1
|
Liu P. Molecular Design and Controlled Self-Assembly of Copolymers as Core-Shell-Corona Nanoparticles for Smarter Tumor Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1143-1149. [PMID: 38166440 DOI: 10.1021/acs.langmuir.3c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Copolymer-based core-shell-corona nanoparticles have attracted more interest for tumor chemotherapy, owing to their unique multifunctionality benefiting from their unique multilevel topological structure in comparison with the conventional core-shell ones. Here, the recent progress in such core-shell-corona nanoparticle-based drug delivery systems (DDSs) in tumor chemotherapy was reviewed, focusing on additive functionality of the shell layer for controlled drug release performance from the viewpoints of the molecular design and controlled self-assembly, such as stimuli-responsive gatekeepers, independent loading of active substances, and so on. Moreover, future perspectives have been prospected for smarter tumor treatment.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
2
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
3
|
Bharatiya D, Parhi B, Swain SK. Morphology biased pharmacological and mechanical properties of nanosized block copolymers of
PNIPAM
with polyethylene oxide and polyaminoacids in presence of polycaprolactone. J Appl Polym Sci 2022. [DOI: 10.1002/app.53389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Biswajit Parhi
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| |
Collapse
|
4
|
Atz Dick T, Uludağ H. A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Mol Pharm 2022; 19:2077-2091. [PMID: 35649175 DOI: 10.1021/acs.molpharmaceut.1c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mineralization by exposure of organic templates to supersaturated solutions is used by many living organisms to generate specialized materials to perform structural or protective functions. Similarly, it was suggested that improved robustness acquired through mineralization under natural conditions could be an important factor for virus survival outside of a host for better transfection of cells. Here, inspired by this fact, we developed a nonviral tricomponent polyplex system for gene delivery capable of undergoing mineralization. First, we fabricated anionic polyplexes carrying pDNA by self-assembly with a lipid-modified cationic polymer and coating by poly(aspartic acid). Then, we submitted the polyplexes to a two-step mineralization reaction to precipitate CaCO3 under various supersaturations. We carried out detailed morphological studies of the mineralized polyplexes and identified which parameters of the fabrication process were influential on transfection efficiency. We found that mineralization with CaCO3 is efficient in promoting transfection efficiency as long as a certain Ca2+/CO32- lower limit ratio is respected. However, calcium incubation can also be used to achieve similar effects at higher concentrations depending on polyplex composition, probably due to the formation of physical cross-links by calcium binding to poly(aspartic acid). We proposed that the improved robustness and transfection efficiency provided by means of mineralization can be used to expand the possible applications of polyplexes in gene therapy.
Collapse
Affiliation(s)
- Teo Atz Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Polyketal-based nanocarriers: A new class of stimuli-responsive delivery systems for therapeutic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
7
|
Parhi B, Bharatiya D, Swain SK. Effect of polycaprolactone on physicochemical, biological, and mechanical properties of polyethylene oxide and polyamino acids nano block copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Biswajit Parhi
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Debasrita Bharatiya
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| |
Collapse
|
8
|
Wu Y, Wang Y, Long L, Hu C, Kong Q, Wang Y. A spatiotemporal release platform based on pH/ROS stimuli-responsive hydrogel in wound repairing. J Control Release 2021; 341:147-165. [PMID: 34813880 DOI: 10.1016/j.jconrel.2021.11.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Fabricating injectable hydrogel with multifunctions that matchs the highly ordered healing process of skin regeneration has greatly desired in treatment of chronic diabetic wounds. Herein, a pH/reactive oxygen species (ROS) dual responsive injectable glycopeptide hydrogel based on phenylboronic acid-grafted oxidized dextran and caffeic acid-grafted ε-polylysine was constructed, which exhibited inherent antibacterial and antioxidant capacities. The mangiferin (MF) with the ability to promote angiogenesis was encapsulated into pH-responsive micelles (MIC). Subsequently, diclofenac sodium (DS) with anti-inflammatory activities and MIC@MF were embedded into the hydrogel. The hydrogel possessed good biodegradability, stable rheological property and self-healing ability, and could realize the spatiotemporal delivery of DS and MF. The in vitro and in vivo data showed that the hydrogel was biocompatible with effective anti-infection, anti-oxidation and anti-inflammation at early stages, then further promoted angiogenesis and accelerated wound repairing. Collectively, this novel glycopeptide hydrogel provides a facile and effective strategy for chronic diabetic wound repairing.
