1
|
Magnin A, Entzmann L, Bazin A, Pollet E, Avérous L. Green Recycling Process for Polyurethane Foams by a Chem-Biotech Approach. CHEMSUSCHEM 2021; 14:4234-4241. [PMID: 33629810 DOI: 10.1002/cssc.202100243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Polyurethanes (PUs) are highly resistant materials used for building insulation or automotive seats. The polyurethane end-of-life issue must be addressed by the development of efficient recycling techniques. Since conventional recycling processes are not suitable for thermosets, waste management of PU foam is particularly questioning. By coupling biological and chemical processes, this study aimed at developing a green recycling pathway for PU foam using enzymes for depolymerization. For instance, enzymatic degradation of a PU foam synthesized with polycaprolactone and toluene diisocyanate led to a weight loss of 25 % after 24 h of incubation. The corresponding degradation products were recovered and identified as 6-hydroxycaproic acid and a short acid-terminated diurethane. An organometallic-catalyzed synthesis of second-generation polymers from these building blocks was carried out. A polymer with a high average molar mass of 74000 (Mw ) was obtained by mixing 50 % of recycled building blocks and 50 % of neat 6-hydroxycaproic acid. A poly(ester urethane) was synthesized without the use of toxic and decried polyisocyanates. It is the first time that a study offers the vision of a recycling loop starting from PU wastes and finishing with a second-generation polymer in a full circular approach.
Collapse
Affiliation(s)
- Audrey Magnin
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Lisa Entzmann
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Alfred Bazin
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
2
|
Sowmya B, Hemavathi AB, Panda PK. Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater 2021; 10:91-117. [PMID: 34075571 PMCID: PMC8271057 DOI: 10.1007/s40204-021-00157-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/15/2021] [Indexed: 12/27/2022] Open
Abstract
The restoration of normal functioning of damaged body tissues is one of the major objectives of tissue engineering. Scaffolds are generally used as artificial supports and as substrates for regenerating new tissues and should closely mimic natural extracellular matrix (ECM). The materials used for fabricating scaffolds must be biocompatible, non-cytotoxic and bioabsorbable/biodegradable. For this application, specifically biopolymers such as PLA, PGA, PTMC, PCL etc. satisfying the above criteria are promising materials. Poly(ε-caprolactone) (PCL) is one such potential candidate which can be blended with other materials forming blends, copolymers and composites with the essential physiochemical and mechanical properties as per the requirement. Nanofibrous scaffolds are fabricated by various techniques such as template synthesis, fiber drawing, phase separation, self-assembly, electrospinning etc. Among which electrospinning is the most popular and versatile technique. It is a clean, simple, tunable and viable technique for fabrication of polymer-based nanofibrous scaffolds. The design and fabrication of electrospun nanofibrous scaffolds are of intense research interest over the recent years. These scaffolds offer a unique architecture at nano-scale with desired porosity for selective movement of small molecules and form a suitable three-dimensional matrix similar to ECM. This review focuses on PCL synthesis, modifications, properties and scaffold fabrication techniques aiming at the targeted tissue engineering applications.
Collapse
Affiliation(s)
- B Sowmya
- Materials Science Division, CSIR - National Aerospace Laboratories, Bangalore, 560017, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A B Hemavathi
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, 570 006, India
| | - P K Panda
- Materials Science Division, CSIR - National Aerospace Laboratories, Bangalore, 560017, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Lang K, Sánchez-Leija RJ, Gross RA, Linhardt RJ. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters. Polymers (Basel) 2020; 12:E2969. [PMID: 33322728 PMCID: PMC7764582 DOI: 10.3390/polym12122969] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bio-based polyol polyesters are biodegradable elastomers having potential utility in soft tissue engineering. This class of polymers can serve a wide range of biomedical applications. Materials based on these polymers are inherently susceptible to degradation during the period of implantation. Factors that influence the physicochemical properties of polyol polyesters might be useful in achieving a balance between durability and biodegradability. The characterization of these polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical testing, and degradation, have revealed many of their molecular-level differences. The impact of the polyol component on the properties of these bio-based polyesters and the optimal reaction conditions for their synthesis are only now beginning to be resolved. This review describes our current understanding of polyol polyester structural properties as well as a discussion of the more commonly used polyol monomers.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
| | - Regina J. Sánchez-Leija
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
4
|
Huang W, Zhai J, Zhang C, Hu X, Zhu N, Chen K, Guo K. 100% Bio-Based Polyamide with Temperature/Ultrasound Dually Triggered Reversible Cross-Linking. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weijun Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jinglin Zhai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Changqi Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
5
|
Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Gabirondo E, Sangroniz A, Etxeberria A, Torres-Giner S, Sardon H. Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polym Chem 2020. [DOI: 10.1039/d0py00088d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly(hydroxy acids) derived from the self-condensation of hydroxy acid are biodegradable and can be fully recycled in a Circular Economy approach.
