericardial extracellular matrix (dECM) and PPF to create a biohybrid scaffold (dECM+PPF) suitable for use as a small diameter vascular graft. Our method to decellularize the ECM was efficient at removing DNA content and donor variability, while preserving protein composition. PPF was characterized and added to dECM, where it acted to preserve dECM against degradative effects of collagenase without disturbing the material's overall mechanics. A transport study showed that diffusion occurs across dECM+PPF without any effect from collagenase. The modulus of dECM+PPF matched that of human coronary arteries and saphenous veins. dECM+PPF demonstrated ample circumferential stress, burst pressure, and suture retention strength to survive in vivo. An in vivo study showed re-endothelialization and tissue growth. Overall, the dECM+PPF biohybrid presents a robust solution to overcome the limitations of the current methods of treatment for small diameter vascular grafts. STATEMENT OF SIGNIFICANCE: In creating a dECM+PPF biohybrid graft, we have observed phenomena that will have a lasting impact within the scientific community. First, we found that we can reduce donor variability through decellularization, a unique use of the decellularization process. Additionally, we coupled a natural material with a synthetic polymer to capitalize on the benefits of each: the cues provided to cells and the ability to easily tune material properties, respectively. This principle can be applied to other materials in a variety of applications. Finally, we created an off-the-shelf alternative to autologous grafts with a newly developed material that has yet to be utilized in any scaffolds. Furthermore, bovine pericardium has not been investigated as a small diameter vascular graft.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jules D Allbritton-King
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Javier Navarro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Takahiro Inoue
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - Narutoshi Hibino
- Department of Surgery, Division of Cardiac Surgery, Johns Hopkins University, 1800 Orleans St, Baltimore, MD, 21287; Department of Surgery, Section of Cardiac Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, United States
| | - John P Fisher
- Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
7
|
Effect of 1,2,4,5-Benzenetetracarboxylic Acid on Unsaturated Poly(butylene adipate- co-butylene itaconate) Copolyesters: Synthesis, Non-Isothermal Crystallization Kinetics, Thermal and Mechanical Properties. Polymers (Basel) 2020; 12:polym12051160. [PMID: 32438555 PMCID: PMC7285232 DOI: 10.3390/polym12051160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 01/01/2023] Open
Abstract
Unsaturated poly (butylene adipate-co-butylene itaconate) (PBABI) copolyesters were synthesized through melt polymerization composed of 1,4-butanediol (BDO), adipic acid (AA), itaconic acid (IA) and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a cross-linking modifier. The melting point, crystallization and glass transition temperature of the PBABI copolyesters were detected around 29.8–49 °C, 7.2–29 °C and −51.1 and −58.1 °C, respectively. Young’s modulus can be modified via partial cross-linking by BTCA in the presence of IA, ranging between 32.19–168.45 MPa. Non-isothermal crystallization kinetics were carried out to explore the crystallization behavior, revealing the highest crystallization rate was placed in the BA/BI = 90/10 at a given molecular weight. Furthermore, the thermal, mechanical properties, and crystallization rate of PBABI copolyesters can be tuned through the adjustment of BTCA and IA concentrations.
Collapse
|
8
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Livshits-Kritsman Y, Tumanskii B, Ménard G, Dobrovetsky R. Isolable cyclic (alkyl)(amino)carbene-phosphonyl radical adducts. Chem Commun (Camb) 2020; 56:1341-1344. [PMID: 31912813 DOI: 10.1039/c9cc09244g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphonyl radicals ([R2P[double bond, length as m-dash]O]˙) and their adducts are proposed as intermediates in a number of important chemical and biological processes. Despite the great interest in these species, there are no examples of stable, isolated phosphonyl radicals or their adducts reported in the literature. Here we report the synthesis, EPR and theoretical study of stable, isolable cyclic (alkyl)(amino)carbene (cAAC)-phosphonyl radical adducts, [cAAC-P(O)R2]˙ (R = OPri, Ph).
Collapse
Affiliation(s)
- Yulia Livshits-Kritsman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Boris Tumanskii
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Gabriel Ménard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Vasile E, Pandele AM, Andronescu C, Selaru A, Dinescu S, Costache M, Hanganu A, Raicopol MD, Teodorescu M. Hema-Functionalized Graphene Oxide: a Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Sci Rep 2019; 9:18685. [PMID: 31822794 PMCID: PMC6904734 DOI: 10.1038/s41598-019-55081-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Poly(propylene fumarate) (PPF) is a linear unsaturated polyester which has been widely investigated for tissue engineering due to its good biocompatibility and biodegradability. In order to extend the range of possible applications and enhance its mechanical properties, current approaches consist in the incorporation of various fillers or obtaining blends with other polymers. In the current study we designed a reinforcing agent based on carboxylated graphene oxide (GO-COOH) grafted with 2-hydroxyethyl methacrylate (GO@HEMA) for poly(propylene fumarate)/poly(ethylene glycol) dimethacrylate (PPF/PEGDMA), in order to enhance the nanofiller adhesion and compatibility with the polymer matrix, and in the same time to increase the crosslinking density. The covalent modification of GO-COOH was proved by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Raman spectroscopy. The mechanical properties, water uptake capacity, morphology, biodegradability, mineralization and in vitro cytotoxicity of PPF/PEGDMA hybrid materials containing GO@HEMA were investigated. A 14-fold increase of the compressive modulus and a 2-fold improvement in compressive strength were observed after introduction of the nanofiller. Moreover, the decrease in sol fraction and solvent swelling in case of the hybrid materials containing GO@HEMA suggests an increase of the crosslinking density. SEM images illustrate an exfoliated structure at lower nanofiller content and a tendency for agglomeration at higher concentrations. Finally, the synthesized hybrid materials proved non-cytotoxic to murine pre-osteoblast cells and induced the formation of hydroxyapatite crystals under mineralization conditions.