Collapse
Affiliation(s)
- Ye Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Joint Research Institute of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Zhang P, Li M, Xiao C, Chen X. Stimuli-responsive polypeptides for controlled drug delivery. Chem Commun (Camb) 2021; 57:9489-9503. [PMID: 34546261 DOI: 10.1039/d1cc04053g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlled drug delivery systems, which could release loaded therapeutics upon physicochemical changes imposed by physiological triggers in the desired zone and during the required period of time, offer numerous advantages over traditional drug carriers including enhanced therapeutic effects and reduced toxicity. A polypeptide is a biocompatible and biodegradable polymer, which can be conveniently endowed with stimuli-responsiveness by introducing natural amino acid residues with innate stimuli-responsive characteristics or introducing responsive moieties to its side chains using simple conjugating methods, rendering it an ideal biomedical material for controlled drug delivery. This feature article summarizes our recent work and other relevant studies on the development of polypeptide-based drug delivery systems that respond to single or multiple physiological stimuli (e.g., pH, redox potential, glucose, and hypoxia) for controlled drug delivery applications. The material designs, synthetic strategies, loading and controlled-release mechanisms of drugs, and biomedical applications of these stimuli-responsive polypeptides-based drug delivery systems are elaborated. Finally, the challenges and opportunities in this field are briefly discussed.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
11
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
12
|
Wang Y, Wu Y, Long L, Yang L, Fu D, Hu C, Kong Q, Wang Y. Inflammation-Responsive Drug-Loaded Hydrogels with Sequential Hemostasis, Antibacterial, and Anti-Inflammatory Behavior for Chronically Infected Diabetic Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33584-33599. [PMID: 34240605 DOI: 10.1021/acsami.1c09889] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimuli-responsive hydrogels possess unique advantages in drug delivery due to their variable performance and status based on the external environment. In the present study, a dual-responsive (pH and reactive oxygen species (ROS)) hydrogel was prepared to realize drug release properties under inflammatory stimulation. By grafting 3-carboxy-phenylboronic acid to the gelatin molecular backbone and cross-linking with poly(vinyl alcohol), we successfully synthesized the inflammation-responsive drug-loaded hydrogels after encapsulation with vancomycin-conjugated silver nanoclusters (VAN-AgNCs) and pH-sensitive micelles loaded with nimesulide (NIM). This novel design not only retained the dynamic functions of hydrogels, such as injectability, self-healing, and remodeling, but also realized sequential and on-demand drug delivery at diabetic-infected wound sites. In this work, we found that the hydrogel exhibited excellent biocompatibility and hemostasis properties owing to the enhanced cell-adhesive property of the gelatin component. The significant antibacterial and anti-inflammatory effect of the hydrogel was demonstrated in an in vitro experiment. Moreover, in the in vivo experiment, the hydrogel was found to play a role in promoting infected wound healing through sequential hemostasis and antibacterial and anti-inflammatory processes. Collectively, this inflammation-responsive hydrogel design containing VAN-AgNCs and NIM-loaded micelles has great potential in the application of chronically infected diabetic wound treatment, as well as in other inflammatory diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ye Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Med-X Center for Materials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
13
|
Xin X, Zhang Z, Zhang X, Chen J, Lin X, Sun P, Liu X. Bioresponsive nanomedicines based on dynamic covalent bonds. NANOSCALE 2021; 13:11712-11733. [PMID: 34227639 DOI: 10.1039/d1nr02836g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trends in the development of modern medicine necessitate the efficient delivery of therapeutics to achieve the desired treatment outcomes through precise spatiotemporal accumulation of therapeutics at the disease site. Bioresponsive nanomedicine is a promising platform for this purpose. Dynamic covalent bonds (DCBs) have attracted much attention in studies of the fabrication of bioresponsive nanomedicines with an abundance of combinations of therapeutic modules and carrier function units. DCB-based nanomedicines could be designed to maintain biological friendly synthesis and site-specific release for optimal therapeutic effects, allowing the complex to retain an integrated structure before accumulating at the disease site, but disassembling into individual active components without compromising function in the targeted organs or tissues. In this review, we focus on responsive nanomedicines containing dynamic chemical bonds that can be cleaved by various specific stimuli, enabling achievement of targeted drug release for optimal therapy in various diseases.
