1
|
Kamada R, Miyazaki H, Janairo JIB, Chuman Y, Sakaguchi K. Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors. Molecules 2023; 28:5274. [PMID: 37446933 DOI: 10.3390/molecules28135274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Biologically derived hydrogels have attracted attention as promising polymers for use in biomedical applications because of their high biocompatibility, biodegradability, and low toxicity. Elastin-mimetic polypeptides (EMPs), which contain a repeated amino acid sequence derived from the hydrophobic domain of tropoelastin, exhibit reversible phase transition behavior, and thus, represent an interesting starting point for the development of biologically derived hydrogels. In this study, we succeeded in developing functional EMP-conjugated hydrogels that displayed temperature-responsive swelling/shrinking properties. The EMP-conjugated hydrogels were prepared through the polymerization of acrylated EMP with acrylamide. The EMP hydrogel swelled and shrank in response to temperature changes, and the swelling/shrinking capacity of the EMP hydrogels could be controlled by altering either the amount of EMP or the salt concentration in the buffer. The EMP hydrogels were able to select a uniform component of EMPs with a desired and specific repeat number of the EMP sequence, which could control the swelling/shrinking property of the EMP hydrogel. Moreover, we developed a smart hydrogel actuator based on EMP crosslinked hydrogels and non-crosslinked hydrogels that exhibited bidirectional curvature behavior in response to changes in temperature. These thermally responsive EMP hydrogels have potential use as bio-actuators for a number of biomedical applications.
Collapse
Affiliation(s)
- Rui Kamada
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiromitsu Miyazaki
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jose Isagani B Janairo
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | - Yoshiro Chuman
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Kazuyasu Sakaguchi
- Laboratory of Biological Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Porous thermosensitive coating with water-locking ability for enhanced osteogenic and antibacterial abilities. Mater Today Bio 2022; 14:100285. [PMID: 35647512 PMCID: PMC9130111 DOI: 10.1016/j.mtbio.2022.100285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/22/2022] Open
|
3
|
Nechikkattu R, Kong J, Lee YS, Moon HJ, Bae JH, Kim SH, Park SS, Ha CS. Tunable multi-responsive nano-gated mesoporous silica nanoparticles as drug carriers. Colloids Surf B Biointerfaces 2021; 208:112119. [PMID: 34571469 DOI: 10.1016/j.colsurfb.2021.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Tunable multi-responsive mesoporous silica nanoparticles were prepared by post-condensation/surface modification of MCM-41 nanoparticles. Surface grafting of a poly(N,N-dimethylaminoethyl methacrylate)-based polymer containing disulfide bonds was achieved by a click reaction. Chemical modification, morphological characteristics, and textural properties of the nanoparticles were studied using multiple characterization techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, small-angle X-ray scattering, and nitrogen adsorption/desorption behavior. The nanoparticles retained the meso-structural integrity of MCM41 and particle size < 100 nm after grafting with the polymer. The pH and redox-responsive behavior of the nanoparticles were also studied. The nanoparticles possess excellent drug-loading capacity owing to their large surface area and 'closed gate' mechanism of the grafted polymer chains. The release profile of doxorubicin at two different pH (7.4 and 5.5) and in the presence of dithiothreitol showed a dual response behavior. The nano drug carrier device exhibited efficient intracellular uptake in cancer cells with suitable cytotoxicity and pharmacokinetic behavior, and may therefore be considered a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Riyasudheen Nechikkattu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwon Kong
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Shin Lee
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Jung Moon
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Ho Bae
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sun-Hee Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sung Soo Park
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
4
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
5
|
Li J, Li B, Wang J, He L, Zhao Y. Recent Advances in Layered Double Hydroxides and Their Derivatives for Biomedical Applications. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20090441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Vy NCH, Liyanage CD, Williams RML, Fang JM, Kerns PM, Schniepp HC, Adamson DH. Surface-Initiated Passing-through Zwitterionic Polymer Brushes for Salt-Selective and Antifouling Materials. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ngoc Chau H. Vy
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Chinthani D. Liyanage
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036, United States
| | - Robert M. L. Williams
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Justin M. Fang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269-3247, United States
| | - Peter M. Kerns
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036, United States
