1
|
Chen W, Lu H, Yu W, Huang L, Bian M, Wang N, Xiang X, Mo G, Zhang C, Li Y, Jiang L, Zhang J. Magnesium-Impregnated Membrane Promotes Bone Regeneration in Rat Skull Defect by N-Linked Glycosylation of SPARC via MagT1. Adv Healthc Mater 2024:e2402705. [PMID: 39632347 DOI: 10.1002/adhm.202402705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Indexed: 12/07/2024]
Abstract
Autograft has long been the gold standard for various bone surgeries. Nevertheless, the increasing usage of synthetic implants is taking over the operation rooms due to biosafety and standardized protocols. To fulfill such tremendous needs, a magnesium-impregnated membrane is devised that steadily releases magnesium ions to stimulate osteogenesis. The compatibility of Magnesium oxide (MgO) particles is enhanced through hydration and grafting, characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). With detailed degradation profiles, an in-depth investigation of Magnesium transporter 1 (MagT1) for magnesium intake is carried out and engaging in the N-linked glycosylation by using RNAi and inhibitors. The glycosylation of secreted protein acidic and rich in cysteine (SPARC) affected extracellular secretion and mineral deposition, demonstrated by immunostaining and density-dependent color-SEM (DDC-SEM). Skull defects are treated by implanting magnesium-impregnated membranes in rats and evaluated them by micro-CT and histological exams. This study revealed the compatible integration of grafted magnesium hydroxide (g-MH) particles is the key to functional performance and critical to applicability in vivo; meanwhile, it opens the door to a biological rationale for designing biomimetic materials.
Collapse
Affiliation(s)
- Weisin Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Hongwei Lu
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Wenhao Yu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Mengxuan Bian
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Ning Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Xingdong Xiang
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Guokang Mo
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Libo Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| | - Jian Zhang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
- Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China
| |
Collapse
|
2
|
Zhao Z, Chen W, Li Q, Xiong B, Ning Y, Yang P. Interfacial Supra-Assembly of Copolymer Nanoparticles Enables the Formation of Nanocomposite Crystals with a Tunable Internal Structure. J Am Chem Soc 2023; 145:21546-21553. [PMID: 37748127 DOI: 10.1021/jacs.3c07435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
It is highly desirable but technically challenging to precisely control the spatial composition and internal structure of crystalline nanocomposite materials, especially in a one-pot synthetic route. Herein, we demonstrate a versatile pathway to tune the spatial distribution of guest species within a host inorganic crystal via an incorporation strategy. Specifically, well-defined block copolymer nanoparticles, poly(methacrylic acid)x-block-poly(styrene-alt-N-phenylmaleimide)y [PMAAx-P(St-alt-NMI)y], are synthesized by polymerization-induced self-assembly. Such anionic nanoparticles can supra-assemble onto the surface of larger cationic nanoparticles via an electrostatic interaction, forming colloidal nanocomposite particles (CNPs). Remarkably, such CNPs can be incorporated into calcite single crystals in a spatially controlled manner: the depth of CNPs incorporation into calcite is tunable. Systematic investigation indicates that this interesting phenomenon is governed by the colloidal stability of CNPs, which in turn is dictated by the PMAAx-P(St-alt-NMI)y adsorption density and calcium ion concentration. This study opens up a general and efficient route for the preparation of a wide range of crystalline nanocomposite materials with a controlled internal composition and structure.
Collapse
Affiliation(s)
- Zhenghong Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Wenting Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Qin Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Biao Xiong
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yin Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Peihui Yang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Makri SP, Xanthopoulou E, Valera MA, Mangas A, Marra G, Ruiz V, Koltsakidis S, Tzetzis D, Zoikis Karathanasis A, Deligkiozi I, Nikolaidis N, Bikiaris D, Terzopoulou Z. Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing. Polymers (Basel) 2023; 15:polym15102386. [PMID: 37242959 DOI: 10.3390/polym15102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.