Collapse
Affiliation(s)
- Xiaoqian Xin
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, PR China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang X, Song Z, Wei S, Ji G, Zheng X, Fu Z, Cheng J. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021; 275:120913. [PMID: 34217020 DOI: 10.1016/j.biomaterials.2021.120913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Recent years have seen increasing interests in the use of ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs) to prepare synthetic polypeptides, a class of biocompatible and versatile materials, for various biomedical applications. Because of their rich side-chain functionalities, diverse hydrophilicity/hydrophobicity profiles, and the capability of forming stable secondary structures, polypeptides can assemble into a variety of well-organized nano-structures that have unique advantages in drug delivery and controlled release. Herein, we review the design and use of polypeptide-based drug delivery system derived from NCA chemistry, and discuss the future perspectives of this exciting and important biomaterial area that may potentially change the landscape of next-generation therapeutics and diagnosis. Given the high significance of precise control over release for polypeptide-based systems, we specifically focus on the versatile designs of drug delivery systems capable of programmed release, through the changes in the chemical and physical properties controlled by the built-in molecular structures of polypeptides.
Collapse
Affiliation(s)
- Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
| | - Shiqi Wei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xuetao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zihuan Fu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
15
|
Hou X, Zhong D, Li Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting. J Nanobiotechnology 2021; 19:111. [PMID: 33874945 PMCID: PMC8054436 DOI: 10.1186/s12951-021-00854-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Nanocarriers-derived antitumor therapeutics are often associated with issues of limited tumor penetration and dissatisfactory antitumor efficacies. Some multistage delivery systems have been constructed to address these issues, but they are often accompanied with complicated manufacture processes and undesirable biocompatibility, which hinder their further application in clinical practices. Herein, a novel dual-responsive multi-pocket nanoparticle was conveniently constructed through self-assembly and cross-linking of amphiphilic methoxypolyethylene glycol-lipoic acid (mPEG-LA) conjugates to enhance tumor penetration and antitumor efficacy. Results The multi-pocket nanoparticles (MPNs) had a relatively large size of ~ 170 nm at physiological pH which results in prolonged blood circulation and enhanced accumulation at the tumor site. But once extravasated into acidic tumor interstices, the increased solubility of PEG led to breakage of the supramolecular nanostructure and dissolution of MPNs to small-sized (< 20 nm) nanoparticles, promoting deep penetration and distribution in tumor tissues. Furthermore, MPNs exhibited not only an excellent stable nanostructure for antitumor doxorubicin (DOX) loading, but rapid dissociation of the nanostructure under an intracellular reductive environment. With the capacity of long blood circulation, deep tumor penetration and fast intracellular drug release, the DOX-loaded multi-pocket nanoparticles demonstrated superior antitumor activities against large 4T1 tumor (~ 250 mm3) bearing mice with reduced side effect. Conclusions Our facile fabrication of multi-pocket nanoparticles provided a promising way in improving solid tumor penetration and achieving a great therapeutic efficacy. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00854-z.