| | - Hannes C. Schniepp
- Department of Applied Science, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Douglas H. Adamson
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3036, United States
| |
Collapse
|
7
|
Chen R, Xiang Z, Xia Y, Ma Z, Shi Q, Wong S, Yin J. Thermal and Reactive Oxygen Species Dual‐Responsive OEGylated Polysulfides with Oxidation‐Tunable Lower Critical Solution Temperatures. Macromol Rapid Commun 2020; 41:e2000206. [DOI: 10.1002/marc.202000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Runhai Chen
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230027 P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shing‐Chung Wong
- Department of Mechanical EngineeringUniversity of Akron Akron OH 44325‐3903 USA
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
8
|
Sun W, Liu W, Wu Z, Chen H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol Rapid Commun 2020; 41:e1900430. [DOI: 10.1002/marc.201900430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Sun
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Wenying Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Zhaoqiang Wu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| | - Hong Chen
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center for New Type Urbanization and Social Governance of Jiangsu ProvinceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
9
|
Gong L, Liu D, Fan T, Qin J, Li J, Zhang Q, Wu Z, Fan Z, Liu Q. Surface Modification of PTLG Terpolymer Using PNIPAAm and Its Cell Adhesion/Detachment Behavior. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Li Gong
- Fudan University Shanghai 200433 P. R. China
| | | | | | - Jingwen Qin
- Tongji University School of Medicine Shanghai 200092 P. R. China
| | - Jiafeng Li
- Fudan University Shanghai 200433 P. R. China
| | - Qin Zhang
- Fudan University Shanghai 200433 P. R. China
| | - Zeng Wu
- Fudan University Shanghai 200433 P. R. China
| | | | - Qing Liu
- Tongji University School of Medicine Shanghai 200092 P. R. China
| |
Collapse
|
10
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
11
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
12
|
Liu J, Shang J, Chen Y, Tian Y, Yang Q, Chen M, Xiong B, Zhang XB. A surface-engineered NIR light-responsive actuator for controllable modulation of collective cell migration. J Mater Chem B 2019; 7:5528-5534. [PMID: 31451832 DOI: 10.1039/c9tb01038f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical signal transduction is fundamental for maintaining and regulating cellular processes and functions. Here, we proposed a novel near-infrared (NIR) light-responsive optomechanical actuator for the directional regulation of collective cell adhesion and migration. This optomechanical actuator that is made up of a thermal-responsive copolymer hydrogel and gold nanorods (AuNRs), enables non-invasive activation by NIR light stimulation. The activation of the optomechanical actuator leads to hydrogel contraction and an increase in Young's modulus, which could be used for applying contraction force to cells cultured on the surface of the hydrogel actuator. By grafting cell adhesive peptide ligands, the cells could attach onto the surface of the actuator and displayed a NIR light illumination intensity dependent migration rate along a random orientation. To achieve the controllable modulation of cell behaviors, we employed a microcontact printing strategy for patterned presentation of adhesive ligands on this actuator and achieved directional cell alignment and cell migration through optomechanical actuation. These demonstrations suggest that this robust optomechanical actuator is promising for the optical modulation of cellular events and cell functions in various bioapplications.
Collapse
Affiliation(s)
- Jiayu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nielsen S, Olsen MH, Kongsfelt MS, Pedersen S, Daasbjerg K. Hydrosilane-Modified Poly(2-Hydroxyethyl Methacrylate) Brush as a Nanoadhesive for Efficient Silicone Bonding. ACS OMEGA 2019; 4:12130-12135. [PMID: 31460327 PMCID: PMC6682068 DOI: 10.1021/acsomega.9b01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Leaching of chemicals from adhesion promoters is, in particular, problematic for the food, water, pharmaceutical, and MedTech industries where any chemical contamination is unacceptable. A solution to this issue is to employ covalently attached nanoscale polymer brushes as adhesive layers for plastics. One of the industrially most relevant adhesion targets in that respect is poly(dimethylsiloxane) (PDMS), being used for many high-end applications such as catheters and breast implants. In this work, we have synthesized a novel surface-immobilized poly(2-hydroxyethyl methacrylate)-based brush adhesive containing reactive hydrosilane groups that can bond directly to PDMS. Two different medical grades of addition-cured PDMS were molded on top of titanium substrates already coated with the polymer brush. Titanium plates were used for the chemical analysis, and titanium rods were used for adhesion testing. Adhesion testing revealed a high adhesive force, in which cohesive failure was observed in the bulk PDMS. The necessity of the hydrosilane group in the polymer brush adhesive layer was demonstrated in comparative studies using similar brushes lacking this functionality.
