1
|
Gonzalez-Vasquez AD, Hocine ES, Alcántara AR, Urzúa M, Rocha-Martin J, Fernandez-Lafuente R. Designing mixed cationic/anionic supports to covalently immobilize/stabilize enzymes with high isoelectric point by enzyme adsorption and support-enzyme glutaraldehyde crosslinking. Int J Biol Macromol 2024; 280:136102. [PMID: 39343263 DOI: 10.1016/j.ijbiomac.2024.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Ficin fully immobilized on Asp-agarose beads at pH 7 but not on an aminated support. This made enzyme adsorption plus glutaraldehyde modification non-viable for this enzyme. Modifying glyoxyl-agarose beads with mixtures of Asp and 1,6-hexamethylenediamine (HA) at different ratios, mixed anion/cation exchanger supports were built. Only if HA greatly exceed Asp in the support, immobilization did not work. While only using the Asp-agarose support immobilized enzyme molecules were only ionically adsorbed after glutaraldehyde treatment (visualized in SDS-PAGE analysis), the mixed supports gave covalent immobilization. The glutaraldehyde modification of these biocatalysts permitted to establish covalent bonds with the support, and this was more effective when using higher amounts of HA in the support. When around 60 % of the groups in the support were HA, the treatment with glutaraldehyde fully suppressed enzyme release from the support after boiling in SDS. The glutaraldehyde treated biocatalysts were more stable than just the adsorbed enzymes or the enzyme adsorbed only on Asp supports and then treated with glutaraldehyde (the optimal biocatalyst retained 90 % of the initial activity while the just adsorbed ficin retained 50 % of the initial activity). This strategy can be utilized to immobilize other proteins with high isoelectric points following this immobilization strategy.
Collapse
Affiliation(s)
- Alex D Gonzalez-Vasquez
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - El Siar Hocine
- Departamento de Biocatalisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Agri-food Engineering Laboratory (GENIAAL), Institute of Food, Nutrition and Agri-Food Technologies (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Ñuñoa 7800003, Chile
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | | |
Collapse
|
2
|
Alagöz D, Varan NE, Yildirim D, Fernandéz-Lafuente R. Optimization of the immobilization of xylanase from Thermomyces lanuginosus to produce xylooligosaccharides in a batch type reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Morellon-Sterling R, Tavano O, Bolivar JM, Berenguer-Murcia Á, Vela-Gutiérrez G, Sabir JSM, Tacias-Pascacio VG, Fernandez-Lafuente R. A review on the immobilization of pepsin: A Lys-poor enzyme that is unstable at alkaline pH values. Int J Biol Macromol 2022; 210:682-702. [PMID: 35508226 DOI: 10.1016/j.ijbiomac.2022.04.224] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Pepsin is a protease used in many different applications, and in many instances, it is utilized in an immobilized form to prevent contamination of the reaction product. This enzyme has two peculiarities that make its immobilization complex. The first one is related to the poor presence of primary amino groups on its surface (just one Lys and the terminal amino group). The second one is its poor stability at alkaline pH values. Both features make the immobilization of this enzyme to be considered a complicated goal, as most of the immobilization protocols utilize primary amino groups for immobilization. This review presents some of the attempts to get immobilized pepsin biocatalyst and their applications. The high density of anionic groups (Asp and Glu) make the anion exchange of the enzyme simpler, but this makes many of the strategies utilized to immobilize the enzyme (e.g., amino-glutaraldehyde supports) more related to a mixed ion exchange/hydrophobic adsorption than to real covalent immobilization. Finally, we propose some possibilities that can permit not only the covalent immobilization of this enzyme, but also their stabilization via multipoint covalent attachment.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Juan M Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Sabi GJ, Gama RS, Fernandez-Lafuente R, Cancino-Bernardi J, Mendes AA. Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants. Enzyme Microb Technol 2022; 157:110019. [PMID: 35219176 DOI: 10.1016/j.enzmictec.2022.110019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