Collapse
Affiliation(s)
- Xingyu Hou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dan Zhong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yunkun Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
16
|
Son I, Lee Y, Baek J, Park M, Han D, Min SK, Lee D, Kim BS. pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery. Biomacromolecules 2021; 22:2043-2056. [PMID: 33835793 DOI: 10.1021/acs.biomac.1c00163] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite widespread interest in the amphiphilic polymeric micelles for drug delivery systems, it is highly desirable to achieve high loading capacity and high efficiency to reduce the side effects of therapeutic agents while maximizing their efficacy. Here, we present a novel hydrophobic epoxide monomer, cyclohexyloxy ethyl glycidyl ether (CHGE), containing an acetal group as a pH-responsive cleavable linkage. A series of its homopolymers, poly(cyclohexyloxy ethyl glycidyl ether)s (PCHGEs), and block copolymers, poly(ethylene glycol)-block-poly(cyclohexyloxy ethyl glycidyl ether)s (mPEG-b-PCHGE), were synthesized via anionic ring-opening polymerization in a controlled manner. Subsequently, the self-assembled polymeric micelles of mPEG-b-PCHGE demonstrated high loading capacity, excellent stability in biological media, tunable release efficiency, and high cell viability. Importantly, quantum mechanical calculations performed by considering prolonged hydrolysis of the acetal group in CHGE indicated that the CHGE monomer had higher hydrophobicity than three other functional epoxide monomer analogues developed. Furthermore, the preferential cellular uptake and in vivo therapeutic efficacy confirmed the enhanced stability and the pH-responsive degradation of the amphiphilic block copolymer micelles. This study provides a new platform for the development of versatile smart polymeric drug delivery systems with high loading efficiency and tailorable release profiles.
Collapse
Affiliation(s)
- Iloh Son
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Lee
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Miran Park
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Daeho Han
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongwon Lee
- Department of PolymerNano Science and Technology, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Li J, Du N, Tan Y, Hsu HY, Tan C, Jiang Y. Conjugated Polymer Nanoparticles Based on Copper Coordination for Real-Time Monitoring of pH-Responsive Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:2583-2590. [PMID: 35014375 DOI: 10.1021/acsabm.0c01564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal coordination-driven composite systems have excellent stability and pH-responsive ability, making them suitable for specific drug delivery in physiological conditions. In this study, an anionic conjugated polymer PPEIDA with a poly(p-phenylene ethynylene) backbone and iminodiacetic acid (IDA) side chains is used as a drug carrier to construct a class of pH-responsive nanoparticles, PPEIDA-Cu-DOX conjugated polymer nanoparticles (CPNs), by taking advantage of the metal coordination interaction of Cu2+ with PPEIDA and the drug doxorubicin (DOX). PPEIDA-Cu-DOX CPNs have high drug loading and encapsulation efficiency (EE), calculated to be 54.30 ± 1.10 and 95.80 ± 0.84%, respectively. Due to the good spectral overlap, Förster resonance energy transfer (FRET) takes place between PPEIDA and the drug DOX, which enables the observation of the loading and the release of DOX from CPNs in an acidic environment by monitoring fluorescence emission changes. Therefore, PPEIDA-Cu-DOX CPNs can also be used in real-time cell imaging to monitor drug release in addition to delivering DOX targeting tumor cells. Compared with free DOX, PPEIDA-Cu-DOX CPNs show a similar inhibition to tumor cells and lower toxicity to normal cells. Our results demonstrate the feasibility and potential of constructing pH-responsive CPNs via metal-ligand coordination interactions for cancer treatment.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Du
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China.,Shenzhen Research Institute of City, University of Hong Kong, Shenzhen 518057, P. R. China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, The Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
18
|
Dharmayanti C, Gillam TA, Klingler-Hoffmann M, Albrecht H, Blencowe A. Strategies for the Development of pH-Responsive Synthetic Polypeptides and Polymer-Peptide Hybrids: Recent Advancements. Polymers (Basel) 2021; 13:624. [PMID: 33669548 PMCID: PMC7921987 DOI: 10.3390/polym13040624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic polypeptides and polymer-peptide hybrid materials have been successfully implemented in an array of biomedical applications owing to their biocompatibility, biodegradability and ability to mimic natural proteins. In addition, these materials have the capacity to form complex supramolecular structures, facilitate specific biological interactions, and incorporate a diverse selection of functional groups that can be used as the basis for further synthetic modification. Like conventional synthetic polymers, polypeptide-based materials can be designed to respond to external stimuli (e.g., light and temperature) or changes in the environmental conditions (e.g., redox reactions and pH). In particular, pH-responsive polypeptide-based systems represent an interesting avenue for the preparation of novel drug delivery systems that can exploit physiological or pathological pH variations within the body, such as those that arise in the extracellular tumour microenvironment, intracellularly within endosomes/lysosomes, or during tissue inflammation. Here, we review the significant progress made in advancing pH-responsive polypeptides and polymer-peptide hybrid materials during the last five years, with a particular emphasis on the manipulation of ionisable functional groups, pH-labile linkages, pH-sensitive changes to secondary structure, and supramolecular interactions.