Collapse
Affiliation(s)
- Elena Gabirondo
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Ainara Sangroniz
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Agustin Etxeberria
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- 46980 Paterna
- Spain
| | - Haritz Sardon
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| |
Collapse
|
7
|
Bhagabati P, Hazarika D, Katiyar V. Tailor-made ultra-crystalline, high molecular weight poly(ε-caprolactone) films with improved oxygen gas barrier and optical properties: a facile and scalable approach. Int J Biol Macromol 2019; 124:1040-1052. [DOI: 10.1016/j.ijbiomac.2018.11.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
8
|
Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539990] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Miguel Espinoza
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Harshal Indrabhan Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Eduardo San Martin Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Rocio Casañas Pimentel
- CONACYT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
9
|
Duong VT, Unhelkar MH, Kelly JE, Kim SH, Butts CT, Martin RW. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Integr Biol (Camb) 2018; 10:768-779. [PMID: 30516771 PMCID: PMC6336102 DOI: 10.1039/c8ib00140e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In plants, esterase/lipases perform transesterification reactions, playing an important role in the synthesis of useful molecules, such as those comprising the waxy coatings of leaf surfaces. Plant genomes and transcriptomes have provided a wealth of data about expression patterns and the circumstances under which these enzymes are upregulated, e.g. pathogen defense and response to drought; however, predicting their functional characteristics from genomic or transcriptome data is challenging due to weak sequence conservation among the diverse members of this group. Although functional sequence blocks mediating enzyme activity have been identified, progress to date has been hampered by the paucity of information on the structural relationships among these regions and how they affect substrate specificity. Here we present methodology for predicting overall protein flexibility and active site flexibility based on molecular modeling and analysis of protein structure networks (PSNs). We define two new types of specialized PSNs: sequence region networks (SRNs) and active site networks (ASNs), which provide parsimonious representations of molecular structure in reference to known features of interest. Our approach, intended as an aid to target selection for poorly characterized enzyme classes, is demonstrated for 26 previously uncharacterized esterase/lipases from the genome of the carnivorous plant Drosera capensis and validated using a case/control design. Analysis of the network relationships among functional blocks and among the chemical moieties making up the catalytic triad reveals potentially functionally significant differences that are not apparent from sequence analysis alone.
Collapse
Affiliation(s)
- Vy T. Duong
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| | | | | | | | - Carter T. Butts
- Departments of Sociology, Statistics, and Electrical Engineering & Computer Science, UC Irvine
| | - Rachel W. Martin
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| |
Collapse
|
10
|
Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. PEG-modified poly(10,11-dihydroxyundecanoic acid) amphiphilic copolymers. Grafting versus macromonomer copolymerization approaches using CALB. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Pakalapati H, Arumugasamy SK, Jewaratnam J, Wong YJ, Khalid M. Parametric optimization of polycaprolactone synthesis catalysed by Candida antarctica lipase B using response surface methodology. Biopolymers 2018; 109:e23240. [PMID: 30489632 DOI: 10.1002/bip.23240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/06/2022]
Abstract
A statistical approach with D-optimal design was used to optimize the process parameters for polycaprolactone (PCL) synthesis. The variables selected were temperature (50°C-110°C), time (1-7 h), mixing speed (50-500 rpm) and monomer/solvent ratio (1:1-1:6). Molecular weight was chosen as response and was determined using matrix-assisted laser desorption/ionization time of flight (MALDI TOF). Using the D-optimal method in design of experiments, the interactions between parameters and responses were analysed and validated. The results show a good agreement with a minimum error between the actual and predicted values.