Collapse
Affiliation(s)
- Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| | - Andreea M Pandele
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| | - Corina Andronescu
- Chemical Technology III, University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg, Germany
- CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg, Germany
| | - Aida Selaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Anamaria Hanganu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 90-92 Şos. Panduri, 050657, Bucharest, Romania
| | - Matei D Raicopol
- Costin Nenitzescu" Department of Organic Chemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania.
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| |
Collapse
|
11
|
Kleinfehn AP, Lammel Lindemann JA, Razvi A, Philip P, Richardson K, Nettleton K, Becker ML, Dean D. Modulating Bioglass Concentration in 3D Printed Poly(propylene fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups. Biomacromolecules 2019; 20:4345-4352. [PMID: 31661252 DOI: 10.1021/acs.biomac.9b00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poly(propylene fumarate) (PPF) has shown potential for the treatment of bone defects as it can be 3D printed into scaffolds to suit patient-specific needs with strength comparable to that of bone. However, the lack of specific cell attachment and osteogenic signaling moieties have limited their utility as it is necessary to provide these signals to aid in bone tissue formation. To address this issue and provide a platform for functionalization, Bioglass (∼1-2 μm) microparticles have been incorporated into PPF to create a 3D printable resin with concentrations ranging from 0 to 10 wt %. The zero-shear viscosity of PPF-Bioglass resins increased proportionally from 0 to 2.5 wt % Bioglass, with values of 0.22 and 0.34 Pa·s, respectively. At higher Bioglass concentrations, 5 and 10 wt %, the resin viscosity increased to 0.44 and 1.31 Pa·s, exhibiting a 2- and 6-fold increase from the 0 wt % Bioglass resin. Despite this increase in viscosity, all resins remained printable with no print failures. In addition, the surface available Bioglass can tether catechol containing molecules for postprinting functionalization. Analysis of PPF-Bioglass functionalization using a catechol dye analyte shows functionalization increases with Bioglass concentration, up to 157 nmol/cm2, and demonstrates it is possible to modulate functionalization. This presents a versatile and highly translationally relevant strategy to functionalize 3D printed scaffolds post printing with a diverse array of functional species.
Collapse
Affiliation(s)
- Alex P Kleinfehn
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Jan A Lammel Lindemann
- Department of Plastic and Reconstructive Surgery , The Ohio State University , Columbus , Ohio 43210 , United States.,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias , Monterrey , N. L. 64849 , Mexico.,Laboratorio Nacional de Manufactura Aditiva y Digital (MADiT) , Apodaca , N.L. 66629 , Mexico
| | - Ali Razvi
- Department of Plastic and Reconstructive Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Phinu Philip
- Department of Plastic and Reconstructive Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Katelyn Richardson
- Department of Plastic and Reconstructive Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Karissa Nettleton
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Matthew L Becker
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - David Dean
- Department of Plastic and Reconstructive Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
12
|
Chen CW, Hsu TS, Rwei SP. Effect of Ethylenediaminetetraacetic Acid on Unsaturated Poly(Butylene Adipate-Co-Butylene Itaconate) Copolyester with Low-Melting Point and Controllable Hardness. Polymers (Basel) 2019; 11:polym11040611. [PMID: 30960596 PMCID: PMC6523200 DOI: 10.3390/polym11040611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/11/2023] Open
Abstract
A series of copolyesters, poly(butylene adipate-co-butylene itaconate) (PBABI), was synthesized using melt polycondensation from adipic acid (AA), itaconic acid (IA), 1,4-butanediol (1,4-BDO), and ethylenediaminetetraacetic acid (EDTA). 1H-NMR, FT-IR, GPC, DSC, TGA, DMA, XRD, Shore D, and tensile test were used to systematically characterize the structural and composition/physical properties of the copolyesters. It was found that the melting point (Tm) and crystallization temperature (Tc) of the copolyesters were, respectively, between 21.1 to 57.5 °C and −6.7 to 29.5 °C. The glass transition (Tg) and the initial thermal decomposition (Td-5%) temperatures of the PBABI copolyesters were observed to be between −53.6 to −55.8 °C and 313.6 and 342.1 °C at varying ratios of butylene adipate (BA) and butylene itaconate (IA), respectively. The XRD feature peak was identified at the 2θ values of 21.61°, 22.31°, and 23.96° for the crystal lattice of (110), (020), and (021), respectively. Interestingly, Shore D at various IA ratios had high values (between 51.3 to 62), which indicated that the PBABI had soft plastic properties. The Young’s modulus and elongation at break, at different IA concentrations, were measured to be at 0.77–128.65 MPa and 71.04–531.76%, respectively, which could be attributed to a close and compact three-dimensional network structure formed by EDTA as a crosslinking agent. There was a significant bell-shaped trend in a BA/BI ratio of 8/2, at different EDTA concentrations—the ∆Hm increased while the EDTA concentration increased from 0.001 to 0.05 mole% and then decreased at an EDTA ratio of 0.2 mole%. Since the PBABI copolymers have applications in the textile industry, these polymers have been adopted to reinforce 3D air-permeable polyester-based smart textile. This kind of composite not only possesses the advantage of lower weight and breathable properties for textiles, but also offers customizable, strong levels of hardness, after UV curing of the PBABI copolyesters, making its potential in vitro orthopedic support as the “plaster of the future”.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
- Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
| | - Te-Sheng Hsu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
- Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
| | - Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
- Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei 10608, Taiwan.