Collapse
Affiliation(s)
- Cintya Dharmayanti
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| | - Todd A. Gillam
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
- Surface Interactions and Soft Matter Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (C.D.); (T.A.G.)
| |
Collapse
|
19
|
Atanasova M, Grancharov G, Petrov PD. Poly(ethylene oxide)‐
block
‐poly(α‐cinnamyl‐ε‐caprolactone‐
co
‐ε‐caprolactone) diblock copolymer nanocarriers for enhanced solubilization of caffeic acid phenethyl ester. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Petar D. Petrov
- Institute of Polymers Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
20
|
Han W, Meng F, Gan H, Guo F, Ke J, Wang L. Targeting self-assembled F127-peptide polymer with pH sensitivity for release of anticancer drugs. RSC Adv 2021; 11:1461-1471. [PMID: 35424141 PMCID: PMC8693612 DOI: 10.1039/d0ra09898a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
The treatment of breast cancer mainly relies on chemotherapy drugs, which present significant side effects.
Collapse
Affiliation(s)
- Wenzhao Han
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| | - Fanwei Meng
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| | - Hao Gan
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| | - Feng Guo
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| | - Junfeng Ke
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education
- School of Life Sciences
- Engineering Laboratory for AIDS Vaccine
- Jilin Universtiy
- Changchun 130012
| |
Collapse
|
21
|
Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv Drug Deliv Rev 2020; 160:199-211. [PMID: 33137364 DOI: 10.1016/j.addr.2020.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicines based on synthetic polypeptides are among the most versatile and advanced platforms for tumor therapy. Notably, several polypeptide-based nanodrugs are currently under human clinical assessments. The previous (pre)clinical studies clearly show that dynamic stability (i.e. stable in circulation while destabilized in tumor) of nanomedicines plays a vital role in their anti-tumor performance. Various strategies have recently been developed to design dynamically stabilized polypeptide-based nanomedicines by e.g. crosslinking the nanovehicles with acid, reactive oxygen species (ROS), glutathione (GSH), or photo-sensitive linkers, inter-crosslinking between vehicles and drugs, introducing π-π stacking or lipid-lipid interactions in the nanovehicles, chemically conjugating drugs to vehicles, and forming unimolecular micelles. Interestingly, these robust and smart nanodrugs have demonstrated improved tumor targetability, anti-tumor efficacy, as well as safety profiles in different tumor models. In this review, representative strategies to robust and smart polypeptide-based nanomedicines for targeted treatment of varying malignancies are highlighted. The exciting development of dynamic nanomedicines will foresee further increasing clinical translation in the future.