Collapse
Affiliation(s)
- Harshini Pakalapati
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Senthil Kumar Arumugasamy
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Jegalakshimi Jewaratnam
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Yong Jie Wong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Group (GAMRG), School of Science & Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
12
|
Todea A, Aparaschivei D, Badea V, Boeriu CG, Peter F. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone. Biotechnol J 2018. [PMID: 29542861 DOI: 10.1002/biot.201700629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developments of past years placed the bio-based polyesters as competitive substitutes for fossil-based polymers. Moreover, enzymatic polymerization using lipase catalysts has become an important green alternative to chemical polymerization for the synthesis of polyesters with biomedical applications, as several drawbacks related to the presence of traces of metal catalysts, toxicity and higher temperatures could be avoided. Copolymerization of ϵ-caprolactone (CL) with four hydroxy-fatty acids (HFA) from renewable sources, 10-hydroxystearic acid, 12-hydroxystearic acid, ricinoleic acid, and 16-hydroxyhexadecanoic acid, was carried out using commercially available immobilized lipases from Candida antarctica B, Thermomyces lanuginosus, and Pseudomonas stutzeri, as well as a native lipase. MALDI-TOF-MS and 2D-NMR analysis confirmed the formation of linear/branched and cyclic oligomers with average molecular weight around 1200 and polymerization degree up to 15. The appropriate selection of the biocatalyst and reaction temperature allowed the tailoring of the non-cyclic/cyclic copolymer ratio and increase of the total copolymer content in the reaction product above 80%. The catalytic efficiency of the best performing biocatalyst (Lipozyme TL) is evaluated during four reaction cycles, showing excellent operational stability. The thermal stability of the reaction products is assessed based on TG and DSC analysis. This new synthetic route for biobased oligomers with novel functionalities and properties could have promising biomedical applications.
Collapse
Affiliation(s)
- Anamaria Todea
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Diana Aparaschivei
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Valentin Badea
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| | - Carmen G Boeriu
- Wageningen Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Francisc Peter
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timişoara, Carol Telbisz 6, 300001 Timişoara, Romania
| |
Collapse
|
13
|
Nguyen HD, Löf D, Hvilsted S, Daugaard AE. Highly Branched Bio-Based Unsaturated Polyesters by Enzymatic Polymerization. Polymers (Basel) 2016; 8:polym8100363. [PMID: 30974637 PMCID: PMC6432132 DOI: 10.3390/polym8100363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/03/2023] Open
Abstract
A one-pot, enzyme-catalyzed bulk polymerization method for direct production of highly branched polyesters has been developed as an alternative to currently used industrial procedures. Bio-based feed components in the form of glycerol, pentaerythritol, azelaic acid, and tall oil fatty acid (TOFA) were polymerized using an immobilized Candida antarctica lipase B (CALB) and the potential for an enzymatic synthesis of alkyds was investigated. The developed method enables the use of both glycerol and also pentaerythritol (for the first time) as the alcohol source and was found to be very robust. This allows simple variations in the molar mass and structure of the polyester without premature gelation, thus enabling easy tailoring of the branched polyester structure. The postpolymerization crosslinking of the polyesters illustrates their potential as binders in alkyds. The formed films had good UV stability, very high water contact angles of up to 141° and a glass transition temperature that could be controlled through the feed composition.
Collapse
Affiliation(s)
- Hiep Dinh Nguyen
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - David Löf
- Hempel A/S, Lundtoftegårdsvej 91, DK-2800 Kgs. Lyngby, Denmark.