| |
Collapse
|
13
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Zair L, Marchlewicz M, Tejchman K, Zeair S, Kędzierska K, Stępniewska J, Domański M, Kazimierczak A, Duchnik E, Ostrowski M. Biocompatibility of synthetic ultraviolet radiation cross-linked polymers - Subcutaneous implantation study. J Biomed Mater Res B Appl Biomater 2018; 107:1889-1897. [PMID: 30578598 DOI: 10.1002/jbm.b.34281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 01/26/2023]
Abstract
Photo-cross-linked polymers have attracted a lot of attention in the biomedical field. The main benefits of these materials are related to the fact that they are most of the time viscous liquids or pastes that adapt a custom and fixed shape on demand of the user. Present study deals specifically with the biological response upon subcutaneous implantation of four different materials in rabbits. In the study 20 rabbits were divided into four groups (each five rabbits): Groups 1-3 were implanted with tested new obtained by us macromonomers (P1838-DMA; P1838-UR; PDEGA-UR - respectively), while group 4 (control) was implanted with the mesh (PLA) routinely used for surgical treatment of a hernia. The new compounds were polarized earlier using ultraviolet radiation to obtain cross-linked networks. The polymers in the form of discs were then implanted subcutaneously in dorsal region of rabbits. After 28 days polymers were explanted and examined. Microscopic observation evaluated: thickness of the connective tissue capsule around the discs, cells of inflammatory response, disc surface erosion, spectroscopic analysis. The examined materials cause no chronic inflammation, abscesses or tissue necrosis, and the biological response is similar to observed in control group. Therefore, new synthetic materials could be considered as biocompatible and safe. Materials undergo slow degradation of ester bonds and surface erosion and degradation products could be eliminated probably by phagocytosis. On the basis on the afore mentioned knowledge, we formulated hypothesis, that the new polymers are well tolerated by the adjacent tissues. The aim of the following study was to examine reaction of the tissue on new types of prepolymerized material implanted subcutaneously. The obtained results suggest, that the new UV cross-linked polymers do not affect negatively on the connective tissue that is in the contact with the implants. Furthermore, the used materials are in the liquid form, thus they could be easily performed in in minimally invasive laparoscopic treatment of abdominal hernias. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1889-1897, 2019.
Collapse
Affiliation(s)
- Labib Zair
- Department of General Surgery and Transplantation, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Mariola Marchlewicz
- Department of Aesthetic Dermatology, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantation, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Samir Zeair
- Department of General and Transplant Surgery, Marie Curie Regional Hospital, Szczecin, Poland
| | - Karolina Kędzierska
- Department of Nephrology, Transplantology and Internal Diseases, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Joanna Stępniewska
- Department of Nephrology, Transplantology and Internal Diseases, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Maciej Domański
- Department of Nephrology, Transplantology and Internal Diseases, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Arkadiusz Kazimierczak
- Department of General and Vascular Surgery, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Ewa Duchnik
- Department of Dermatology and Venereology, Pomeranian Medical University of Szczecin, Police, Poland
| | - Marek Ostrowski
- Department of General Surgery and Transplantation, Pomeranian Medical University of Szczecin, Szczecin, Poland
| |
Collapse
|
15
|
Sever M, Tansik G, Arslan E, Yergoz F, Ozkan AD, Tekinay AB, Guler MO. Self-assembled peptide nanostructures and their gels for regenerative medicine applications. SELF-ASSEMBLING BIOMATERIALS 2018:455-473. [DOI: 10.1016/b978-0-08-102015-9.00022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Wang M, Lei D, Liu Z, Chen S, Sun L, Lv Z, Huang P, Jiang Z, You Z. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1728-1739. [DOI: 10.1080/09205063.2017.1348927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Dong Lei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zenghe Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ziying Lv
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Peng Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Zhongxing Jiang
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
17
|
Wang L, Guo DG. Preparation and Performance of Poly(butyl fumarate)-Based Material for Potential Application in LED Encapsulation. MATERIALS 2017; 10:ma10020149. [PMID: 28772524 PMCID: PMC5459098 DOI: 10.3390/ma10020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
Abstract
A UV-curable poly(butyl fumarate) (PBF)/poly(propylene fumarate)-diacrylate (PPF-DA) hybrid material with good performance for LED encapsulation is introduced in the paper. They have been prepared by radical polymerization using PBF and PPF-DA macromers with a UV curing system. PBF and PPF-DA were characterized by Fourier-transform infrared (FT-IR) and H-nuclear magnetic resonance (1H NMR). The thermal behavior, optical and mechanical properties of the material were examined by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet-visible spectroscopy (UV–vis), and a material testing system mechanical testing machine, respectively. The results indicated that the hybrid material has a suitable refractive index (n = 1.537) and high transmittance (99.64% in visible range) before/after thermal aging. With the increasing of the double bond ratio from 0.5 to 2, the water absorption ratios of the prepared encapsulation material were 1.22%, 1.87% and 2.88%, respectively. The mechanical property experiments showed that bonding strength was in the range of 1.86–3.40 MPa, tensile-shear strength ranged from 0.84 MPa to 1.57 MPa, and compression strength was in the range of 5.10–27.65 MPa. The cured PBF/PPF-DA hybrid material can be used as a light-emitting diode (LED) encapsulant, owing to its suitable refractive index, high transparency, excellent thermal stability, lower water absorption, and good mechanical properties.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Da-Gang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
18
|