Collapse
Affiliation(s)
- Stefan
Urth Nielsen
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- RadiSurf
ApS, Arresøvej 5B, 8240 Risskov, Denmark
| | - Mark Holm Olsen
- Teknologisk
Institut ApS, Gregersensvej
6, 2630 Taastrup, Denmark
| | | | - Steen
Uttrup Pedersen
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Pinho E, Soares G. Functionalization of cotton cellulose for improved wound healing. J Mater Chem B 2018; 6:1887-1898. [PMID: 32254354 DOI: 10.1039/c8tb00052b] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wound dressing research has been determined by population aging, persistence of wound infection and the increase in chronic wound cases. Thus, besides mechanical protection, wound dressings must interact with the wound and improve the healing process. To achieve this demanding goal, wound dressing research has been focussing on the development of composite wound dressings that combine the best of two or more polymeric materials. Cellulosic materials are still the most used for wound management. Their importance is reflected in the number of publications on this subject in the textile engineering field. Textile wound dressing can cause maceration to the wound and pain during removal. However, the limitations of cellulosic wound dressings can be overcome by functionalization with hydrogels, which will maintain the moisture environment and improve the drug delivery ability of cotton. Therefore, the present review summarizes the composite materials research on the functionalization of cotton cellulose with hydrogels, to be applied as a wound dressing, and the methods and techniques used to synthesize those composites.
Collapse
Affiliation(s)
- E Pinho
- Centre for Textile Science & Technology (2C2T), University of Minho, Campus Azurém, 4800-4058 Guimarãs, Portugal.
| | | |
Collapse
|
15
|
Zhuang Y, Cui M, Huang Z, Zou G, Zhang Q. Resilient collapse of thermal sensitive polymer on the surface of the optical fiber taper. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yiwei Zhuang
- CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 People's Republic of China
| | - Minxin Cui
- CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 People's Republic of China
| | - Zichao Huang
- CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 People's Republic of China
| | - Gang Zou
- CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 People's Republic of China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Key Laboratory of Optoelectronic Science and Technology, Innovation Centre of Chemistry for Energy Materials, Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 People's Republic of China
| |
Collapse
|
16
|
Nagase K, Yamato M, Kanazawa H, Okano T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2017; 153:27-48. [PMID: 29096399 DOI: 10.1016/j.biomaterials.2017.10.026] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
Abstract
Thermoresponsive surfaces, prepared by grafting of poly(N-isopropylacrylamide) (PIPAAm) or its copolymers, have been investigated for biomedical applications. Thermoresponsive cell culture dishes that show controlled cell adhesion and detachment following external temperature changes, represent a promising application of thermoresponsive surfaces. These dishes can be used to fabricate cell sheets, which are currently used as effective therapies for patients. Thermoresponsive microcarriers for large-scale cell cultivation have also been developed by taking advantage of the thermally modulated cell adhesion and detachment properties of thermoresponsive surfaces. Furthermore, thermoresponsive bioseparation systems using thermoresponsive surfaces for separating and purifying pharmaceutical proteins and therapeutic cells have been developed, with the separation systems able to maintain their activity and biological potency throughout the procedure. These applications of thermoresponsive surfaces have been improved with progress in preparation techniques of thermoresponsive surfaces, such as polymerization methods, and surface modification techniques. In the present review, the various types of PIPAAm-based thermoresponsive surfaces are summarized by describing their preparation methods, properties, and successful biomedical applications.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan.
