1
|
Solanilla Duque JF, Carrera C, Patino JMR. Effect of pH on the interfacial and foaming properties of Maillard reaction-modified proteins. Biophys Chem 2022; 291:106906. [DOI: 10.1016/j.bpc.2022.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
|
2
|
Ortiz-Gómez V, Nieto-Calvache JE, Roa-Acosta DF, Solanilla-Duque JF, Bravo-Gómez JE. Preliminary Characterization of Structural and Rheological Behavior of the Quinoa Hyperprotein-Defatted Flour. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.852332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein functional properties are related to physical and chemical parameters that influence protein behavior in food systems during processing, storage and consumption. The structural and rheological properties of three quinoa hyperprotein flours (without defatting, WD, chemically defatted, CD, and mechanically defatted, MD) were evaluated. The values of the fluidity index (n) were significantly different (p < 0.05), which was associated with changes in protein or starch structures due to solvent treatments or heating of the flour during pressing. In addition, a strong dependence of the consistency index (k) on the shear rate was observed. For dispersions with a concentration of 12% (w/v), CD and WD had a significantly lower setback value than MD. The viscosity peak was affected by the presence of lipid molecules. Greater changes were evident in the β-sheet (1,610 and 1,625 cm−1) and β-spin (1,685 and 1,695 cm−1) structures. The changes identified in these structures were associated with the defatting treatment. Consequently, the intensity ratio 2,920/1,633 cm−1 was more sensitive to changes in the fat content of the flours. It was shown that defatting conditions increase the protein adsorption kinetics and that the viscoelastic properties of the protein increase when the flour has a lower fat content. Hyperprotein quinoa flour could be used to improve the protein content of products such as snacks, pastas, ice cream, bakery products, meat extenders, among others, due to its foaming, gelling or emulsifying capacity. The objective of this work was to study the effect of two types of defatting of hyperprotein quinoa flour on its structural and rheological properties.
Collapse
|
3
|
|
4
|
Ren J, Song CL, Zhang HY, Kopparapu NK, Zheng XQ. Effect of Hydrolysis Degree on Structural and Interfacial Properties of Sunflower Protein Isolates. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Ren
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering; Qiqihar 161006 China
| | - Chun-Li Song
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering; Qiqihar 161006 China
| | - Hui-Ying Zhang
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering; Qiqihar 161006 China
| | - Narasimha-Kumar Kopparapu
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering; Qiqihar 161006 China
| | - Xi-Qun Zheng
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering; Qiqihar 161006 China
| |
Collapse
|
5
|
Wouters AGB, Rombouts I, Fierens E, Brijs K, Delcour JA. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Compr Rev Food Sci Food Saf 2016; 15:786-800. [PMID: 33401841 DOI: 10.1111/1541-4337.12209] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Proteins play a crucial role in determining texture and structure of many food products. Although some animal proteins (such as egg white) have excellent functional and organoleptic properties, unfortunately, they entail a higher production cost and environmental impact than plant proteins. It is rather unfortunate that plant protein functionality is often insufficient because of low solubility in aqueous media. Enzymatic hydrolysis strongly increases solubility of proteins and alters their functional properties. The latter is attributed to 3 major structural changes: a decrease in average molecular mass, a higher availability of hydrophobic regions, and the liberation of ionizable groups. We here review current knowledge on solubility, water- and fat-holding capacity, gelation, foaming, and emulsifying properties of plant protein hydrolysates and discuss how these properties are affected by controlled enzymatic hydrolysis. In many cases, research in this field has been limited to fairly simple set-ups where functionality has been assessed in model systems. To evolve toward a more widely applied industrial use of plant protein hydrolysates, a more thorough understanding of functional properties is required. The structure-function relationship of protein hydrolysates needs to be studied in depth. Finally, test model systems closer to real food processing conditions, and thus to real foods, would be helpful to evaluate whether plant protein hydrolysates could be a viable alternative for other functional protein sources.
Collapse
Affiliation(s)
- Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ellen Fierens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
6
|
Morales R, Martínez KD, Pizones Ruiz-Henestrosa VM, Pilosof AMR. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. ULTRASONICS SONOCHEMISTRY 2015; 26:48-55. [PMID: 25619451 DOI: 10.1016/j.ultsonch.2015.01.011] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2014] [Accepted: 01/09/2015] [Indexed: 05/13/2023]
Abstract
The effect of high intensity ultrasound (HIUS) may produce structural modifications on proteins through a friendly environmental process. Thus, it can be possible to obtain aggregates with a determined particle size, and altering a defined functional property at the same time. The objective of this work was to explore the impact of HIUS on the functionality of a denatured soy protein isolate (SPI) on foaming and interfacial properties. SPI solutions at pH 6.9 were treated with HIUS for 20 min, in an ultrasonic processor at room temperature, at 75, 80 and 85°C. The operating conditions were: 20 kHz, 4.27 ± 0.71 W and 20% of amplitude. It was determined the size of the protein particles, before and after the HIUS treatment, by dynamic light scattering. It was also analyzed the interfacial behavior of the different systems as well as their foaming properties, by applying the whipping method. The HIUS treatment and HIUS with temperature improved the foaming capacity by alteration of particle size whereas stability was not modified significantly. The temperature of HIUS treatment (80 and 85°C) showed a synergistic effect on foaming capacity. It was found that the reduction of particle size was related to the increase of foaming capacity of SPI. On the other hand, the invariable elasticity of the interfacial films could explain the stability of foams over time.