Bracaglia LG, Messina M, Vantucci C, Baker HB, Pandit A, Fisher JP. Controlled Delivery of Tissue Inductive Factors in a Cardiovascular Hybrid Biomaterial Scaffold. ACS Biomater Sci Eng 2016; 3:1350-1358. [PMID: 33429693 DOI: 10.1021/acsbiomaterials.6b00460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hybrid biomaterials, combining naturally derived and synthetic materials, offer a tissue engineering platform that can provide initial mechanical support from a synthetic biomaterial, as well as a viable, bioactive substrate to support native cell infiltration and remodeling. The goal of this work was to develop a directional delivery system for bioactive molecules that can be coupled with a hybrid biomaterial. It was hypothesized that by using poly(propylene fumarate) as a scaffold to encapsulate PLGA microparticles, a tunable and directional release would be achieved from the intact scaffold into the bioactive substrate, pericardium. Release will occur as poly(lactic-co-glycolic acid) microparticles degrade hydrolytically into biocompatible molecules, leaving the PPF scaffold unchanged within the release time frame and able to mechanically support the pericardium substrate through remodeling. This study evaluated the degradation and strength of the composite polymer layer, and determined the release of encapsulated factors to occur over 8 days, while the bulk polymer remained intact with near 100% of its original mass. Next, this study demonstrated sustained bioactive molecule release into cell culture, causing significant changes to cellular metabolic activity. In particular, delivering vascular endothelial growth factor from the composite material to endothelial cells increased metabolic activity over the same cells with unloaded composite material. Additionally, delivering tumor necrosis factor α from the composite material to L929 cells significantly reduced metabolic activity compared to the same cells with unloaded composite material (p < 0.05). Finally, directional release into a bioactive substrate was confirmed with localized immunostaining of the encapsulated factor.
Collapse
Affiliation(s)
- Laura G Bracaglia
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael Messina
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Casey Vantucci
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hannah B Baker
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Abdelrasoul GN, Farkas B, Romano I, Diaspro A, Beke S. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:305-10. [DOI: 10.1016/j.msec.2015.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/22/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
20
|
Mishra R, Roux BM, Posukonis M, Bodamer E, Brey EM, Fisher JP, Dean D. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials 2015; 77:255-66. [PMID: 26606451 DOI: 10.1016/j.biomaterials.2015.10.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week pre-culture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mouse model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing the NP and 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds.
Collapse
Affiliation(s)
- Ruchi Mishra
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - Megan Posukonis
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Emily Bodamer
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Farkas B, Romano I, Ceseracciu L, Diaspro A, Brandi F, Beke S. Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:14-21. [DOI: 10.1016/j.msec.2015.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/30/2015] [Accepted: 05/17/2015] [Indexed: 01/30/2023]
|
22
|
Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:57-78. [PMID: 26545744 DOI: 10.1007/978-3-319-22345-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a substantial amount of innovation and research into tissue engineering and regenerative approaches for the craniofacial region. This highly complex area presents many unique challenges for tissue engineers. Recent research indicates that various forms of implantable biodegradable scaffolds may play a beneficial role in the clinical treatment of craniofacial pathological conditions. Additionally, the direct delivery of bioactive molecules may further increase de novo bone formation. While these strategies offer an exciting glimpse into potential future treatments, there are several challenges that still must be overcome. In this chapter, we will highlight both current surgical approaches for craniofacial reconstruction and recent advances within the field of bone tissue engineering. The clinical challenges and limitations of these strategies will help contextualize and inform future craniofacial tissue engineering strategies.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
23
|
Becker J, Lu L, Runge MB, Zeng H, Yaszemski MJ, Dadsetan M. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite. J Biomed Mater Res A 2014; 103:2549-57. [PMID: 25504776 DOI: 10.1002/jbm.a.35391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
Abstract
In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Johannes Becker
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905.,Department of Traumatology and Sports Injuries, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr, 48, Salzburg, 5020, Austria
| | - Lichun Lu
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905
| | - M Brett Runge
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905
| | - Heng Zeng
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905
| | - Mahrokh Dadsetan
- Department of Orthopedic Surgery, Mayo Clinic, College of Medicine, Rochester, Minnesota, 55905
| |
Collapse
|
24
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed Engl 2014; 53:8045-8049. [PMID: 24634136 PMCID: PMC4315180 DOI: 10.1002/anie.201311047] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/07/2022]
Abstract
We report on a therapeutic approach using thermo-responsive multi-fingered drug eluting devices. These therapeutic grippers referred to as theragrippers are shaped using photolithographic patterning and are composed of rigid poly(propylene fumarate) segments and stimuli-responsive poly(N-isopropylacrylamide-co-acrylic acid) hinges. They close above 32 °C allowing them to spontaneously grip onto tissue when introduced from a cold state into the body. Due to porosity in the grippers, theragrippers could also be loaded with fluorescent dyes and commercial drugs such as mesalamine and doxorubicin, which eluted from the grippers for up to seven days with first order release kinetics. In an in vitro model, theragrippers enhanced delivery of doxorubicin as compared to a control patch. We also released theragrippers into a live pig and visualized release of dye in the stomach. The design of such tissue gripping drug delivery devices offers an effective strategy for sustained release of drugs with immediate applicability in the gastrointestinal tract.