| | - Søren Hvilsted
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Anders Egede Daugaard
- Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Scherkus C, Schmidt S, Bornscheuer UT, Gröger H, Kara S, Liese A. A Fed-Batch Synthetic Strategy for a Three-Step Enzymatic Synthesis of Poly-ϵ-caprolactone. ChemCatChem 2016. [DOI: 10.1002/cctc.201600806] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Scherkus
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Sandy Schmidt
- Dept. of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis, Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Harald Gröger
- Organic Chemistry I, Faculty of Chemistry; Bielefeld University; P.O. Box 100131 33501 Bielefeld Germany
| | - Selin Kara
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| |
Collapse
|
15
|
Stempfle F, Ortmann P, Mecking S. Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. Chem Rev 2016; 116:4597-641. [DOI: 10.1021/acs.chemrev.5b00705] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Florian Stempfle
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| | - Patrick Ortmann
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| | - Stefan Mecking
- Chair of
Chemical Materials
Science, Department of Chemistry, University of Konstanz, Universitätsstrasse
10, D-78457 Konstanz, Germany
| |
Collapse
|
16
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
17
|
Jiang Y, Maniar D, Woortman AJJ, Alberda van Ekenstein GOR, Loos K. Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides. Biomacromolecules 2015; 16:3674-85. [DOI: 10.1021/acs.biomac.5b01172] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yi Jiang
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Dutch Polymer
Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Dina Maniar
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Inorganic
and Physical Chemistry Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Albert J. J. Woortman
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gert O. R. Alberda van Ekenstein
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katja Loos
- Department
of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Dutch Polymer
Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
18
|
Legay S, Guerriero G, Deleruelle A, Lateur M, Evers D, André CM, Hausman JF. Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall. PLANT MOLECULAR BIOLOGY 2015; 88:21-40. [PMID: 25786603 DOI: 10.1007/s11103-015-0303-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/23/2015] [Indexed: 05/06/2023]
Abstract
Russeting, a commercially important defect in the exocarp of apple (Malus × domestica), is mainly characterized by the accumulation of suberin on the inner part of the cell wall of the outer epidermal cell layers. However, knowledge on the underlying genetic components triggering this trait remains sketchy. Bulk transcriptomic profiling was performed on the exocarps of three russeted and three waxy apple varieties. This experimental design was chosen to lower the impact of genotype on the obtained results. Validation by qPCR was carried out on representative genes and additional varieties. Gene ontology enrichment revealed a repression of lignin and cuticle biosynthesis genes in russeted exocarps, concomitantly with an enhanced expression of suberin deposition, stress responsive, primary sensing, NAC and MYB-family transcription factors, and specific triterpene biosynthetic genes. Notably, a strong correlation (R(2) = 0.976) between the expression of a MYB93-like transcription factor and key suberin biosynthetic genes was found. Our results suggest that russeting is induced by a decreased expression of cuticle biosynthetic genes, leading to a stress response which not only affects suberin deposition, but also the entire structure of the cell wall. The large number of candidate genes identified in this study provides a solid foundation for further functional studies.
Collapse
Affiliation(s)
- Sylvain Legay
- Plant Cell Wall Integrative Biology, Centre de Recherche Public - Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg,
| | | | | | | | | | | | | |
Collapse
|
19
|
Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog Lipid Res 2015; 57:40-54. [DOI: 10.1016/j.plipres.2014.12.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
|
20
|
Beyazkilic Z, Lligadas G, Ronda JC, Galià M, Cádiz V. Vinylsulfide-Containing Polyesters and Copolyesters from Fatty Acids: Thiol-yne Monomer Synthesis and Thiol-ene Functionalization. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeynep Beyazkilic
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Gerard Lligadas
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Juan Carlos Ronda
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Marina Galià
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Virginia Cádiz
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
21
|
|
22
|
Lipases in polymer chemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:69-95. [PMID: 20859733 DOI: 10.1007/10_2010_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers.
Collapse
|
23
|
Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras ECG, Andrade GC, Moura MV, Almeida RV, Freire DM. From structure to catalysis: recent developments in the biotechnological applications of lipases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:684506. [PMID: 24783219 PMCID: PMC3982246 DOI: 10.1155/2014/684506] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 12/23/2022]
Abstract
Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to "order" a "customized" enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design), as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts.
Collapse
Affiliation(s)
- Cristiane D. Anobom
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Anderson S. Pinheiro
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Rafael A. De-Andrade
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Erika C. G. Aguieiras
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Guilherme C. Andrade
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Marcelo V. Moura
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Rodrigo V. Almeida
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Denise M. Freire
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD. The quest for sustainable polyesters – insights into the future. Polym Chem 2014. [DOI: 10.1039/c3py01213a] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Stavila E, Alberda van Ekenstein GOR, Woortman AJJ, Loos K. Lipase-catalyzed ring-opening copolymerization of ε-caprolactone and β-lactam. Biomacromolecules 2013; 15:234-41. [PMID: 24294825 DOI: 10.1021/bm401514k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The enzymatic ring-opening copolymerization of ε-caprolactone (ε-CL) and β-lactam by using Candida antarctica lipase B (CAL-B) as catalyst was studied. Variation of the feed ratios of 25:75, 50:50, and 75:25 of ε-CL/β-lactam was performed. The products contain poly(ε-CL-co-β-lactam) and the homopolymers of poly(ε-CL) and poly(β-lactam). The structure of the copolymers was determined by MALDI-ToF MS. Poly(ε-CL-co-β-lactam) has an alternating and random structure consisting of alternating repeating units with oligo(ε-CL) or oligo(β-lactam). The highest fraction of the alternating copolymers resulted from the reaction with a feed ratio 50:50. The copolymer is a semicrystalline polymer with a Tm at 124 °C and Tgs at -15 and 50 °C. Interestingly, the copolymer also demonstrated cold crystallization at 29 and 74 °C, after quenching the sample from the melt in liquid nitrogen.