Collapse
Affiliation(s)
- Sofia P Makri
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Xanthopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Miguel Angel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Víctor Ruiz
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | | | | | - Nikolaos Nikolaidis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Amin Zadehnazari
- Department of Science, Petroleum University of Technology, Ahwaz, Iran
| |
Collapse
|
5
|
Rathore A, Shah D, Kaur H. Recent advances in metal oxide/polylactic acid nanocomposites and their applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anuradha Rathore
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dipen Shah
- Department of Chemistry, Shri T. S. Patel P.G. Science College, Ambaliyara, Bayad, India
| | - Harjinder Kaur
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
6
|
DOPO/Silicon/CNT Nanohybrid Flame Retardants: Toward Improving the Fire Safety of Epoxy Resins. Polymers (Basel) 2022; 14:polym14030565. [PMID: 35160554 PMCID: PMC8838260 DOI: 10.3390/polym14030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Novel DOPO/silicon/CNT nanohybrid flame retardants (FR-CNTs) were synthesized and FR-CNTs were introduced into epoxy resins through thermal curing process. The SEM and TEM results indicate that CNTs distribute uniformly in epoxy resins due to the good dispersion of CNTs in DOPO/silicon/CNT nanohybrid flame retardants. The thermal stability and flame-retardant properties of EP/FR-CNTs composites are improved, which is attributed to the good dispersion of DOPO/silicon/CNT nanohybrid. The cone calorimeter results demonstrate that FR-CNTs can reduce peak heat release and the release of toxic gas effectively compared with EP/CNTs and EP/CNT/FR composites. The char-residue analysis indicates that the improved flame-retardant properties are due to the char-reinforcing effects and the catalyzing charring effect of FR-CNTs, which provides enough time for flame retardants to trap radicals. Generally, the char layers, which act as insulating barrier, can reduce the releasing of flammable gases and protect the underlying epoxy resins from the heat source.
Collapse
|
7
|
Zhang J, Cao C, Wang Y, Xie L, Li W, Li B, Guo R, Yan H. Magnesium oxide/silver nanoparticles reinforced poly(butylene succinate-co-terephthalate) biofilms for food packaging applications. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang L, Chai W, Li W, Semple K, Yin N, Zhang W, Dai C. Intumescent-Grafted Bamboo Charcoal: A Natural Nontoxic Fire-Retardant Filler for Polylactic Acid (PLA) Composites. ACS OMEGA 2021; 6:26990-27006. [PMID: 34693119 PMCID: PMC8529600 DOI: 10.1021/acsomega.1c03393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 06/02/2023]
Abstract
In this work, an alternative flame-retardant filler based on phosphate- and urea-grafted bamboo charcoal (BC-m) at 10-30 wt % addition was aimed at improving the flame retardancy of polylactic acid (PLA) composites. The filler caused only a small reduction in strength properties but a slight increase in the modulus of elasticity of PLA composites. BC-m significantly improved the flame-retardant performance compared with pure BC. The limiting oxygen index (LOI) was 28.0 vol % when 10 wt % of BC-m was added, and 32.1 vol % for 30 wt % addition, which was much greater than the value of 22.5 vol % for 30 wt % pure BC. Unlike pure BC, adding BC-m at 20 wt % or more gave a UL-94 vertical flame test rating of V-0 with significantly reduced melt dripping. The peak heat release rate (pHRR) and total heat release (THR) of BC-m/PLA composites decreased by more than 50% compared with pure PLA, and the values for 20% BC-m were significantly less than that for 25% BC addition. The grafted biochar-based system provides an effective flame retardancy effect by a condensed-phase protective barrier through the rapid formation of a dense, honeycomb-like cross-linked carbonized char layer. The results suggest a promising route to enhancing the flame-retardant properties of biodegradable polymer composites using nontoxic, more environmentally friendly grafted biochar.