Collapse
Affiliation(s)
- Kate Malachowski
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Joyce Breger
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Hye Rin Kwag
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| | - Martha O. Wang
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - John P. Fisher
- Fischell Department of Bioengineering University of Maryland, College Park, MD 20742 (USA)
| | - Florin M. Selaru
- Department of Medicine, The Johns Hopkins University, Baltimore, MD21218 (USA)
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering The Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA)
| |
Collapse
|
25
|
Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201311047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Wallace J, Wang MO, Thompson P, Busso M, Belle V, Mammoser N, Kim K, Fisher JP, Siblani A, Xu Y, Welter JF, Lennon DP, Sun J, Caplan AI, Dean D. Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication 2014; 6:015003. [PMID: 24429508 DOI: 10.1088/1758-5082/6/1/015003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.
Collapse
Affiliation(s)
- Jonathan Wallace
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Reactive and stimuli-responsive maleic anhydride containing macromers – multi-functional cross-linkers and building blocks for hydrogel fabrication. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Naves AF, Fernandes HTC, Immich APS, Catalani LH. Enzymatic syntheses of unsaturated polyesters based on isosorbide and isomannide. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26789] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alliny F. Naves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo; CP 26077 05513-970 São Paulo Brasil
| | - Henrique T. C. Fernandes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo; CP 26077 05513-970 São Paulo Brasil
| | - Ana P. S. Immich
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo; CP 26077 05513-970 São Paulo Brasil
| | - Luiz H. Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo; CP 26077 05513-970 São Paulo Brasil
| |
Collapse
|
29
|
Xiao L, Zhu J, Londono DJ, Pochan DJ, Jia X. Mechano-Responsive Hydrogels Crosslinked by Block Copolymer Micelles. SOFT MATTER 2012; 8:10233-10237. [PMID: 23024698 PMCID: PMC3459338 DOI: 10.1039/c2sm26566d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Block copolymer micelles (BCMs) were prepared from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with 2-hydroxyethyl acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels (BCM-PAAm) whose mechanical properties can be tuned by varying the BCM composition. Transmission electron microscopy (TEM) imaging revealed stretch-induced, reversible micelle deformation in BCM-PAAm gels. A model hydrophobic drug, pyrene, loaded into the micelle core prior to the formation of BCM-PAAm gels, was dynamically released in response to externally applied mechanical forces. The BCM-crosslinked hydrogels with combined strength and force-modulated drug release are attractive candidates for the repair and regeneration of mechanically-active tissues.
Collapse
Affiliation(s)
- Longxi Xiao
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Jiahua Zhu
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - David J. Londono
- DuPont Nanotechnologies, CR&D, DuPont Co., Wilmington, DE, 19801, USA
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA
- Corresponding author: Department of Materials Science and Engineering Delaware Biotechnology Institute, 201 DuPont Hall, University of Delaware, Newark, DE, 19716, USA. Phone: 302-831-6553, Fax: 302-831-4545,
| |
Collapse
|
30
|
Beke S, Anjum F, Tsushima H, Ceseracciu L, Chieregatti E, Diaspro A, Athanassiou A, Brandi F. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds. J R Soc Interface 2012; 9:3017-26. [PMID: 22696484 PMCID: PMC3479907 DOI: 10.1098/rsif.2012.0300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- S Beke
- Department of Nanophysics, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16152 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huber A, Kuschel A, Ott T, Santiso-Quinones G, Stein D, Bräuer J, Kissner R, Krumeich F, Schönberg H, Levalois-Grützmacher J, Grützmacher H. Phosphorous-functionalized bis(acyl)phosphane oxides for surface modification. Angew Chem Int Ed Engl 2012; 51:4648-52. [PMID: 22473613 DOI: 10.1002/anie.201201026] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Alex Huber
- ETH Zürich, Laboratory of Inorganic Chemistry, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huber A, Kuschel A, Ott T, Santiso-Quinones G, Stein D, Bräuer J, Kissner R, Krumeich F, Schönberg H, Levalois-Grützmacher J, Grützmacher H. Phosphorous-Functionalized Bis(acyl)phosphane Oxides for Surface Modification. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Jun HW, Paramonov SE, Dong H, Forraz N, McGuckin C, Hartgerink JD. Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:665-76. [DOI: 10.1163/156856208784089625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ho-Wook Jun
- a Department of Chemistry, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA
| | - Sergey E. Paramonov
- b Department of Chemistry, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA
| | - He Dong
- c Department of Chemistry, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA
| | - Nicolas Forraz
- d School of Clinical & Laboratory Sciences, Medical School, University of Newcastle upon Tyne, UK
| | - Colin McGuckin
- e School of Clinical & Laboratory Sciences, Medical School, University of Newcastle upon Tyne, UK
| | - Jeffrey D. Hartgerink
- f Department of Chemistry, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main street, MS 60, Houston, TX 77005, USA
| |
Collapse
|
34
|
Hung WI, Lin YH, Wu PS, Chang KC, Peng CW, Lai MC, Yeh JM. Preparation and thermal properties of UV-curable polyacrylate–gold nanocomposite foams. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33912a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kretlow JD, Mikos AG. Founder's award to Antonios G. Mikos, Ph.D., 2011 Society for Biomaterials annual meeting and exposition, Orlando, Florida, April 13-16, 2011: Bones to biomaterials and back again--20 years of taking cues from nature to engineer synthetic polymer scaffolds. J Biomed Mater Res A 2011; 98:323-31. [PMID: 21714068 PMCID: PMC3157483 DOI: 10.1002/jbm.a.33154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 12/11/2022]
Abstract
For biomaterials scientists focusing on tissue engineering applications, the gold standard material is healthy, autologous tissue. Ideal material properties and construct design parameters are thus both obvious and often times unachievable; additional considerations such as construct delivery and the underlying pathology necessitating new tissue yield additional design challenges with solutions that are not evident in nature. For the past nearly two decades, our laboratory and collaborators have aimed to develop both new biomaterials and a better understanding of the complex interplay between material and host tissue to facilitate bone and cartilage regeneration. Various approaches have ranged from mimicking native tissue material properties and architecture to developing systems for bioactive molecule delivery as soluble factors or bound directly to the biomaterial substrate. Such technologies have allowed others and us to design synthetic biomaterials incorporating increasing levels of complexity found in native tissues with promising advances made toward translational success. Recent work focuses on translation of these technologies in specific clinical situations through the use of adjunctive biomaterials designed to address existing pathologies or guide host-material integration.