Collapse
|
22
|
Pottanam Chali S, Ravoo BJ. Adamantane‐Terminated Polypeptides: Synthesis by
N
‐Carboxyanhydride Polymerization and Template‐Based Self‐Assembly of Responsive Nanocontainers via Host–Guest Complexation with β‐Cyclodextrin. Macromol Rapid Commun 2020; 41:e2000049. [DOI: 10.1002/marc.202000049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 Münster 48149 Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms‐Universität Münster Corrensstrasse 40 Münster 48149 Germany
| |
Collapse
|
23
|
Noy JM, Chen F, Akhter DT, Houston ZH, Fletcher NL, Thurecht KJ, Stenzel MH. Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules 2020; 21:2320-2333. [PMID: 32343128 DOI: 10.1021/acs.biomac.0c00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphorylcholine is known to repel the absorption of proteins onto surfaces, which can prevent the formation of a protein corona on the surface of nanoparticles. This can influence the fate of nanoparticles used for drug delivery. This material could therefore serve as an alternative to poly(ethylene glycol) (PEG). Herein, the synthesis of different particles prepared by polymerization-induced self-assembly (PISA) coated with either poly(ethylene glycol) (PEG) or zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was reported. The anticancer drug 4-(N-(S-penicillaminylacetyl)amino) phenylarsenonous acid (PENAO) was conjugated to the shell-forming block. Interactions of the different coated nanoparticles, which present comparable sizes and size distributions (76-85 nm, PDI = 0.067-0.094), with two-dimensional (2D) and three-dimensional (3D) cultured cells were studied, and their cytotoxicities, cellular uptakes, spheroid penetration, and cell localization profiles were analyzed. While only a minimal difference in behaviour was observed for nanoparticles assessed using in vitro experiment (with PEG-co- PENAO-coated micelles showing slightly higher cytotoxicity and better spheroid penetration and cell localization ability), the effect of the different physicochemical properties between nanoparticles had a more dramatic effect on in vivo biodistribution. After 1 h of injection, the majority of the MPC-co-PENAO-coated nanoparticles were found to accumulate in the liver, making this particle system unfeasible for future biological studies.
Collapse
Affiliation(s)
- Janina-Miriam Noy
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
25
|
Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800917. [PMID: 30835923 DOI: 10.1002/marc.201800917] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Indexed: 01/06/2025]
Abstract
Stimuli-responsive nanoparticles have the potential to improve the delivery of therapeutics to a specific cell or region within the body. There are many stimuli that have shown potential for specific release of cargo, including variation of pH, redox potential, or the presence of enzymes. pH variation has generated significant interest for the synthesis of stimuli-responsive nanoparticles because nanoparticles are internalized into cells via vesicles that are acidified. Additionally, the tumor microenvironment is known to have a lower pH than the surrounding tissue. In this review, different strategies to design pH-responsive nanoparticles are discussed, focusing on the use of charge-shifting polymers, acid labile linkages, and crosslinking.
Collapse
Affiliation(s)
- Nayeleh Deirram
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Changhe Zhang
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah S Kermaniyan
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
26
|
Sun J, Wang Z, Cao A, Sheng R. Synthesis of crosslinkable diblock terpolymers PDPA-b-P(NMS-co-OEG) and preparation of shell-crosslinked pH/redox-dual responsive micelles as smart nanomaterials. RSC Adv 2019; 9:34535-34546. [PMID: 35529956 PMCID: PMC9073896 DOI: 10.1039/c9ra05082e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Crosslinked polymer nanomaterials have attracted great attention due to their stability and highly controllable drug delivery; herein, a series of well-defined amphiphilic PDPA-b-P(NMS-co-OEG) diblock terpolymers (P1–P3) were designed and prepared via RAFT polymerization and were self-assembled into non-cross-linked (NCL) nanomicelles, which were further prepared into shell-cross-linked (SCL) micelles via cystamine-based in situ shell cross-linking. Using P3 as an optimized polymer, SCL-P3 micelles were prepared, which demonstrated remarkable pH/redox-dual responsive behaviour. For drug delivery, camptothecin (CPT)-loaded SCL-P3 micelles were prepared and showed much higher CPT-loading capability than their NCL-P3 counterparts. Notably, the SCL-P3 micelles showed good synergistic pH/redox-dual responsive CPT release properties, making them potential “smart” nanocarriers for drug delivery. A series of well-defined amphiphilic PDPA-b-P(NMS-co-OEG) diblock terpolymers were prepared via RAFT polymerization and self-assembled into non-cross-linked nanomicelles, and then shell-cross-linked micelles via cystamine-based in situ shell cross-linking.![]()
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Radiology
- Shanghai Tenth People's Hospital
- School of Medicine
- Tongji University
- Shanghai 200072
| | - Zhao Wang
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- CAS
- Shanghai
- China
| | - Amin Cao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- CAS
- Shanghai
- China
| | - Ruilong Sheng
- Department of Radiology
- Shanghai Tenth People's Hospital
- School of Medicine
- Tongji University
- Shanghai 200072
| |
Collapse
|
27
|
Hufendiek A, Lingier S, Du Prez FE. Thermoplastic polyacetals: chemistry from the past for a sustainable future? Polym Chem 2019. [DOI: 10.1039/c8py01219a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review serves as a guide to the synthesis and applications of thermoplastic polyacetals, highlighting in particular sustainability and degradability aspects.