Collapse
Affiliation(s)
- Liang Zhang
- College
of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative
Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou 311300, China
| | - Weisheng Chai
- College
of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative
Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenzhu Li
- College
of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative
Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou 311300, China
| | - Kate Semple
- Department
of Wood Science, Faculty of Forestry, University
of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ningning Yin
- College
of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative
Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenbiao Zhang
- College
of Chemistry and Materials Engineering, Zhejiang Provincial Collaborative
Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou 311300, China
| | - Chunping Dai
- Department
of Wood Science, Faculty of Forestry, University
of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Xiao Y, Wang ZY, Luo SH, Lin JY, Cao XY, Fang YG. One-pot preparation of thermosensitive polylactic acid materials by modifying with N-Isopropyl acrylamide. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ding T, Kang W, Li J, Yu L, Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology 2021; 19:247. [PMID: 34404409 PMCID: PMC8371786 DOI: 10.1186/s12951-021-00992-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background The regeneration of periodontal bone defect remains a vital clinical challenge. To date, numerous biomaterials have been applied in this field. However, the immune response and vascularity in defect areas may be key factors that are overlooked when assessing the bone regeneration outcomes of biomaterials. Among various regenerative therapies, the up-to-date strategy of in situ tissue engineering stands out, which combined scaffold with specific growth factors that could mimic endogenous regenerative processes. Results Herein, we fabricated a core/shell fibrous scaffold releasing basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) in a sequential manner and investigated its immunomodulatory and angiogenic properties during periodontal bone defect restoration. The in situ tissue engineering scaffold (iTE-scaffold) effectively promoted the angiogenesis of periodontal ligament stem cells (PDLSCs) and induced macrophage polarization into pro-healing M2 phenotype to modulate inflammation. The immunomodulatory effect of macrophages could further promote osteogenic differentiation of PDLSCs in vitro. After being implanted into the periodontal bone defect model, the iTE-scaffold presented an anti-inflammatory response, provided adequate blood supply, and eventually facilitated satisfactory periodontal bone regeneration. Conclusions Our results suggested that the iTE-scaffold exerted admirable effects on periodontal bone repair by modulating osteoimmune environment and angiogenic activity. This multifunctional scaffold holds considerable promise for periodontal regenerative medicine and offers guidance on designing functional biomaterials. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00992-4.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Wenyan Kang
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Jianhua Li
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Lu Yu
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
11
|
Ota S, Harada M. Thermal conductivity enhancement of liquid crystalline epoxy/
MgO
composites by formation of highly ordered network structure. J Appl Polym Sci 2021. [DOI: 10.1002/app.50367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saki Ota
- Faculty of Chemistry, Materials and Bioengineering Kansai University Osaka Japan
| | - Miyuki Harada
- Faculty of Chemistry, Materials and Bioengineering Kansai University Osaka Japan
| |
Collapse
|
12
|
Ding T, Li J, Zhang X, Du L, Li Y, Li D, Kong B, Ge S. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration. Biomater Sci 2021; 8:2459-2471. [PMID: 32191780 DOI: 10.1039/d0bm00102c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regeneration of periodontal tissue defects remains a clinical challenge due to its complex tissue structure (e.g. periodontal ligament, alveolar bone and cementum) and poor self-healing ability. In situ tissue engineering has emerged as a promising approach that combines frameworks with growth factors that are specifically chosen for the recruitment of endogenous stem cells to the site of injury and to evoke the innate regenerative potential of the body. Herein, a core/shell fibrous super-assembled framework (SAF)-based sequential growth factor delivery system is developed, in which basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) are designed to release in a sequential manner to facilitate in situ regeneration of the cementum-ligament-bone complex. The in situ tissue engineering framework (iTE-framework) shows ameliorated physicochemical properties and improved hydrophilicity, with an initial burst release of bFGF in the first few days, followed by a slow and constant release of BMP-2 up to 4 weeks. The iTE-framework shows excellent biocompatibility, significantly promoting the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in vitro. After implantation in rat periodontal defects, the iTE-framework effectively triggers the recruitment of mesenchymal stem cells (MSCs) to the defect site, significantly promotes the formation of new bones, and facilitates the regeneration of the periodontal ligament and cementum tissue in vivo. Therefore, this sequential delivery system provides a promising therapeutic strategy for cementum-ligament-bone complex regeneration.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Jianhua Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Xingshuang Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Lingqian Du
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| | - Yang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Dengwang Li
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China.
| |
Collapse
|
13
|
Well-defined polyester-grafted silica nanoparticles for biomedical applications: Synthesis and quantitative characterization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chem Rev 2020; 120:9304-9362. [PMID: 32786427 DOI: 10.1021/acs.chemrev.9b00553] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have recently focused on the advancement of new materials from biorenewable and sustainable sources because of great concerns about the environment, waste accumulation and destruction, and the inevitable depletion of fossil resources. Biorenewable materials have been extensively used as a matrix or reinforcement in many applications. In the development of innovative methods and materials, composites offer important advantages because of their excellent properties such as ease of fabrication, higher mechanical properties, high thermal stability, and many more. Especially, nanocomposites (obtained by using biorenewable sources) have significant advantages when compared to conventional composites. Nanocomposites have been utilized in many applications including food, biomedical, electroanalysis, energy storage, wastewater treatment, automotive, etc. This comprehensive review provides chemistry, structures, advanced applications, and recent developments about nanocomposites obtained from biorenewable sources.