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; Cell Sheet Tissue Engineering Center (CSTEC) and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
17
|
Heinen S, Cuéllar-Camacho JL, Weinhart M. Thermoresponsive poly(glycidyl ether) brushes on gold: Surface engineering parameters and their implication for cell sheet fabrication. Acta Biomater 2017. [PMID: 28647625 DOI: 10.1016/j.actbio.2017.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thermoresponsive polymer coatings, optimized for cell adhesion and thermally-triggered cell detachment, allow the fabrication of confluent cell sheets with intact extracellular matrix. However, rational design guidelines for such coatings are rare, since temperature-triggered cell adhesion and detachment from thermoresponsive surfaces are mechanistically not well understood. Herein, we investigated the impact of molecular weight (2, 9, 24kDa), grafting density (0.04-1.4 chains nm-2), morphology, and roughness of well-characterized thermoresponsive poly(glycidyl ether) brushes on the cell response at 37 and 20°C. NIH 3T3 mouse fibroblasts served as a model cell line for adhesion, proliferation, and cell sheet detachment. The cell response was correlated with serum protein adsorption from cell culture medium containing 10% fetal bovine serum. Intact cell sheets could be harvested from all the studied poly(glycidyl ether) coated surfaces, irrespective of the molecular weight, provided that the morphology of the coating was homogenous and the surface was fully shielded by the hydrated brush. The degree of chain overlap was estimated by the ratio of twice the polymer's Flory radius in a theta solvent to its interchain distance, which should be located in the strongly overlapping brush regime (2 Rf/l>1.4). In contrast, dense PNIPAM (2.5kDa) control monolayers did not induce protein adsorption from cell culture medium at 37°C and, as a result, did not allow a significant cell adhesion. These structural design parameters of functional poly(glycidyl ether) coatings on gold will contribute to future engineering of these thermoresponsive coatings on more common, cell culture relevant substrates. STATEMENT OF SIGNIFICANCE Cell sheet engineering as a scaffold-free approach towards tissue engineering resembles a milestone in regenerative medicine. The fabrication of confluent cell sheets maintains the extracellular matrix of cells which serves as the physiological cell scaffold. Thermoresponsive poly(glycidyl ether)s are highly cell-compatible and brushes thereof promote cell adhesion and growth without modification with additional cell adhesive ligands. Thus, a direct correlation of temperature-dependent serum protein adsorption and cell response with surface design parameters such as grafting density and molecular weight became accessible. Hence, surface engineering parameters of well-defined poly(glycidyl ether) monolayers for reproducible cell sheet fabrication have been identified. These design guidelines may also prove beneficial in the development of other brush-like thermoresponsive coatings for cell sheet engineering.
Collapse
|
18
|
Zhang S, Zhang J, Li M, Zhang W, Cao L. Grafting and properties of a porous poly(methyl methacrylate) film on a silicon surface by a one-step dipping method. J Appl Polym Sci 2017. [DOI: 10.1002/app.44930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Junhong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Ming Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Wenqi Zhang
- National Center for Advanced Packaging Company, Limited; 200 Linghu Boulevard Wuxi 214000 China
| | - Liqiang Cao
- National Center for Advanced Packaging Company, Limited; 200 Linghu Boulevard Wuxi 214000 China
| |
Collapse
|
19
|
Chen WL, Cordero R, Tran H, Ober CK. 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00450] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Liang Chen
- Department of Materials Science & Engineering, ‡Smith School of Chemical and Biomolecular Engineering, and §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roselynn Cordero
- Department of Materials Science & Engineering, ‡Smith School of Chemical and Biomolecular Engineering, and §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hai Tran
- Department of Materials Science & Engineering, ‡Smith School of Chemical and Biomolecular Engineering, and §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K. Ober
- Department of Materials Science & Engineering, ‡Smith School of Chemical and Biomolecular Engineering, and §Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion. Colloids Surf B Biointerfaces 2017; 151:143-155. [DOI: 10.1016/j.colsurfb.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
21
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Koriyama T, Takayama Y, Hisatsune C, Asoh TA, Kikuchi A. Interaction of bioactive compounds on capillary inner surfaces bearing a dense thermoresponsive polymer brush. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:900-912. [DOI: 10.1080/09205063.2016.1259546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Takuya Koriyama
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yosuke Takayama
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Chiho Hisatsune
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Taka-Aki Asoh
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
23
|
Ataman NC, Klok HA. Degrafting of Poly(poly(ethylene glycol) methacrylate) Brushes from Planar and Spherical Silicon Substrates. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01445] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nariye Cavusoglu Ataman
- Institut des Matériaux
et Institut des Sciences et Ingénierie Chimiques, Laboratoire
des Polyméres, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux
et Institut des Sciences et Ingénierie Chimiques, Laboratoire
des Polyméres, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
McInnes SJP, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:301-8. [PMID: 26654169 DOI: 10.1021/acs.langmuir.5b03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.
Collapse
Affiliation(s)
| | | | | | | | - Jingjing Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Mahriah E Alf
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
25
|
Ibanescu SA, Nowakowska J, Khanna N, Landmann R, Klok HA. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Macromol Biosci 2016; 16:676-85. [PMID: 26757483 DOI: 10.1002/mabi.201500335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/13/2015] [Indexed: 12/21/2022]
Abstract
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection-resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface-initiated atom transfer radical polymerization (SI-ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide-modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG-modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI-ATRP are an attractive alternative to grafted-onto PEG films for the preparation of surface coatings that resist bacterial adhesion.