This study aimed the enzymatic decyl esters production by hydroesterification, a two-step process consisting of hydrolysis of refined soybean (RSBO) or used soybean cooking (USCO) oils to produce free fatty acids (FFA) and further esterification of purified FFA. Using free lipase from Candida rugosa (CRL), about 98% hydrolyses for both oils have been observed after 180 min of reaction using a CRL loading of 50 U g-1 of reaction mixture, 40 °C, and a mechanical stirring of 1500 rpm. FFA esterification with decanol in solvent-free systems was performed using lipase from Thermomyces lanuginosus (TLL) immobilized by physical adsorption on silica particles extracted from rice husk, an agricultural waste. For such purpose, non-functionalized (SiO2) or functionalized rice husk silica bearing octyl (Octyl-SiO2) or phenyl (Phe-SiO2) groups have been used as immobilization supports. Protein amounts between 22 and 28 mg g-1 of support were observed. When used in the esterification, they enabled a FFA conversion of 81.3-87.6% after 90-300 min of reaction. Lipozyme TL IM, a commercial immobilized TLL, exhibited similar performance compared to TLL-Octyl-SiO2 (FFA conversion ≈90% after 90-120 min of reaction). However, high operational stability after fifteen successive esterification batches was observed only for TLL immobilized on Octyl-SiO2 (activity retention of ≈90% using both FFA sources). The produced decyl esters presented good characteristics as potential biolubricants according to standard methods (ASTM) and thermal analysis.
Collapse
Affiliation(s)
- Guilherme J Sabi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Rafaela S Gama
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Juliana Cancino-Bernardi
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil; Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
5
|
Alagöz D, Varan NE, Toprak A, Yildirim D, Tukel SS, Fernandez-Lafuente R. Immobilization of xylanase on differently functionalized silica gel supports for orange juice clarification. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Okura NS, Sabi GJ, Crivellenti MC, Gomes RA, Fernandez-Lafuente R, Mendes AA. Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. Int J Biol Macromol 2020; 163:550-561. [DOI: 10.1016/j.ijbiomac.2020.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
8
|
A Novel Cysteine-Functionalized MxOy Material as Support for Laccase Immobilization and a Potential Application in Decolorization of Alizarin Red S. Processes (Basel) 2020. [DOI: 10.3390/pr8080885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immobilization process improves the enzyme properties, like stability, activity, selectivity or specificity. In the study, a novel cysteine-functionalized MxOy (ZrO2, SiO2) material was used as a support for the immobilization of laccase from Trametes versicolor. The proposed matrix was prepared using a simple sol-gel method. The cysteine was introduced during the synthesis of a sample. Additionally, the obtained supports were modified with glutaraldehyde. The basic properties of the prepared cysteine functionalized ZrO2 and SiO2 were determined using spectroscopic, thermal, porous, electrostatic and elemental analysis. Furthermore, the obtained biocatalytic systems were used as catalysts in the oxidation of sulfonic acid. Catalytic and kinetic parameters were determined based on the proposed model reaction. Next, laccase immobilized on ZrO2- and SiO2-based materials were, for the first time, utilized in the decolorization of Alizarin Red S. In that process, the influence of duration, pH and temperature on the efficiency of decolorization was evaluated. The results show that the proposed biocatalytic systems offer good specific activity (ca. 19 U/mg) and activity retention (ca. 77%). Importantly, they can be successfully used in the decolorization of Alizarin Red S with high efficiency (above 95%).