Collapse
Affiliation(s)
- Burhan Ates
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Suleyman Koytepe
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Ahmet Ulu
- Inonu University, Department of Chemistry, 44280 Malatya, Turkey
| | - Canbolat Gurses
- Inonu University, Department of Molecular Biology and Genetics, 44280 Malatya, Turkey
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, U.K.,Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
15
|
Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06842-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liang H, Zhao Y, Yang J, Li X, Yang X, Sasikumar Y, Zhou Z, Chen M. Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l-lactide) (PLLA)-Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization. Polymers (Basel) 2019; 11:E1123. [PMID: 31269645 PMCID: PMC6680788 DOI: 10.3390/polym11071123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The present work focuses on the preparation of poly(l-lactide)-magnesium oxide whiskers (PLLA-MgO) composites by the in-situ polymerization method for bone repair and implant. PLLA-MgO composites were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and solid-state 13C and 1H nuclear magnetic resonance spectroscopy (NMR). It was found that the whiskers were uniformly dispersed in the PLLA matrix through the interfacial interaction bonding between PLLA and MgO; thereby, the MgO whisker was found to be well-distributed in the PLLA matrix, and biocomposites with excellent interface bonding were produced. Notably, the MgO whisker has an effect on the crystallization behavior and mechanical properties; moreover, the in vivo degradation of PLLA-MgO composites could also be adjusted by MgO. These results show that the whisker content of 0.5 wt % and 1.0 wt % exhibited a prominent nucleation effect for the PLLA matrix, and specifically 1.0 wt % MgO was found to benefit the enhanced mechanical properties greatly. In addition, the improvement of the degrading process of the composite illustrated that the MgO whisker can effectively regulate the degradation of the PLLA matrix as well as raise its bioactivity. Hence, these results demonstrated the promising application of PLLA-MgO composite to serve as a biomedical material for bone-related repair.
Collapse
Affiliation(s)
- Hui Liang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Chimie des Interactions Plasma-Surface, University of Mons (Umons), 20 Place du Parc, B 7000 Mons, Belgium
| | - Yun Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin 300384, China.
| | - Jinjun Yang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- School of Environment Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoxian Yang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- School of Environment Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yesudass Sasikumar
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiyu Zhou
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin 300384, China.
| |
Collapse
|
17
|
Shi DW, Lai XL, Jiang YP, Yan C, Liu ZY, Yang W, Yang MB. Synthesis of Inorganic Silica Grafted Three-arm PLLA and Their Behaviors for PLA Matrix. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Influence of linear and branched amine functionalization in mesoporous silica on the thermal, mechanical and barrier properties of sustainable poly(lactic acid) biocomposite films. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Bikiaris D. Biocompatible Nanobioglass Reinforced Poly(ε-Caprolactone) Composites Synthesized via In Situ Ring Opening Polymerization. Polymers (Basel) 2018; 10:polym10040381. [PMID: 30966416 PMCID: PMC6415238 DOI: 10.3390/polym10040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Poly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester widely studied as a biomaterial for tissue engineering and controlled release applications, but its low bioactivity and weak mechanical performance limits its applications. In this work, nanosized bioglasses with two different compositions (SiO2–CaO and SiO2–CaO–P2O5) were synthesized with a hydrothermal method, and each one was used as filler in the preparation of PCL nanocomposites via the in situ ring opening polymerization of ε-caprolactone. The effect of the addition of 0.5, 1 and 2.5 wt % of the nanofillers on the molecular weight, structural, mechanical and thermal properties of the polymer nanocomposites, as well as on their enzymatic hydrolysis rate, bioactivity and biocompatibility was systematically investigated. All nanocomposites exhibited higher molecular weight values in comparison with neat PCL, and mechanical properties were enhanced for the 0.5 and 1 wt % filler content, which was attributed to extensive interactions between the filler and the matrix, proving the superiority of in situ polymerization over solution mixing and melt compounding. Both bioglasses accelerated the enzymatic degradation of PCL and induced bioactivity, since apatite was formed on the surface of the nanocomposites after soaking in simulated body fluid. Finally, all samples were biocompatible as Wharton jelly-derived mesenchymal stem cells (WJ-MSCs) attached and proliferated on their surfaces.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Diana Baciu
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Eleni Gounari
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR57001 Thessaloniki, Greece.