Collapse
Affiliation(s)
- Sorin-Alexandru Ibanescu
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Justyna Nowakowska
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Nina Khanna
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, CH-4056, Basel, Switzerland
| | - Regine Landmann
- Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Wang PX, Dong YS, Lu XW, Du J, Wu ZQ. Marrying mussel inspired chemistry with photoiniferters: a novel strategy for surface functionalization. Polym Chem 2016. [DOI: 10.1039/c6py01223j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrated a novel strategy of marrying mussel inspired chemistry with photoiniferters for surface functionalization.
Collapse
Affiliation(s)
- Pei-Xi Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi-Shi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiao-Wen Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhao-Qiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
27
|
Abstract
A library of thermoresponsive polymers were developed with hydrophobic polynorbornene backbones and hydrophilic N-alkyl-amide/imide side groups, whose thermoresponsive behaviour in water could be conveniently tuned in a wide temperature range.
Collapse
Affiliation(s)
- Yuming Zhao
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ke Zhang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- The Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
28
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
29
|
Liu M, Leroux JC, Gauthier MA. Conformation–function relationships for the comb-shaped polymer pOEGMA. Prog Polym Sci 2015. [DOI: 10.1016/j.progpolymsci.2015.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Hu C, Tian F, Zheng Y, Tan CSY, West KR, Scherman OA. Cucurbit[8]uril directed stimuli-responsive supramolecular polymer brushes for dynamic surface engineering. Chem Sci 2015; 6:5303-5310. [PMID: 28717504 PMCID: PMC5504464 DOI: 10.1039/c5sc01496d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022] Open
Abstract
In situ modification of surfaces with thin layers of polymers is of growing interest as adjustment of surface properties can be made on demand. We present herein a supramolecular 'grafting to' polymer brush via the recognition of surface-bound cucurbit[8]uril (CB[8]) rotaxanes towards end-functionalised polyethylene glycol (PEG). This dynamic supramolecular method represents advantages over traditional approaches, which employ covalent bond formation in the 'grafting to' process. Brush properties can be easily modified post-preparation by exchanging the polymers with small molecules in a controlled, reversible manner. Including both redox- and light-responsive guests in a single rotaxane entity, the CB[8]-mediated preparation of the polymer brush offers unique opportunities to switch the brush composition efficiently. While the PEG brushes are well hydrated in a good solvent (water) and stretch away from the surface, they collapse in a poor solvent (toluene), leading to the formation of a dense layer on the surface. This collapsed conformation protects the heteroternary complexes of CB[8]-rotaxane from dissociation and maintains the attachment of polymers on the surface.
Collapse
Affiliation(s)
- Chi Hu
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Feng Tian
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Yu Zheng
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Kevin R West
- BP Oil UK Ltd , Whitchurch Hill , Pangbourne, Reading , Berkshire RG8 7QR , UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| |
Collapse
|
31
|
Zhang J, Cui Z, Field R, Moloney MG, Rimmer S, Ye H. Thermo-responsive microcarriers based on poly(N-isopropylacrylamide). Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Ibarra LE, Tarres L, Bongiovanni S, Barbero CA, Kogan MJ, Rivarola VA, Bertuzzi ML, Yslas EI. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:84-92. [PMID: 25617831 DOI: 10.1016/j.ecoenv.2015.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
With the rapid growth of nanotechnology and the applications of nanoparticles, environmental exposure to these particles is increasing. However, their impact in human and environmental health is not well studied. Anurans, with life stage comprising embryos, tadpoles and adults, have an extremely permeable skin which makes them excellent indicators of environmental health. This study evaluated the acute toxicity effects of polyaniline nanoparticles (PANI-Np) in different dispersant on embryos and larvae of Rhinella arenarum. The results showed that LC50 of PANI-Np dispersed in polyvinylpyrrolidone (PVP) were 1,500 mg/L, while LC50 by PANI-Np dispersed in PVP+PNIPAM (polyN-isopropylacrilamide) showed a highest toxicity (1,170 mg/L). The embryo teratogenicity increased with increasing exposure concentration in both kinds of PANI-Np although in PANI-Np1, there is an increased teratogenic effect associated with the polymer stabilizer PVP.