Collapse
Affiliation(s)
- James D. Kretlow
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892
| |
Collapse
|
36
|
DiCiccio AM, Coates GW. Ring-Opening Copolymerization of Maleic Anhydride with Epoxides: A Chain-Growth Approach to Unsaturated Polyesters. J Am Chem Soc 2011; 133:10724-7. [DOI: 10.1021/ja203520p] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Angela M. DiCiccio
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
37
|
Kim K, Dean D, Lu A, Mikos AG, Fisher JP. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater 2011; 7:1249-64. [PMID: 21074640 PMCID: PMC3031657 DOI: 10.1016/j.actbio.2010.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 02/03/2023]
Abstract
Incorporation of hydroxyapatite (HA) within a degradable polymeric scaffold may provide a favorable synthetic microenvironment that more closely mimics natural bone tissue physiology. Both incorporation of HA nanoparticles and alterations of the paracrine cell-cell signaling distance may affect the intercellular signaling mechanism and facilitate enhanced osteogenic signal expression among the implanted cell population. In this study we investigate the effect of the incorporation of HA nanoparticles into poly(propylene fumarate) (PPF) scaffolds on the surface properties of composite scaffolds and early osteogenic growth factor gene expression in relation to initial cell seeding density. The results of surface characterization indicated that HA addition improved the surface properties of PPF/HA composite scaffolds by increasing the roughness, hydrophilicity, protein adsorption, and initial cell attachment. Rat bone marrow stromal cells (BMSCs), which were CD34-, CD45-, CD29+, and CD90+, were cultured on three-dimensional (3-D) macroporous PPF/HA scaffolds at two different initial cell seeding densities (0.33 and 1.00 million cells per scaffold) for 8 days. The results demonstrated that endogenous osteogenic signal expression profiles, including bone morphogenetic protein-2, fibroblast growth factor-2, and transforming growth factor-β1, as well as the transcriptional factor Runx2, were affected by both HA amount and initial cell seeding density. Up-regulated expression of osteogenic growth factor genes was related to subsequent osteoblastic differentiation of rat BMSCs on 3-D scaffolds, as characterized by alkaline phosphatase activity, osteocalcin mRNA expression, and calcium deposition. Thus, the PPF/HA composite scaffold construction parameters, including amount of HA incorporated and initial cell seeding density, may be utilized to induce the osteoblastic differentiation of transplanted rat BMSCs.
Collapse
Affiliation(s)
- Kyobum Kim
- Dept. of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD
| | - David Dean
- Dept. of Neurological Surgery, Case Western Reserve University, Cleveland, OH
| | - Anqi Lu
- Dept. of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD
| | | | - John P. Fisher
- Fischell Dept. of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
38
|
Metabolic production of a novel polymer feedstock, 3-carboxy muconate, from vanillin. Appl Microbiol Biotechnol 2011; 90:107-16. [DOI: 10.1007/s00253-010-3078-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
39
|
Yang Q, Shao FJ, Lu DN, Kimura Y. Preparation and biodegradation of hydroxyl terminated poly(fumaric acid-co-diethylene glycol) and its segmented polyurethane. J Appl Polym Sci 2010. [DOI: 10.1002/app.33465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Gyawali D, Nair P, Zhang Y, Tran RT, Zhang C, Samchukov M, Makarov M, Kim H, Yang J. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 2010; 31:9092-105. [PMID: 20800893 PMCID: PMC2954112 DOI: 10.1016/j.biomaterials.2010.08.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/09/2010] [Indexed: 01/31/2023]
Abstract
Herein, we report a first citric acid (CA)-derived in situ crosslinkable biodegradable polymer, poly(ethylene glycol) maleate citrate (PEGMC). The synthesis of PEGMC could be carried out via a one-pot polycondensation reaction without using organic solvents or catalysts. PEGMC could be in situ crosslinked into elastomeric PPEGMC hydrogels. The performance of hydrogels in terms of swelling, degradation, and mechanical properties were highly dependent on the molar ratio of monomers, crosslinker concentration, and crosslinking mechanism used in the synthesis process. Cyclic conditioning tests showed that PPEGMC hydrogels could be compressed up to 75% strain without permanent deformation and with negligible hysteresis. Water-soluble PEGMC demonstrated excellent cytocompatibilty in vitro. The degradation products of PPEGMC also showed minimal cytotoxicity in vitro. Animal studies in rats clearly demonstrated the excellent injectability of PEGMC and degradability of the in situ-formed PPEGMC. PPEGMC elicited minimal inflammation in the early stages post-injection and was completely degraded within 30 days in rats. In conclusion, the development of CA-derived injectable biodegradable PEGMC presents numerous opportunities for material innovation and offers excellent candidate materials for in situ tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Dipendra Gyawali