| | - Theodore Steriotis
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Georgia Charalambopoulou
- National Center for Scientific Research "Demokritos", Ag. Paraskevi Attikis, Athens GR15341, Greece.
| | - Dimitrios Bikiaris
- Laboratory of Polymers Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| |
Collapse
|
20
|
Synthesis and characterization of nanosized polylactic acid/TiO2 particle brushes by azeotropic dehydration polycondensation of lactic acid. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Lai XL, Yang W, Wang Z, Shi DW, Liu ZY, Yang MB. Enhancing crystallization rate and melt strength of PLLA with four-arm PLLA grafted silica: The effect of molecular weight of the grafting PLLA chains. J Appl Polym Sci 2017. [DOI: 10.1002/app.45675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiang-Ling Lai
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Wei Yang
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Zhao Wang
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Da-Wei Shi
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering; Sichuan University; Chengdu Sichuan 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu Sichuan 610065 China
| |
Collapse
|
22
|
Shaikh T, Rathore A, Kaur H. Poly (Lactic Acid) Grafting of TiO2Nanoparticles : A Shift in Dye Degradation Performance of TiO2from UV to Solar Light. ChemistrySelect 2017. [DOI: 10.1002/slct.201701560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tauhid Shaikh
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad India
| | - Anuradha Rathore
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad India
| | - Harjinder Kaur
- Department of Chemistry, School of Sciences; Gujarat University; Ahmedabad India
| |
Collapse
|
23
|
Liu H, Liu W, Luo B, Wen W, Liu M, Wang X, Zhou C. Electrospun composite nanofiber membrane of poly( l -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydr Polym 2016; 147:216-225. [DOI: 10.1016/j.carbpol.2016.03.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
|
24
|
Valapa RB, G P, Katiyar V. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. Int J Biol Macromol 2016; 89:70-80. [PMID: 27095433 DOI: 10.1016/j.ijbiomac.2016.04.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/08/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022]
Abstract
This work discusses the influence of novel biofiller, "sucrose palmitate" (SP) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) nanocomposites. The influence of temperature and pH of the solution on the hydrolytic degradation behavior of PLA and PLA-SP nanocomposites was investigated. The variation in the crystallinity of PLA and PLA composites subjected to the hydrolytic degradation process is verified by XRD and DSC analysis. The morphological changes that occurred during the degradation process are observed by scanning electron microscopy (SEM). Thermo-gravimetric analysis confirms the loss of thermal stability of the neat PLA as well as composites after hydrolytic degradation process. Transparency measurements support the enhancement in opacity of both the PLA and PLA-SP nanocomposites with progress in hydrolytic degradation period.
Collapse
Affiliation(s)
- Ravi Babu Valapa
- Centre for Biopolymer Science and Technology (CBPST), Kochi, Kerala, 683501, India
| | - Pugazhenthi G
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
25
|
Yin X, Bao J. Glass fiber coated with graphene constructed through electrostatic self-assembly and its application in poly(lactic acid) composite. J Appl Polym Sci 2015. [DOI: 10.1002/app.43296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiande Yin
- The State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Jianjun Bao
- The State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| |
Collapse
|
26
|
Ma H, Shen J, Yang Q, Zhou J, Xia S, Cao J. Effect of the Introduction of Fish Collagen on the Thermal and Mechanical Properties of Poly(lactic acid). Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui Ma
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Jiajia Shen
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Qun Yang
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Jie Zhou
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Shuangshuang Xia
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| | - Jianda Cao
- College of Material and Textile
Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People’s Republic of China
| |
Collapse
|
27
|
Tamaddon L, Mostafavi SA, Karkhane R, Riazi-Esfahani M, Dorkoosh FA, Rafiee-Tehrani M. Thermoanalytical characterization of clindamycin-loaded intravitreal implants prepared by hot melt extrusion. Adv Biomed Res 2015; 4:147. [PMID: 26322295 PMCID: PMC4549919 DOI: 10.4103/2277-9175.161563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/01/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The aim of the present study was to evaluate a non-destructive fabrication method in for the development of sustained-release poly (L, D-lactic acid)-based biodegradable clindamycin phosphate implants for the treatment of ocular toxoplasmosis. MATERIALS AND METHODS The rod-shaped intravitreal implants with an average length of 5 mm and a diameter of 0.4 mm were evaluated for their physicochemical parameters. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and nuclear magnetic resonance (1H NMR) studies were employed in order to study the characteristics of these formulations. RESULTS Drug content uniformity test confirmed the uniformity in different implant batches. Furthermore, the DSC, FTIR, and 1H NMR studies proved that the fabrication process did not have any destructive effects either on the drug or on the polymer structures. CONCLUSION These studies showed that the developed sustained-release implants could be of interest for long-term sustained intraocular delivery of clindamycin, which can provide better patient compliance and also have good potential in terms of industrial feasibility.