Collapse
|
9
|
Kienle DF, Chaparro Sosa AF, Kaar JL, Schwartz DK. Polyelectrolyte Multilayers Enhance the Dry Storage and pH Stability of Physically Entrapped Enzymes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22640-22649. [PMID: 32352745 DOI: 10.1021/acsami.0c04964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are attractive materials for immobilizing enzymes due to their unique ionic environment, which can prevent unfolding. Here, we demonstrated that the stability to dry storage and elevated pH were significantly enhanced when negatively charged nitroreductase (NfsB) was embedded in a PEM by depositing alternating layers of the enzyme and polycation (PC) onto porous silica particles. The PC strength (i.e., pKa) and the surface charge of the film were varied to probe the effects that internal and surface chemistry had on the pH stability of the entrapped NfsB. All films showed enhanced activity retention at elevated pH (>6), and inactivation at reduced pH (<6) similar to NfsB in solution, indicating that the primary stabilizing effect of immobilization was achieved through ionic interactions between NfsB and the PC and not through changes to the surface charge of the NfsB. Additionally, films that were stored dry at 4 °C for 1 month retained full activity, while those stored at room temperature lost 30% activity. Remarkably, at 50 °C, above the NfsB melting temperature, 40% activity was retained after 1 month of dry storage. Our results suggest that internal film properties are significantly more important than surface charge, which had minor effects on activity. Specifically, immobilization with the weak PC, poly(l-lysine), increased the optimal pH and the activity of immobilized NfsB (which we attribute to greater permeability), relative to immobilization with the strong PC, poly(diallyldimethylammonium chloride). However, NfsB was leached from the PLL film to a greater extent. Overall, these observations demonstrate that internal ionic cross-linking is key to the stabilizing effects of PEMs and that the pH response can be tuned by controlling the number of cross-links (e.g., by changing the strength of the PC). However, this may be at the cost of reduced loading, illustrating the necessity of simultaneously optimizing enzyme loading, internal ionic cross-linking, and substrate transport.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 2019; 128:9-21. [DOI: 10.1016/j.enzmictec.2019.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
|
11
|
Ait Braham S, Hussain F, Morellon-Sterling R, Kamal S, Kornecki JF, Barbosa O, Kati DE, Fernandez-Lafuente R. Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnol Prog 2018; 35:e2768. [PMID: 30575340 DOI: 10.1002/btpr.2768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 11/07/2022]
Abstract
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.
Collapse
Affiliation(s)
- Sabrina Ait Braham
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain.,Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Fouzia Hussain
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain.,Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roberto Morellon-Sterling
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Jakub F Kornecki
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Oveimar Barbosa
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | | |
Collapse
|
12
|
Fan J, Luo J, Wan Y. Membrane chromatography for fast enzyme purification, immobilization and catalysis: A renewable biocatalytic membrane. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Bezerra RM, Neto DMA, Galvão WS, Rios NS, Carvalho ACLDM, Correa MA, Bohn F, Fernandez-Lafuente R, Fechine PB, de Mattos MC, dos Santos JC, Gonçalves LR. Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Xu Y, Liu M, Faisal M, Si Y, Guo Y. Selective protein complexation and coacervation by polyelectrolytes. Adv Colloid Interface Sci 2017; 239:158-167. [PMID: 27378068 DOI: 10.1016/j.cis.2016.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
This review discusses the possible relationship between protein charge anisotropy, protein binding affinity, polymer structure, and selective phase separation. We hope that a fundamental understanding of primarily electrostatically driven protein-polyelectrolyte (PE) interactions can enable the prediction of selective protein binding, and hence selective coacervation through non-specific electrostatics. Such research will partially challenge the assumption that specific binding has to be realized through specific binding sites with a variety of short-range interactions and some geometric match. More specifically, the recent studies on selective binding of proteins by polyelectrolytes were examined from different assemblies in addition to the electrostatic features of proteins and PEs. At the end, the optimization of phase separation based on binding affinity for selective coacervation and some considerations relevant to using PEs for protein purification were also overviewed.