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| | - Parvathi Nair
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| | - Yi Zhang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| | - Richard T. Tran
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| | - Chi Zhang
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Mikhail Samchukov
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Marina Makarov
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Harry Kim
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Jian Yang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| |
Collapse
|
41
|
The effect of chemistry on the polymerization, thermo-mechanical properties and degradation rate of poly(β-amino ester) networks. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Cicotte KN, Hedberg-Dirk EL, Dirk SM. Synthesis and electrospun fiber mats of lowTgpoly(propylene fumerate-co-propylene maleate). J Appl Polym Sci 2010. [DOI: 10.1002/app.32014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Tran RT, Thevenot P, Gyawali D, Chiao JC, Tang L, Yang J. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism. SOFT MATTER 2010; 6:2449-2461. [PMID: 22162975 PMCID: PMC3233194 DOI: 10.1039/c001605e] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The need for advanced materials in emerging technologies such as tissue engineering has prompted increased research to produce novel biodegradable polymers elastic in nature and mechanically compliant with the host tissue. We have developed a soft biodegradable elastomeric platform biomaterial created from citric acid, maleic anhydride, and 1,8-octanediol, poly(octamethylene maleate (anhydride) citrate) (POMaC), which is able to closely mimic the mechanical properties of a wide range of soft biological tissues. POMaC features a dual crosslinking mechanism, which allows for the option of the crosslinking POMaC using UV irradiation and/or polycondensation to fit the needs of the intended application. The material properties, degradation profiles, and functionalities of POMaC thermoset networks can all be tuned through the monomer ratios and the dual crosslinking mechanism. POMaC polymers displayed an initial modulus between 0.03 and 1.54 MPa, and elongation at break between 48% and 534% strain. In vitro and in vivo evaluation using cell culture and subcutaneous implantation, respectively, confirmed cell and tissue biocompatibility. POMaC biodegradable polymers can also be combined with MEMS technology to fabricate soft and elastic 3D microchanneled scaffolds for tissue engineering applications. The introduction of POMaC will expand the choices of available biodegradable polymeric elastomers. The dual crosslinking mechanism for biodegradable elastomer design should contribute to biomaterials science.
Collapse
Affiliation(s)
- Richard T. Tran
- Department of Bioengineering, The University of Texas, Arlington, TX, 76019, USA; Fax: +817-272-2251; Tel: +817-272-0561
| | - Paul Thevenot
- Department of Bioengineering, The University of Texas, Arlington, TX, 76019, USA; Fax: +817-272-2251; Tel: +817-272-0561
| | - Dipendra Gyawali
- Department of Bioengineering, The University of Texas, Arlington, TX, 76019, USA; Fax: +817-272-2251; Tel: +817-272-0561
| | - Jung-Chih Chiao
- Department of Electrical Engineering, The University of Texas, Arlington, TX, 76019, USA
| | - Liping Tang
- Department of Bioengineering, The University of Texas, Arlington, TX, 76019, USA; Fax: +817-272-2251; Tel: +817-272-0561
| | - Jian Yang
- Department of Bioengineering, The University of Texas, Arlington, TX, 76019, USA; Fax: +817-272-2251; Tel: +817-272-0561
| |
Collapse
|
44
|
Barrett DG, Yousaf MN. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism. Molecules 2009; 14:4022-50. [PMID: 19924045 PMCID: PMC6255442 DOI: 10.3390/molecules14104022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/22/2009] [Accepted: 09/28/2009] [Indexed: 11/17/2022] Open
Abstract
Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, alpha-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.