Collapse
Affiliation(s)
- E Stavila
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
26
|
Strompen S, Weiß M, Gröger H, Hilterhaus L, Liese A. Development of a Continuously Operating Process for the Enantioselective Synthesis of a β-Amino Acid Esterviaa Solvent-Free Chemoenzymatic Reaction Sequence. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Gómez-Patiño MB, Cassani J, Jaramillo-Flores ME, Zepeda-Vallejo LG, Sandoval G, Jimenez-Estrada M, Arrieta-Baez D. Oligomerization of 10,16-dihydroxyhexadecanoic acid and methyl 10,16-dihydroxyhexadecanoate catalyzed by lipases. Molecules 2013; 18:9317-33. [PMID: 23921794 PMCID: PMC6270567 DOI: 10.3390/molecules18089317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022] Open
Abstract
The main monomer of tomato cuticle, 10,16-dihydroxyhexadecanoic acid (10,16-DHPA) and its methyl ester derivative (methyl-10,16-dihydroxyhexadecanote; methyl-10,16-DHHD), were used to study their oligomerization reactions catalyzed by five lipases: Candida antarctica lipase B (CAL-B), Rhizomucor miehei lipase (RM), Thermomyces lanuginosus lipase (TL), Pseudomonas cepacia lipase (PCL) and porcine pancreatic lipase (PPL). For 10,16-DHPA, optimum yields were obtained at 60 °C using toluene and 2-methyl-2-butanol (2M2B) as solvent, while for methyl-10,16-DHHD the bests yields were obtained in toluene and acetonitrile. Both reactions leaded to linear polyesters according to the NMR and FT-IR analysis, and there was no data indicating the presence of branched polymers. Using optimized conditions, poly(10,16-DHPA) and poly(methyl-10,16-DHHD) with Mw = 814 and Mn = 1,206 Da, and Mw = 982 and Mn = 860 Da, respectively, were formed according to their MALDI-TOF MS and ESI-MS data. The self-assembly of the polyesters obtained were analyzed by AFM.
Collapse
Affiliation(s)
- M. Beatriz Gómez-Patiño
- Instituto Politécnico Nacional - ENCB, Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, México, D.F., CP 11340, Mexico
| | - Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calz. del Hueso No.1100, Col. Villa Quietud, México, D.F., CP 04960, Mexico
| | - María Eugenia Jaramillo-Flores
- Instituto Politécnico Nacional - ENCB, Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, México, D.F., CP 11340, Mexico
| | - L. Gerardo Zepeda-Vallejo
- Instituto Politécnico Nacional - ENCB, Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, México, D.F., CP 11340, Mexico
| | | | - Manuel Jimenez-Estrada
- Departamento de Productos Naturales, Instituto de Química, UNAM. México, D.F. CP 04510, Mexico
| | - Daniel Arrieta-Baez
- Instituto Politécnico Nacional - CNMN, Calle Luis Enrique Erro s/n, Unidad Profesional Adolfo López Mateos, Col. Zacatenco, México D.F., CP 07738, Mexico
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-55-5729-6000 (ext. 57501, 46081); Fax: +52-55-5729-6000 (ext. 46080, 57500)
| |
Collapse
|
28
|
Zhao H, Zhang C, Crittle TD. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Ishimoto K, Arimoto M, Okuda T, Yamaguchi S, Aso Y, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N. Biobased Polymers: Synthesis of Graft Copolymers and Comb Polymers Using Lactic Acid Macromonomer and Properties of the Product Polymers. Biomacromolecules 2012; 13:3757-68. [DOI: 10.1021/bm301212a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Masahiko Ishii
- Vehicle Engineering Group, Toyota, Paint & Finishing Design Department, Toyota Motor Co., Aichi 471-8572, Japan
| | - Koji Morita
- Basic Technologies
Division,
Nippon Bee Chemical Co., Shodai-Ohtani, Hirakata, Osaka 573-1153,
Japan
| | - Hirofumi Yamashita
- Basic Technologies
Division,
Nippon Bee Chemical Co., Shodai-Ohtani, Hirakata, Osaka 573-1153,
Japan
| | - Naoya Yabuuchi
- Basic Technologies
Division,
Nippon Bee Chemical Co., Shodai-Ohtani, Hirakata, Osaka 573-1153,
Japan
| |
Collapse
|
30
|
Yoon KR, Hong SP, Kong B, Choi IS. Polycondensation of Sebacic Acid with Primary and Secondary Hydroxyl Groups Containing Diols Catalyzed by Candida antarctica Lipase B. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.585267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kuk Ro Yoon
- a Nano-bio-sensor Research Team, Department of Chemistry , Hannam University , Daejeon , Korea
| | - Suk-Pyo Hong