Collapse
Affiliation(s)
- Rocío Morales
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Karina D Martínez
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Víctor M Pizones Ruiz-Henestrosa
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ana M R Pilosof
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
7
|
Monolayer and Brewster angle microscopy study of human serum albumin—Dipalmitoyl phosphatidyl choline mixtures at the air–water interface. Colloids Surf B Biointerfaces 2012; 92:64-73. [DOI: 10.1016/j.colsurfb.2011.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 12/24/2022]
|
8
|
Rodríguez Patino JM, Carrera Sánchez C, Rodríguez Niño MR. Implications of interfacial characteristics of food foaming agents in foam formulations. Adv Colloid Interface Sci 2008; 140:95-113. [PMID: 18281008 DOI: 10.1016/j.cis.2007.12.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/29/2022]
Abstract
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.
Collapse
Affiliation(s)
- Juan M Rodríguez Patino
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, E-41012-Sevilla, Spain.
| | | | | |
Collapse
|
9
|
Rodríguez Patino JM, Rodríguez Niño MR, Carrera Sánchez C. Physico-chemical properties of surfactant and protein films. Curr Opin Colloid Interface Sci 2007. [DOI: 10.1016/j.cocis.2007.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Xu R, Dickinson E, Murray BS. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5005-13. [PMID: 17385900 DOI: 10.1021/la063280q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Adsorbed films of proteins at the air-water interface have been imaged using Brewster angle microscopy (BAM). The proteins beta-lactoglobulin (beta-L) and ovalbumin (OA) were studied at a range of protein concentrations and surface ages at 25.0 degrees C and two pH values (7 and 5) in a Langmuir trough. The adsorbed films were periodically subjected to compression and expansion cycles such that the film area was typically varied between 125% and 50% of the original film area. With beta-L on its own, no structural changes were observable at pH 7. When a low-area fraction (less than 0.01%) of 20 mum polystyrene latex particles was spread at the interface before adsorption of beta-L, the particles became randomly distributed throughout the interface, but after protein adsorption and compression/expansion, the particles highlighted notable structural features not visible in their absence. Such features included the appearance of long (several hundred micrometers or more) folds and cracks in the films, generally oriented at right angles to the direction of compression, and also aggregates of protein and/or particles. Such structuring was more visible the longer the film was aged or at higher initial protein concentrations for shorter adsorption times. At pH 5, close to the isoelectric pH of beta-L, such features were just noticeable in the absence of particles but were much more pronounced than at pH 7 in the presence of particles. Similar experiments with OA revealed even more pronounced structural features, both in the absence and presence of particles, particularly at pH 5 (close to the isoelectric pH of OA also), producing striking stripelike and meshlike domains. Changes in the dilatational elasticity of the films could be correlated with the variations in the structural integrity of the films as observed via BAM. The results indicate that interfacial area changes of this type, typical of those that occur in food colloid processing, will lead to highly inhomogeneous adsorbed protein layers, with implications for the stability of the corresponding foams and emulsions stabilized by such films. Overall, the experimental results are in broad agreement with the sorts of trends predicted by earlier computer simulations of protein films subjected to such compression and expansion.
Collapse
Affiliation(s)
- Rong Xu
- Food Colloids Group, Procter Department of Food Science, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
11
|
Cabra V, Arreguin R, Vazquez-Duhalt R, Farres A. Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 alpha-zein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:439-45. [PMID: 17227077 DOI: 10.1021/jf061002r] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Different deamidation conditions for the Z19 alpha-zein were studied in order to find the best conditions for the development of the emulsifying properties. Alkaline deamidation was chosen, and the effects on the peptide bond cleavage, secondary structure, emulsifying properties, and surface hydrophobicity were studied. The Z19 alpha-zein was deamidated by using 0.5 N NaOH containing 70% ethanol at 70 degrees C for 12 h. A deamidation degree (DD) of 60.6 +/- 0.5%, and a degree of hydrolysis (DH) of 5 +/- 0.5% were achieved. Analysis by far-UV circular dichroism showed that the denaturation was mainly promoted by the high temperature used during the incubation. The adequate balance between the DD and the DH results in an effective emulsifying property improvement for the Z19 alpha-zein. Thus, after the deamidation treatment, the surface hydrophobicity decreased from 9.5 x 104 +/- 6.8 x 103 to 46 x 104 +/- 2.1 x 103, and the emulsion stability increased from 18 +/- 0.7% to 80 +/- 4.7% since the oil globules stabilized by the modified protein were smaller (57.7 +/- 5.73 nm) and more resistant to coalescence than those present in the native protein emulsions (1488 +/- 3.92 nm).
Collapse
Affiliation(s)
- Vanessa Cabra
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico
| | | | | | | |
Collapse
|