Collapse
Affiliation(s)
- Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of Materials Chemical Engineering of Xinjiang Bintuan, Shihezi University, Xinjiang 832000, China.
| | - Miaomiao Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mostufa Faisal
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Si
- Department of Cardiovascular Surgery, Xinhua Hospital Affiliated of Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190,China.
| |
Collapse
|
15
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|
16
|
Virgen-Ortíz JJ, Peirce S, Tacias-Pascacio VG, Cortes-Corberan V, Marzocchella A, Russo ME, Fernandez-Lafuente R. Reuse of anion exchangers as supports for enzyme immobilization: Reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Müller M, Urban B. Adhesive Reactive Nanoparticles of Poly(ethyleneimine)/Poly(maleic acid-co
-propylene) Complexes: A Novel Concept for the Immobilization of Pollutant Removing Laccase. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Martin Müller
- Leibniz-Institut für Polymerforschung Dresden e.V; Abteilung Polyelektrolyte und Dispersionen; Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden; Department of Chemistry and Food Chemistry; 01062 Dresden Germany
| | - Birgit Urban
- Leibniz-Institut für Polymerforschung Dresden e.V; Abteilung Polyelektrolyte und Dispersionen; Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
18
|
|
19
|
Rueda N, dos Santos CS, Rodriguez MD, Albuquerque TL, Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Salazar-Leyva JA, Lizardi-Mendoza J, Ramirez-Suarez JC, Lugo-Sanchez ME, Valenzuela-Soto EM, Ezquerra-Brauer JM, Castillo-Yañez FJ, Pacheco-Aguilar R. Catalytic and Operational Stability of Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on a Partially Deacetylated Chitin Support. J Food Biochem 2016. [DOI: 10.1111/jfbc.12287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jesus Aaron Salazar-Leyva
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
- Universidad Politécnica de Sinaloa. Unidad Académica de Ingeniería en Biotecnología. Carretera Municipal Libre Mazatlán-Higueras; C.P. 82199 Mazatlán Sinaloa México
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Juan Carlos Ramirez-Suarez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Maria Elena Lugo-Sanchez
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Elisa Miriam Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| | - Josafat Marina Ezquerra-Brauer
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Francisco Javier Castillo-Yañez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Niños Héroes; S/N. Hermosillo Sonora México
| | - Ramon Pacheco-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria, Km. 0.6; C.P. 83304 Hermosillo Sonora México
| |
Collapse
|
21
|
Rueda N, Albuquerque TL, Bartolome-Cabrero R, Fernandez-Lopez L, Torres R, Ortiz C, Dos Santos JCS, Barbosa O, Fernandez-Lafuente R. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. Molecules 2016; 21:E646. [PMID: 27196882 PMCID: PMC6273131 DOI: 10.3390/molecules21050646] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA) and utilized to immobilize five lipases (lipases A (CALA) and B (CALB) from Candida antarctica, lipases from Thermomyces lanuginosus (TLL), from Rhizomucor miehei (RML) and from Candida rugosa (CRL) and the phospholipase Lecitase Ultra (LU). Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value). As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.
Collapse
Affiliation(s)
- Nazzoly Rueda
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Tiago L Albuquerque
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Rocio Bartolome-Cabrero
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Laura Fernandez-Lopez
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| | - Rodrigo Torres
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.
| | - Jose C S Dos Santos
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
- Departamento de Engenharia Química, Universidade Federal Do Ceará, Campus Do Pici, CEP 60455-760 Fortaleza, Brazil.
| | - Oveimar Barbosa
- Departamento de Química, Facultad de Ciencias, Universidad del Tolima, Ibagué 546, Colombia.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC; C/ Marie Curie 2, Campus UAM-CSIC, Madrid 28049, Spain.
| |
Collapse
|
22
|
|
23
|
Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA. Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Li B, Chen Y, Cao Z, Niu H, Liu D, He Y, Chen X, Wu J, Xie J, Zhuang W, Ying H. Reversible, selective immobilization of nuclease P1 from a crude enzyme solution on a weak base anion resin activated by polyethylenimine. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 2014. [DOI: 10.1039/c3ra45991h] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties. Biomacromolecules 2013; 14:2433-62. [DOI: 10.1021/bm400762h] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oveimar Barbosa
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Rodrigo Torres
- Escuela de Química, Grupo
de investigación en Bioquímica y Microbiología
(GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología
y Laboratorio Clínico, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales,
Departamento de Química Inorgánica, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap.