- b Department of Chemistry and School of Molecular Science , KAIST , Daejeon , Korea
| | - Bokyung Kong
- b Department of Chemistry and School of Molecular Science , KAIST , Daejeon , Korea
| | - Insung S. Choi
- a Nano-bio-sensor Research Team, Department of Chemistry , Hannam University , Daejeon , Korea
| |
Collapse
|
31
|
|
32
|
Moyori T, Tang T, Takasu A. Dehydration Polycondensation of Dicarboxylic Acids and Diols Using Sublimating Strong Brønsted Acids. Biomacromolecules 2012; 13:1240-3. [DOI: 10.1021/bm300231d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takaya Moyori
- Department
of Frontier Materials, Graduate School of
Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tang Tang
- Department
of Frontier Materials, Graduate School of
Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Akinori Takasu
- Department
of Frontier Materials, Graduate School of
Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
33
|
Okuda T, Ishimoto K, Ohara H, Kobayashi S. Renewable Biobased Polymeric Materials: Facile Synthesis of Itaconic Anhydride-Based Copolymers with Poly(l-lactic acid) Grafts. Macromolecules 2012. [DOI: 10.1021/ma300387j] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tomoya Okuda
- Department of Biobased Materials
Science, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiyoaki Ishimoto
- Department of Biobased Materials
Science, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hitomi Ohara
- Department of Biobased Materials
Science, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiro Kobayashi
- Center for Nanomaterials and
Devices, Kyoto Institute of Technology,
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
34
|
Sousa AF, Silvestre AJD, Gandini A, Neto CP. Synthesis of aliphatic suberin-like polyesters by ecofriendly catalytic systems. HIGH PERFORM POLYM 2012. [DOI: 10.1177/0954008311431114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A rapid and ecofriendly microwave assisted p-dodecylbenzenesulfonic acid (DBSA) emulsion polycondensation of long-chain suberin model comonomers was successfully carried out for the first time. Microwave irradiation reduced drastically the reaction time to only 15 min, compared with the DBSA/water polycondensation under conventional heating. Bulk polycondensation using CALB lipase or Bi(OTf)3 were also carried out with isolation yields up to 93% and number-average molecular weights up to around 7300.
Collapse
Affiliation(s)
- Andreia F. Sousa
- CICECO and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Alessandro Gandini
- CICECO and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
35
|
Abdul Rahman MB, Chaibakhsh N, Basri M. Effect of alcohol structure on the optimum condition for novozym 435-catalyzed synthesis of adipate esters. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2011; 2011:162987. [PMID: 22389769 PMCID: PMC3282151 DOI: 10.4061/2011/162987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/20/2011] [Indexed: 12/25/2022]
Abstract
Immobilized Candida antarctica lipase B, Novozym 435, was used as the biocatalyst in the esterification of adipic acid with four different isomers of butanol (n-butanol, sec-butanol, iso-butanol, and tert-butanol). Optimum conditions for the synthesis of adipate esters were obtained using response surface methodology approach with a four-factor-five-level central composite design concerning important reaction parameters which include time, temperature, substrate molar ratio, and amount of enzyme. Reactions under optimized conditions has yielded a high percentage of esterification (>96%) for n-butanol, iso-butanol, and sec-butanol, indicating that extent of esterification is independent of the alcohol structure for primary and secondary alcohols at the optimum conditions. Minimum reaction time (135 min) for achieving maximum ester yield was obtained for iso-butanol. The required time for attaining maximum yield and also the initial rates in the synthesis of di-n-butyl and di-sec-butyl adipate were nearly the same. Immobilized Candida antarctica lipase B was also capable of esterifying tert-butanol with a maximum yield of 39.1%. The enzyme is highly efficient biocatalyst for the synthesis of adipate esters by offering a simple production process and a high esterification yield.