Collapse
Affiliation(s)
- Andrea Hufendiek
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Sophie Lingier
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| |
Collapse
|
28
|
Liu Y, Chen F, Zhang K, Wang Q, Chen Y, Luo X. pH-Responsive reversibly cross-linked micelles by phenol–yne click via curcumin as a drug delivery system in cancer chemotherapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00305c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-sensitive reversibly cross-linked micelles by phenol–yne click via curcumin (Cur) using mPEG-b-PHEMA-5HA are developed by combining drug loading and cross-linking as a drug delivery system.
Collapse
Affiliation(s)
- Yuancheng Liu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Kui Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Quan Wang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
29
|
Ge F, Qiao Q, Zhu L, Li W, Song P, Zhu L, Tao Y, Gui L. Preparation of a tumor-targeted drug-loading material, amphiphilic peptide P10, and analysis of its anti-tumor activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:3. [PMID: 30569205 DOI: 10.1007/s10856-018-6204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
A new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) was designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics were studied. P10 was synthesized by solid-state synthesis and doxorubicin (DOX) was loaded via dialysis. P10 and DOX were mixed with a mass ratio of 6:1 to form regular round spheres. The interconnection between groups was analyzed spectroscopically and the sphere morphology was studied with SEM and a zeta particle size analyzer. Fluorescence spectroscopy was used to analyze the ability of P10 to form micelles and the efficiency of micelle entrapment, and the drug-loading ratio and drug release characteristics were detected. Finally, the in vitro antitumor activity of P10 was studied with HeLa cells as a model. The results showed that P10's critical micelle concentration (CMC) value and its average grain diameter were approximately 0.045 mg/L and 500 nm. The micelle entrapment ratio and drug-loading ratio were 23.011 ± 2.88 and 10.125 ± 2.62%, respectively, and the in vitro drug-releasing properties of P10 were described by the Zero-order model and the Ritger-Peppas model. Compared with DOX, P10-DOX had a higher tumor cell inhibition ratio and a dose-effect relationship with concentration. When P10-DOX's concentration was 20 μg/mL, the inhibition ratio was 44.17%. The new amphiphilic peptide designed and prepared in this study could be a tumor-targeted drug-loading material with better prospects for application. In this paper, a new tumor-targeted drug-loading material, the amphiphilic peptide DGRGGGAAAA (P10) is designed and synthesized, and its self-assembly behavior, drug-loading effects and in vitro characteristics are studied, providing a theoretical basis and design ideas for further studies and the development of targeted drug-loading materials on tumor cells.