Collapse
Affiliation(s)
- Lana Tamaddon
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Abolfazl Mostafavi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Karkhane
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran, Iran
| | | | | | | |
Collapse
|
28
|
Du FP, Yang W, Zhang F, Tang CY, Liu SP, Yin L, Law WC. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14397-14403. [PMID: 26075677 DOI: 10.1021/acsami.5b03196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m.
Collapse
Affiliation(s)
- Fei-Peng Du
- †School of Materials Science and Engineering and Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wen Yang
- †School of Materials Science and Engineering and Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Fang Zhang
- †School of Materials Science and Engineering and Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Chak-Yin Tang
- ‡Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Sheng-Peng Liu
- †School of Materials Science and Engineering and Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Le Yin
- †School of Materials Science and Engineering and Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wing-Cheung Law
- ‡Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
29
|
Dang HC, Luo YK, Xu C, Song F, Wang XL, Wang YZ. Contribution of Hemispheric CaCO3 To Improving Crystalline, Physical Properties and Biocompatibility of Poly(p-dioxanone). Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai-Chun Dang
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Yan-Kui Luo
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Chen Xu
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Fei Song
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center
for Degradable and Flame-Retardant Polymeric Materials, College of
Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric
Materials (Sichuan), Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Li Y, Wang D, Sun XS. Copolymers from epoxidized soybean oil and lactic acid oligomers for pressure-sensitive adhesives. RSC Adv 2015. [DOI: 10.1039/c5ra02075a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corn based lactic acid oligomers and soybean based epoxidized oil were copolymerized under UV irradiation for biobased pressure-sensitive adhesives (PSA).
Collapse
Affiliation(s)
- Yonghui Li
- Bio-Materials and Technology Lab
- Department of Grain Science and Industry
- Kansas State University
- Manhattan
- USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering
- Kansas State University
- Manhattan
- USA
| | - Xiuzhi Susan Sun
- Bio-Materials and Technology Lab
- Department of Grain Science and Industry
- Kansas State University
- Manhattan
- USA
| |
Collapse
|
31
|
Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.08.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Kum CH, Cho Y, Seo SH, Joung YK, Ahn DJ, Han DK. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3783-3794. [PMID: 24820693 DOI: 10.1002/smll.201302880] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Biodegradable polymers such as poly(L-lactide) (PLLA) have been widely utilized as materials for biomedical applications. However, the relatively poor mechanical properties of PLLA and its acid-induced cell inflammation brought about by the acidic byproducts during biodegradation pose severe problems. In this study, these drawbacks of PLLA are addressed using a stereocomplex structure, where oligo-D-lactide-grafted magnesium hydroxide (MgO-ODLA) is synthesized by grafting d-lactide onto the surface of magnesium hydroxide, which is then blended with a PLLA film. The structure, morphology, pH change, thermal and mechanical properties, in-vitro cytotoxicity, and inflammation effect of the MgO-ODLAs and their PLLA composites are evaluated through various analyses. The PLLA/MgO70-ODLA30 (0-20 wt%) composite with a stereocomplex structure shows a 20% increase in its tensile strength and an improvement in the modulus compared to its oligo-L-lactide (PLLA/MgO70-OLLA30) counterpart. The interfacial interaction parameter of PLLA/MgO70-ODLA30 (5.459) has superior properties to those of PLLA/MgO70-OLLA30 (4.013) and PLLA/Mg(OH)2 (1.774). The cell cytotoxicity and acid-induced inflammatory response are suppressed by the neutralizing effect of the MgO-ODLAs. In addition, the inflammatory problem caused by the rapid acidification of the stereocomplex structure is also addressed. As a result, the stereocomplex structure of the MgO-ODLA/PLLA composite can be used to overcome the problems associated with the biomedical applications of PLLA films.