Collapse
|
36
|
Ohara H, Nishioka E, Yamaguchi S, Kawai F, Kobayashi S. Protease-Catalyzed Oligomerization and Hydrolysis of Alkyl Lactates Involving l-Enantioselective Deacylation Step. Biomacromolecules 2011; 12:3833-7. [DOI: 10.1021/bm201004g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hitomi Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku,
Kyoto 606-8585, Japan
| | - Emiko Nishioka
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku,
Kyoto 606-8585, Japan
| | - Syuhei Yamaguchi
- Department of Biobased Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku,
Kyoto 606-8585, Japan
| | - Fusako Kawai
- Center
for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiro Kobayashi
- Center
for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
37
|
Arrieta-Baez D, Cruz-Carrillo M, Gómez-Patiño MB, Zepeda-Vallejo LG. Derivatives of 10,16-dihydroxyhexadecanoic acid isolated from tomato (Solanum lycopersicum) as potential material for aliphatic polyesters. Molecules 2011; 16:4923-36. [PMID: 21677605 PMCID: PMC6264701 DOI: 10.3390/molecules16064923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/01/2011] [Accepted: 06/10/2011] [Indexed: 11/16/2022] Open
Abstract
The main monomer of tomato cuticle, 10,16-dihydroxyhexadecanoic acid (or 10,16-dihydroxypalmitic acid; 10,16-DHPA), was isolated and used to efficiently synthesize two different monomers (16-hydroxy-10-oxo-hexadecanoic and 7-oxohexa-decanedioic acids) in addition to a dimer and linear and branched trimers. These compounds were fully characterized using NMR and MS techniques and could be used as starting materials for the synthesis of a wide range of chemicals and bio-polyesters, particularly the latter due to their physical properties, non-toxicity, and relative abundance among raw materials.
Collapse
Affiliation(s)
- Daniel Arrieta-Baez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas-IPN, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, D.F. 11340, Mexico.
| | | | | | | |
Collapse
|
38
|
Yan J, Ye Z, Luo H, Chen M, Zhou Y, Tan W, Xiao Y, Zhang Y, Lang M. Synthesis, characterization, fluorescence labeling and cellular internalization of novel amine-functionalized poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic block copolymers. Polym Chem 2011. [DOI: 10.1039/c0py00391c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Yao D, Li G, Kuila T, Li P, Kim NH, Kim SI, Lee JH. Lipase-catalyzed synthesis and characterization of biodegradable polyester containing l-malic acid unit in solvent system. J Appl Polym Sci 2010. [DOI: 10.1002/app.33257] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Ohara H, Onogi A, Yamamoto M, Kobayashi S. Lipase-Catalyzed Oligomerization and Hydrolysis of Alkyl Lactates: Direct Evidence in the Catalysis Mechanism That Enantioselection Is Governed by a Deacylation Step. Biomacromolecules 2010; 11:2008-15. [DOI: 10.1021/bm1003674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hitomi Ohara
- R&D Center for Bio-Based Materials, Department of Bio-Based Materials Science, and Center for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akihisa Onogi
- R&D Center for Bio-Based Materials, Department of Bio-Based Materials Science, and Center for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masafumi Yamamoto
- R&D Center for Bio-Based Materials, Department of Bio-Based Materials Science, and Center for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shiro Kobayashi
- R&D Center for Bio-Based Materials, Department of Bio-Based Materials Science, and Center for Nanomaterials and Devices, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
41
|
Gross RA, Ganesh M, Lu W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 2010; 28:435-43. [PMID: 20598389 DOI: 10.1016/j.tibtech.2010.05.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 12/16/2022]
Abstract
Traditional chemical catalysts for polyester synthesis have enabled the generation of important commercial products. Undesirable characteristics of chemically catalyzed condensation polymerizations include the need to conduct reactions at high temperatures (150-280 degrees C) with metal catalysts that are toxic and lack selectivity. The latter is limiting when aspiring towards synthesis of increasingly complex and well-defined polyesters. This review describes an exciting technology that makes use of immobilized enzyme-catalysts for condensation polyester synthesis. Unlike chemical catalysts, enzymes function under mild conditions (< or =100 degrees C), which enables structure retention when polymerizing unstable monomers, circumvents the introduction of metals, and also provides selectivity that avoids protection-deprotection steps and presents unique options for structural control. Examples are provided that describe the progress made in enzyme-catalyzed polymerizations, as well as current limitations and future prospects for developing more efficient enzyme-catalysts for industrial processes.