99 - 03080 Alicante, Spain
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology
Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves,
9500, P.O. Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatalisis, Instituto de Catálisis-CSIC, Campus UAM-CSIC,
Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Li J, Zhang Y, Chen H, Liu Y, Yang Y. Purification and characterization of recombinant Bacillus subtilis 168 catalase using a basic polypeptide from ribosomal protein L2. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Effect of the immobilization protocol on the properties of lipase B from Candida antarctica in organic media: Enantiospecifc production of atenolol acetate. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Selective adsorption of small proteins on large-pore anion exchangers coated with medium size proteins. Colloids Surf B Biointerfaces 2010; 78:140-5. [DOI: 10.1016/j.colsurfb.2010.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
|
30
|
Fernandez-Lafuente R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.08.009] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bolivar JM, Mateo C, Godoy C, Pessela BC, Rodrigues DS, Giordano RL, Fernandez-Lafuente R, Guisan JM. The co-operative effect of physical and covalent protein adsorption on heterofunctional supports. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Filho M, Pessela BC, Mateo C, Carrascosa AV, Fernandez-Lafuente R, Guisán JM. Reversible immobilization of a hexameric α-galactosidase from Thermus sp. strain T2 on polymeric ionic exchangers. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Batalla P, Fuentes M, Mateo C, Grazu V, Fernandez-Lafuente R, Guisan JM. Covalent Immobilization of Antibodies on Finally Inert Support Surfaces through their Surface Regions Having the Highest Densities in Carboxyl Groups. Biomacromolecules 2008; 9:2230-6. [DOI: 10.1021/bm8003594] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pilar Batalla
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Manuel Fuentes
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Cesar Mateo
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Valeria Grazu
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Jose M. Guisan
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
34
|
Gomez CG, Strumia MC. Synthesis and modification of supports with an alkylamine and their use in albumin adsorption. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Batalla P, Fuentes M, Grazu V, Mateo C, Fernandez-Lafuente R, Guisan JM. Oriented Covalent Immobilization of Antibodies on Physically Inert and Hydrophilic Support Surfaces through Their Glycosidic Chains. Biomacromolecules 2008; 9:719-23. [DOI: 10.1021/bm7010906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pilar Batalla
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Manuel Fuentes
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Valeria Grazu
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Cesar Mateo
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Jose M. Guisan
- Departamento de Biocatálisis, Instituto de Catálisis (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
36
|
Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM. Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2007; 2:1022-33. [PMID: 17546007 DOI: 10.1038/nprot.2007.133] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immobilization of enzymes and proteins on activated supports permits the simplification of the reactor design and may be used to improve some enzyme properties. In this sense, supports containing epoxy groups seem to be useful to generate very intense multipoint covalent attachment with different nucleophiles placed on the surface of enzyme molecules (e.g., amino, thiol, hydroxyl groups). However, the intermolecular reaction between epoxy groups and soluble enzymes is extremely slow. To solve this problem, we have designed "tailor-made" heterofunctional epoxy supports. Using these, immobilization of enzymes is performed via a two-step process: (i) an initial physical or chemical intermolecular interaction of the enzyme surface with the new functional groups introduced on the support surface and (ii) a subsequent intense intramolecular multipoint covalent reaction between the nucleophiles of the already immobilized enzyme and the epoxy groups of the supports. The first immobilization may involve different enzyme regions, which will be further rigidified by multipoint covalent attachment. The design of some heterofunctional epoxy supports and the performance of the immobilization protocols are described here. The whole protocol to have an immobilized and stabilized enzyme could take from 3 days to 1 week.
Collapse
Affiliation(s)
- Cesar Mateo
- Departamento de Biocatálisis, Instituto de Catálisis, CSIC, Campus UAM, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|