Collapse
Affiliation(s)
| | - Muhammad N. Yousaf
- Department of Chemistry and Carolina Center for Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
45
|
Kim K, Dean D, Mikos AG, Fisher JP. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on cross-linked poly(propylene fumarate) disks. Biomacromolecules 2009; 10:1810-7. [PMID: 19469498 DOI: 10.1021/bm900240k] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intercellular signaling mechanisms among a transplanted cell population are largely determined by the cell population itself as well as the surrounding environment. Changes in cell-to-cell paracrine signaling distance can be obtained by altering cell density, and signal expression of growth factors can be enhanced by auto/paracrine signal transduction. To examine these relationships, we investigated the effect of cell seeding density on viability, proliferation, differentiation, and the endogenous osteogenic signal expression among rat bone marrow stromal cells (BMSCs) cultured on a 2D disk. Rat BMSCs were isolated from rats and then cultured for 8 days on biodegradable poly(propylene fumarate) disks with three different seeding densities (0.06, 0.15, and 0.30 million cells/disk). At days 1, 4, and 8, viability by live/dead fluorescent staining, DNA amount, osteogenic differentiation by alkaline phosphatase and osteocalcin mRNA expression, calcium deposition, and osteogenic growth factor mRNA expression were assayed. Osteogenic signal expression was evaluated using quantitative reverse transcriptase-polymerase chain reaction, and signals of interest include bone morphogenetic protein-2, transforming growth factor-β(1), fibroblast growth factor-2, and platelet-derived growth factor-A. The results from this study demonstrate that rat BMSCs were viable over 8 days without being affected by cell density and that both cell proliferation rate and early osteogenic differentiation were stimulated by lower cell seeding density. Most importantly, this study has demonstrated for the first time that the temporal gene expression profiles of endogenous growth factors can be controlled by altering the initial cell seeding density on poly(propylene fumarate) disks. Therefore, our results suggest that changes in the paracrine signal distance by altering cell seeding density may be a useful strategy to optimize the cell-biomaterial construct microenvironments to enhance the osteogenic signal expression.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | | | | | | |
Collapse
|
46
|
Jabbari E, He X, Valarmathi MT, Sarvestani AS, Xu W. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J Biomed Mater Res A 2009; 89:124-37. [PMID: 18431754 DOI: 10.1002/jbm.a.31936] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In situ crosslinkable biomaterials with degradation profiles that can be tailored to a particular application are indispensable for treating irregularly shaped defects and for fabrication of shape-selective scaffolds. The objective of this work was to synthesize ultra low molecular weight functionalized PLA and PLGA macromers that can be grafted with bioactive peptides and crosslinked in situ to fabricate biodegradable functional scaffolds. In situ crosslinkable lactide-co-glycolide macromer (cMLGA; "c" for crosslinkable, "M" for macromer, and "LGA" for lactide-co-glycolide) was synthesized by anionic polymerization of lactide and glycolide monomers followed by condensation polymerization with fumaryl chloride. The cMLA (100% L-lactide) and cMLGA macromers formed porous crosslinked scaffolds with NVP as the crosslinker. The mass loss of the crosslinked cMLA and cMLGA was linear with incubation time in vitro (zero-order degradation) and the degradation rate depended on the ratio of lactide to glycolide. cMLGA scaffold with 1:1 lactide to glycolide ratio completely degraded after 4 weeks while the cMLA lost less than 40% of its initial mass after 35 weeks. When cMLA scaffold was functionalized with acrylated integrin-binding Ac-GRGD amino acid sequence, bone marrow stromal (BMS) cells attached and spread on the cMLA scaffold and exhibited focal-point cell adhesion. The mRNA expression levels of collagen-1alpha, osteonectin, and osteopontin for BMS cells seeded in the scaffolds with 1 and 5% Ac-GRGD were upregulated compared with those without Ac-GRGD. cMLGA is attractive as in situ crosslinkable macromer for fabrication of functional scaffolds with degradation characteristics that can be tailored to a particular application.
Collapse
Affiliation(s)
- Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratories, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | | | |
Collapse
|
47
|
Neumann MG, Schmitt CC, Horn MA. The effect of the mixtures of photoinitiators in polymerization efficiencies. J Appl Polym Sci 2009. [DOI: 10.1002/app.28949] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Abstract
This protocol describes the synthesis of 500-4,000 Da poly(propylene fumarate) (PPF) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently cross-linked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of cross-linked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight. The purity of the reactants and the exclusion of water from the reaction system are of utmost importance in the generation of high-molecular-weight PPF products. Additionally, the reaction time and temperature influence the molecular weight of the PPF product. The expected time required to complete this protocol is 3 d.
Collapse
Affiliation(s)
| | | | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
49
|
Kretlow JD, Mikos AG. 2007 AIChE Alpha Chi Sigma Award: From Material to Tissue: Biomaterial Development, Scaffold Fabrication, and Tissue Engineering. AIChE J 2008; 54:3048-3067. [PMID: 19756176 DOI: 10.1002/aic.11610] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The need for techniques to facilitate the regeneration of failing or destroyed tissues remains great with the aging of the worldwide population and the continued incidence of trauma and diseases such as cancer. A 16-year history in biomaterial scaffold development and tissue engineering is examined, beginning with the synthesis of novel materials and fabrication of 3D porous scaffolds. Exploring cell-scaffold interactions and subsequently cellular delivery using biomaterial carriers, we have developed a variety of techniques for bone and cartilage engineering. In addition to delivering cells, we have utilized growth factors, DNA, and peptides to improve the in vitro and in vivo regeneration of tissues. This review covers important developments and discoveries within our laboratory, and the increasing breadth in the scope of our work within the expanding field of tissue engineering is presented.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892
| | | |
Collapse
|
50
|
Ifkovits JL, Burdick JA. Review: Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. ACTA ACUST UNITED AC 2007; 13:2369-85. [PMID: 17658993 DOI: 10.1089/ten.2007.0093] [Citation(s) in RCA: 413] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Photopolymerizable and degradable biomaterials are finding widespread application in the field of tissue engineering for the engineering of tissues such as bone, cartilage, and liver. The spatial and temporal control afforded by photoinitiated polymerizations has allowed for the development of injectable materials that can deliver cells and growth factors, as well as for the fabrication of scaffolding with complex structures. The materials developed for these applications range from entirely synthetic polymers (e.g., poly(ethylene glycol)) to purely natural polymers (e.g., hyaluronic acid) that are modified with photoreactive groups, with degradation based on the hydrolytic or enzymatic degradation of bonds in the polymer backbone or crosslinks. The degradation behavior also ranges from purely bulk to entirely surface degrading, based on the nature of the backbone chemistry and type of degradable units. The mechanical properties of these polymers are primarily based on factors such as the network crosslinking density and polymer concentration. As we better understand biological features necessary to control cellular behavior, smarter materials are being developed that can incorporate and mimic many of these factors.
Collapse
Affiliation(s)
- Jamie L Ifkovits
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|