Collapse
Affiliation(s)
- Chang Hun Kum
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Kum CH, Seo SH, Kang SN, Park BJ, Ahn DJ, Joung YK, Han DK. Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites. Macromol Res 2014. [DOI: 10.1007/s13233-014-2140-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Valapa RB, Pugazhenthi G, Katiyar V. Fabrication and characterization of sucrose palmitate reinforced poly(lactic acid) bionanocomposite films. J Appl Polym Sci 2014. [DOI: 10.1002/app.41320] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ravi Babu Valapa
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati- 781039 Assam India
| | - G. Pugazhenthi
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati- 781039 Assam India
| | - Vimal Katiyar
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati- 781039 Assam India
| |
Collapse
|
35
|
Kaur H, Rathore A, Raju S. A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0537-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Li Y, Chen C, Li J, Susan Sun X. Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO2nanofillers. J Appl Polym Sci 2013. [DOI: 10.1002/app.40241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yonghui Li
- Bio-materials and Technology Lab, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas 66506
| | - Caihong Chen
- Department of Chemistry; Kansas State University; Manhattan Kansas 66506
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Jun Li
- Department of Chemistry; Kansas State University; Manhattan Kansas 66506
| | - Xiuzhi Susan Sun
- Bio-materials and Technology Lab, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas 66506
| |
Collapse
|
37
|
Kum CH, Cho Y, Joung YK, Choi J, Park K, Seo SH, Park YS, Ahn DJ, Han DK. Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J Mater Chem B 2013; 1:2764-2772. [PMID: 32260983 DOI: 10.1039/c3tb00490b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable polymers, such as poly(l-lactide) (PLLA), are very useful in many biomedical applications. However, their degradation by-products have been much of a concern as they are the sources of inflammatory reactions in the body. In this work, we suggest a novel composite system composed of PLLA and oligolactide-grafted magnesium hydroxide (Mg-OLA) that can overcome drawbacks caused by poor mechanical properties and inflammatory response of PLLA for biomedical applications. Mg-OLAs were synthesized by ring opening polymerization and the structure, morphology, pH change, thermal, and mechanical properties were analyzed using FTIR, SEM, pH meter, TGA, and UTM. In particular, the tensile strength and modulus of PLLA/Mg80-OLA20 (0-20 wt%) were higher than those of PLLA/magnesium hydroxide. The PLLA/Mg80-OLA20 composite was also very effective in neutralizing the acidic environment caused by the degradable by-product of the PLLA matrix. In vitro cell viability and the expression levels of COX-2 and IL-6 proteins in the PLLA composites were also evaluated. Cell viability increased to around 100% with increasing the amount of Mg80-OLA20 from 0 to 20 wt%. The expression levels of IL-6 and COX-2 were reduced dramatically when increasing the proportion of Mg80-OLA20 from 0 to 50 wt%. As a result, the incorporation of Mg-OLAs into the PLLA matrix could reinforce the mechanical properties as well as reduce the inflammatory response of the hybrid PLLA. Therefore, this hybrid composite system blending oligomer-grafted magnesium hydroxide in biodegradable polymers would be a promising strategy for avoiding current fatal problems in biomedical applications.
Collapse
Affiliation(s)
- Chang Hun Kum
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ahn BK, Sung J, Li Y, Kim N, Ikenberry M, Hohn K, Mohanty N, Nguyen P, Sreeprasad TS, Kraft S, Berry V, Sun XS. Synthesis and characterization of amphiphilic reduced graphene oxide with epoxidized methyl oleate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2123-2129. [PMID: 22431169 DOI: 10.1002/adma.201104080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Amphiphilic reduced graphene oxide is obtained by oleo-functionalization with epoxidized methyl oleate (renewable feedstock) using a green process. The excellent diverse solvent-dispersivity of the oleo-reduced amphiphilic graphene and its reduction chemistry are confirmed in this study. Oleo-reduction of amphiphilic graphene is amenable to industrially viable processes to produce future graphene-based polymer composites and systems.
Collapse
Affiliation(s)
- B Kollbe Ahn
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li Y, Chen C, Li J, Sun XS. Isothermal crystallization and melting behaviors of bionanocomposites from poly(lactic acid) and TiO2 nanowires. J Appl Polym Sci 2011. [DOI: 10.1002/app.35326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Li Y, Chen C, Li J, Sun XS. Synthesis and characterization of bionanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.03.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Li Y, Susan Sun X. Mechanical and thermal properties of biocomposites from poly(lactic acid) and DDGS. J Appl Polym Sci 2011. [DOI: 10.1002/app.33681] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|