Collapse
Affiliation(s)
- Luis E Ibarra
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Lucrecia Tarres
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Silvestre Bongiovanni
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - César A Barbero
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Marcelo J Kogan
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Viviana A Rivarola
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Mabel L Bertuzzi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | - Edith I Yslas
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina.
| |
Collapse
|
33
|
Liu Y, Wu D, Zhang K, Yin XS, Yang WZ. Narrow-disperse highly cross-linked “living” polymer microspheres by two-stage precipitation polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1595-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Biocompatible SiO 2in the Fabrication of Stimuli-Responsive Hybrid Composites and Their Application Potential. J CHEM-NY 2015. [DOI: 10.1155/2015/846328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Organic/inorganic hybrid composite materials have been extensively studied as they combine the properties of inorganic material and organic polymer. Among the inorganic material biocompatible silica (SiO2) is an interesting candidate for application in biotechnology because such material is wide spread in nature as well as in medicine. During the last few decades, stimuli-responsive polymers are drawing much attention from the researchers for application versatility such as target-specific delivery of drug and corrosion inhibitors. Considering the biocompatibility and many such important properties as high cargo loading capacity, long blood circulation lifetime, enhanced permeability and retention, mechanical strength, and easy processability, combination of SiO2particles with stimuli-responsive polymers is gaining attention over the last decade. This review article will report the progress made towards the development and application of stimuli-responsive hybrid composites based on SiO2.
Collapse
|
35
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
36
|
Jiang H, Tian C, Zhang L, Cheng Z, Zhu X. Facile and highly efficient “living” radical polymerization of hydrophilic vinyl monomers in water. RSC Adv 2014. [DOI: 10.1039/c4ra09439e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
37
|
Bojko A, Andreatta G, Montagne F, Renaud P, Pugin R. Fabrication of thermo-responsive nano-valve by grafting-to in melt of poly(N-isopropylacrylamide) onto nanoporous silicon nitride membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Ahmad N, Ahmad I, Umar S, Iqbal Z, Samim M, Ahmad FJ. PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model. Drug Deliv 2014; 23:2095-2114. [PMID: 25237726 DOI: 10.3109/10717544.2014.941076] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stroke is a one of the leading causes of disease and deaths worldwide, which causes irreversible deterioration of the central nervous system. Curcuminoids are reported to have a potential role in the amelioration of cerebral ischemia but they exhibit low serum and tissue levels due to low solubility and poor absorption. Curcumin (CUR), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)-loaded PNIPAM nanoparticles (NPs) were prepared by free radical polymerization and characterized for particles size, entrapment efficiency, zeta potential, in vitro release and ex vivo permeation study. Optimized CUR, DMC and BDMC-loaded NPs had the mean size of 92.46 ± 2.8, 91.23 ± 4.2 and 94.28 ± 1.91 nm; zeta potential of -16.2 ± 1.42, -15.6 ± 1.33 and -16.6 ± 1.21 mV; loading capacity of 39.31 ± 3.7, 38.91 ± 3.6 and 40.61 ± 3.6% and entrapment efficiency of 84.63 ± 4.2, 84.71 ± 3.99 and 85.73 ± 4.31%, respectively. Ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectroscopy based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency and brain drug-targeting potential studies post-intranasal (i.n.) administration which showed enhanced bioavailability of curcuminoids in brain as compared to intravenous administration. Improved neurobehavioural activity (locomotor and grip strength) and reduced cytokines levels (TNF-α and IL-1β) was observed in middle cerebral artery occlusion induced cerebral ischemic rats after i.n. administration of curcuminoids NPs. Finally, the toxicity study was performed which revealed safe nature of developed NPs.
Collapse
Affiliation(s)
- Niyaz Ahmad
- a Nanoformulation Research Lab, Department of Pharmaceutics, Faculty of Pharmacy.,b UPLC-MS Lab, Department of Pharmaceutics, Faculty of Pharmacy
| | - Iqbal Ahmad
- a Nanoformulation Research Lab, Department of Pharmaceutics, Faculty of Pharmacy
| | - Sadiq Umar
- c Department of Medical Elemental and Toxicology, Faculty of Science , and
| | - Zeenat Iqbal
- a Nanoformulation Research Lab, Department of Pharmaceutics, Faculty of Pharmacy
| | - Mohd Samim
- d Department of Chemistry, Faculty of Science , Hamdard University , New Delhi , India
| | - Farhan Jalees Ahmad
- a Nanoformulation Research Lab, Department of Pharmaceutics, Faculty of Pharmacy.,b UPLC-MS Lab, Department of Pharmaceutics, Faculty of Pharmacy
| |
Collapse
|
39
|
Li C, Jin J, Liu J, Xu X, Yin J. Improving hemocompatibility of polypropylene via surface-initiated atom transfer radical polymerization for covalently coupling BSA. RSC Adv 2014. [DOI: 10.1039/c4ra03652b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bovine serum albumin modified polypropylene for hemocompatibility was fabricated via surface-initiated atom transfer radical polymerization.