Collapse
Affiliation(s)
- Richard A Gross
- Polytechnic Institute of NYU, Six Metro Tech Center, Brooklyn, NY 11201, USA.
| | | | | |
Collapse
|
42
|
Hydrolases Part I: Enzyme Mechanism, Selectivity and Control in the Synthesis of Well-Defined Polymers. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
43
|
Feder D, Gross RA. Exploring Chain Length Selectivity in HIC-Catalyzed Polycondensation Reactions. Biomacromolecules 2010; 11:690-7. [DOI: 10.1021/bm901272r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Feder
- NSF I/URC for Biocatalysis and Bioprocessing of Macromolecules, Department of Chemical and Biololgical Sciences, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201
| | - Richard A. Gross
- NSF I/URC for Biocatalysis and Bioprocessing of Macromolecules, Department of Chemical and Biololgical Sciences, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201
| |
Collapse
|
44
|
Gupta S, Pandey MK, Levon K, Haag R, Watterson AC, Parmar VS, Sharma SK. Biocatalytic Approach for the Synthesis of Glycerol-Based Macroamphiphiles and their Self-Assembly to Micellar Nanotransporters. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.200900391] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|
46
|
Kobayashi S. Lipase-catalyzed polyester synthesis--a green polymer chemistry. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:338-65. [PMID: 20431260 PMCID: PMC3417799 DOI: 10.2183/pjab.86.338] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemoenzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting 'green polymer chemistry'.
Collapse
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Biobased Materials, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
47
|
Zhang B, Li Y, Ai P, Sa Z, Zhao Y, Li M, Wang D, Sha K. Y-shaped diblock copolymer with epoxy-based block of poly(glycidyl methacrylate): Synthesis, characterization, and its morphology study. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Abstract
Polycaprolactone (PCL) is an important polymer due to its mechanical properties, miscibility with a large range of other polymers and biodegradability. Two main pathways to produce polycaprolactone have been described in the literature: the polycondensation of a hydroxycarboxylic acid: 6-hydroxyhexanoic acid, and the ring-opening polymerisation (ROP) of a lactone: epsilon-caprolactone (epsilon-CL). This critical review summarises the different conditions which have been described to synthesise PCL, and gives a broad overview of the different catalytic systems that were used (enzymatic, organic and metal catalyst systems). A surprising variety of catalytic systems have been studied, touching on virtually every section of the periodic table. A detailed list of reaction conditions and catalysts/initiators is given and reaction mechanisms are presented where known. Emphasis is put on the ROP pathway due to its prevalence in the literature and the superior polymer that is obtained. In addition, ineffective systems that have been tried to catalyse the production of PCL are included in the electronic supplementary information for completeness (141 references).
Collapse
Affiliation(s)
- Marianne Labet
- Driving Innovation in Chemistry and Chemical Engineering, School of Chemistry-Faculty of Science, The University of Nottingham, University Park, NG7 2RD, United Kingdom
| | | |
Collapse
|
49
|
Ishimoto K, Arimoto M, Ohara H, Kobayashi S, Ishii M, Morita K, Yamashita H, Yabuuchi N. Biobased Polymer System: Miniemulsion of Poly(alkyl methacrylate-graft-lactic acid)s. Biomacromolecules 2009; 10:2719-23. [DOI: 10.1021/bm9007937] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kiyoaki Ishimoto
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Maho Arimoto
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Hitomi Ohara
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Shiro Kobayashi
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Masahiko Ishii
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Kouji Morita
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Hirofumi Yamashita
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| | - Naoya Yabuuchi
- R&D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan, Paint and Finishing Design Department, Vehicle Engineering Group, Toyota Motor Company, Toyota, Aichi 471-8572, Japan, and Basic Technologies Division, Nippon Bee Chemical Company, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan
| |
Collapse
|
50
|
Kobayashi S. Recent Developments in Lipase-Catalyzed Synthesis of Polyesters. Macromol Rapid Commun 2009; 30:237-66. [DOI: 10.1002/marc.200800690] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022]
|