Collapse
Affiliation(s)
- Chunming Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
- Graduate University of Chinese Academy of Sciences
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| | - Xiaodong Xu
- Polymer Materials Research Center
- Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, PR China
| |
Collapse
|
40
|
Zhang Y, Carbonell RG, Rojas OJ. Bioactive Cellulose Nanofibrils for Specific Human IgG Binding. Biomacromolecules 2013; 14:4161-8. [DOI: 10.1021/bm4007979] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Orlando J. Rojas
- School
of Science and Technology, Department of Forest Products Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
41
|
Tsai HY, Vats K, Yates MZ, Benoit DSW. Two-dimensional patterns of poly(N-isopropylacrylamide) microgels to spatially control fibroblast adhesion and temperature-responsive detachment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12183-93. [PMID: 23968193 PMCID: PMC3830545 DOI: 10.1021/la400971g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thermoresponsive poly(N-isopropyl acrylamide) (PNIPAM) microgels were patterned on polystyrene substrates via dip coating, creating cytocompatible substrates that provided spatial control over cell adhesion. This simple dip-coating method, which exploits variable substrate withdrawal speeds forming particle suspension stripes of densely packed PNIPAM microgels, while spacings between the stripes contained sparsely distributed PNIPAM microgels. The assembly of three different PNIPAM microgel patterns, namely, patterns composed of 50 μm stripe/50 μm spacing, 50 μm stripe/100 μm spacing, and 100 μm stripe/100 μm spacing, was verified using high-resolution optical micrographs and ImageJ analysis. PNIPAM microgels existed as monolayers within stripes and spacings, as revealed by atomic force microscopy (AFM). Upon cell seeding on PNIPAM micropatterned substrates, NIH3T3 fibroblast cells preferentially adhered within spacings to form cell patterns. Three days after cell seeding, cells proliferated to form confluent cell layers. The thermoresponsiveness of the underlying PNIPAM microgels was then utilized to recover fibroblast cell sheets from substrates simply by lowering the temperature without disrupting the underlying PNIPAM microgel patterns. Harvested cell sheets similar to these have been used for multiple tissue engineering applications. Also, this simple, low-cost, template-free dip-coating technique can be utilized to micropattern multifunctional PNIPAM microgels, generating complex stimuli-responsive substrates to study cell-material interactions and allow drug delivery to cells in a spatially and temporally controlled manner.
Collapse
Affiliation(s)
- Hsin-Yi Tsai
- Department of Chemical Engineering, University of Rochester, Rochester, New York, 14627, United States
| | - Kanika Vats
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14627, United States
| | - Matthew Z. Yates
- Department of Chemical Engineering, University of Rochester, Rochester, New York, 14627, United States
| | - Danielle S. W. Benoit
- Department of Chemical Engineering, University of Rochester, Rochester, New York, 14627, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14627, United States
- The Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, 14627, United States
- Corresponding Author:
| |
Collapse
|
42
|
Gonçalves S, Leirós A, van Kooten T, Dourado F, Rodrigues LR. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids Surf B Biointerfaces 2013; 109:228-35. [DOI: 10.1016/j.colsurfb.2013.03.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
43
|
Umemoto T, Yamato M, Nishida K, Okano T. Regenerative medicine of cornea by cell sheet engineering using temperature-responsive culture surfaces. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5742-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 2013; 65:497-514. [PMID: 22820529 DOI: 10.1016/j.addr.2012.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
Materials offering the ability to change their characteristics in response to presented stimuli have demonstrated application in the biomedical arena, allowing control over drug delivery, protein adsorption and cell attachment to materials. Many of these smart systems are reversible, giving rise to finer control over material properties and biological interaction, useful for various therapeutic treatment strategies. Many smart materials intended for biological interaction are based around pH or thermo-responsive materials, although the use of magnetic materials, particularly in neural regeneration, has increased over the past decade. This review draws together a background of literature describing the design principles and mechanisms of smart materials. Discussion centres on recent literature regarding pH-, thermo-, magnetic and dual responsive materials, and their current applications for the treatment of neural tissue.
Collapse
|
45
|
|
46
|
Koonar I, Zhou C, Hillmyer MA, Lodge TP, Siegel RA. ABC triblock terpolymers exhibiting both temperature- and pH-sensitive micellar aggregation and gelation in aqueous solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012. [PMID: 23189918 DOI: 10.1021/la303712b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two poly(ethylene-alt-propylene)-b-poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-acrylic acid) (PEP-PEO-P(NIPAm-co-AA)) triblock terpolymers were synthesized by a combination of anionic and RAFT polymerizations, followed by acid hydrolysis. Micellar aggregation and gelation behavior in aqueous solutions were studied by dynamic light scattering (DLS) and rheology, respectively. DLS measurements on dilute solutions revealed that the triblock terpolymers form micelles with PEP cores and PEO-P(NIPAm-co-AA) coronae at room temperature and undergo a micelle to micellar aggregate transition upon heating. Rheological measurements showed that micellar aggregation manifests itself as gelation at higher concentrations (~4 wt %). The observed thermoresponsive aggregation and gelation is due to the intermicellar association of P(NIPAm-co-AA) blocks in the coronae above the lower critical solution temperature of the P(NIPAm-co-AA) block. The critical micellar aggregation and gelation temperatures are controlled by the mole fraction and degree of acrylic acid (AA) ionization in the P(NIPAm-co-AA) block, and therefore they can be modulated as functions of both pH and AA content in the polymer.
Collapse
Affiliation(s)
- Isha Koonar
- Department of Pharmaceutics, University of Minnesota-Minneapolis, Minnesota 55455-0431, USA
| | | | | | | | | |
Collapse
|
47
|
Zhang Y, Islam N, Carbonell RG, Rojas OJ. Specific Binding of Immunoglobulin G with Bioactive Short Peptides Supported on Antifouling Copolymer Layers for Detection in Quartz Crystal Microgravimetry and Surface Plasmon Resonance. Anal Chem 2012; 85:1106-13. [DOI: 10.1021/ac302874s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yanxia Zhang
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - Nafisa Islam
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ruben G. Carbonell
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J. Rojas
- Department
of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina
27695, United States
- Department
of Chemical and Biomolecular
Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
48
|
Halperin A, Kröger M. Thermoresponsive cell culture substrates based on PNIPAM brushes functionalized with adhesion peptides: theoretical considerations of mechanism and design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16623-16637. [PMID: 23121235 DOI: 10.1021/la303443t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Thermoresponsive tissue culture substrates based on PNIPAM brushes are used to harvest confluent cell sheets for tissue engineering. The prospect of clinical use imposes the utilization of culture medium free of bovine serum, thus suggesting conjugation with adhesion peptides containing the RGD minimal recognition sequence. The optimum position of the RGD along the chain should ensure both cell adhesion at 37 °C and cell detachment at T(L) below the lower critical solution temperature of PNIPAM. Design guidelines are formulated from considerations of brush confinement by the cells: (i) Cell adhesion at 37 °C is controlled by the RGDs accessible without brush compression. (ii) Cell detachment at T(L) is driven by a disjoining force due to confinement of the swollen brush by cells retaining integrin-RGD bonds formed at 37 °C. These suggest placing the RGDs at the grafting surface or its vicinity. Randomly placed RGDs do not enable efficient detachment because a large fraction of the integrin-RGD bonds are not sufficiently tensioned at T(L), in line with experimental observations (Ebara, M.; Yamato, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Immobilization of celladhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 2004, 10, 1125-1135). The theory framework enables analysis of culture media based on polymer brushes conjugated with adhesion peptides in general.
Collapse
Affiliation(s)
- Avraham Halperin
- University of Grenoble 1/CNRS, LIPhy UMR 5588, BP 87, 38041 Grenoble, France.
| | | |
Collapse
|
49
|
Cimen D, Caykara T. Preparation of oligo-N-isopropylacrylamide brushes with OH and COOH end-groups via surface-initiated NMP. J Appl Polym Sci 2012. [DOI: 10.1002/app.38741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Ormategui N, Zhang S, Loinaz I, Brydson R, Nelson A, Vakurov A. Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models. Bioelectrochemistry 2012; 87:211-9. [DOI: 10.1016/j.bioelechem.2011.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
|