Collapse
Affiliation(s)
- Fei Ge
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Qianqian Qiao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longbao Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Wanzhen Li
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Ping Song
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Longlong Zhu
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China
| | - Yugui Tao
- Biological and Chemical Engineering College, Anhui Polytechnic University, Beijing Middle Road, Anhui, 241000, Wuhu, China.
| | - Lin Gui
- Department of Microbiology and immunology, Wannan Medical College, No. 22 Wenchang West Road, 241002, Wuhu, China.
| |
Collapse
|
30
|
Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:727-733. [PMID: 30033307 DOI: 10.1016/j.msec.2018.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
Stimuli-responsive polymeric micelles were prepared through self-assembly of amphiphilic copolymers poly(ethylene glycol)-poly(γ-benzyl l-glutamate), followed by a core-crosslinking reaction using cystamine as the crosslinking agent. The crosslinked micelles with spherical morphologies in nanometer size showed enhanced stability against dilution and concentrated salt solutions compared to the micelles before crosslinking. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through electrostatic interactions between carboxylic acid and DOX. In vitro drug release under pH and redox conditions was investigated. Furthermore, the cytotoxicity of micelles was evaluated before and after drug loading. The endocytosis of DOX-loaded micelles and the intracellular drug release were studied. DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic and reductive environment, and showed an inhibited premature release behavior as compared to the noncrosslinked micelles. Considering their enhanced stability, pH and redox dual triggered responsive characteristics, the polymeric micelles can serve as potential systems for controlled drug delivery.
Collapse
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qiyi Yang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dawei Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
31
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
32
|
Jiang Z, Chen J, Cui L, Zhuang X, Ding J, Chen X. Advances in Stimuli‐Responsive Polypeptide Nanogels. SMALL METHODS 2018; 2. [DOI: 10.1002/smtd.201700307] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractPolymer nanogels, which are nanosized particles of hydrogels formed by physically or chemically crosslinking polymers, are one of the most promising nanoplatforms for use in biomedical applications, including drug delivery, gene therapy, and bioimaging. Polypeptide nanogels exhibit many advantages for applications in biomedical fields, including stable 3D structures, high drug‐loading efficiency, excellent biocompatibility, stimuli responsiveness, and so forth. More specifically, smart polypeptide nanogels undergo suitable transitions under endogenous (e.g., reduction, reactive oxygen species, pH, and enzymes) or exogenous stimuli (e.g., light, temperature, voltage, and magnetic fields) for on‐demand drug delivery. Here, a comprehensive introduction to the preparation and applications of diverse stimuli‐responsive polypeptide nanogels is given. Moreover, the opportunities and challenges of polypeptide nanogels for the development of biomedicine are briefly predicted.
Collapse
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Liguo Cui
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
33
|
Ruttala HB, Chitrapriya N, Kaliraj K, Ramasamy T, Shin WH, Jeong JH, Kim JR, Ku SK, Choi HG, Yong CS, Kim JO. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater 2017; 63:135-149. [PMID: 28890258 DOI: 10.1016/j.actbio.2017.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/14/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022]
Abstract
In this study, we developed pH and redox-responsive crosslinked polypeptide-based combination micelles for enhanced chemotherapeutic efficacy and minimized side effects. The stability and drug release properties of the polypeptide micelles were efficiency balanced by the corona-crosslinking of the triblock copolymer, poly(ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr) with coordinated redox and pH dual-sensitivity by introducing disulfide crosslinkages. Because of the crosslinking of the middle shell of the triblock polypeptide micelles, their robust structure was maintained in strong destabilization conditions and exhibited excellent stability. GSH concentrations were significantly higher in tumor tissue than in normal tissue, which formed the basis for our design. Drug release was elevated under redox and low acidic conditions. Furthermore, crosslinked micelles showed a superior anticancer effect compared to that of non-crosslinked micelles. Incorporation of docetaxel (DTX) and lonidamine (LND) in crosslinked polypeptide micelles increased the intracellular reactive oxygen species (ROS) level and oxidative stress and caused damage to intracellular components that resulted in greater apoptosis of cancer cells than when DTX or LND was used alone. The combination of DTX and LND in crosslinked micelles exhibited efficacious inhibition of tumor growth with an excellent safety profile compared to that reported for drug cocktail combinations and non-crosslinked micelles. Overall, redox/pH-responsive polypeptide micelles could be an interesting platform for efficient chemotherapy. STATEMENT OF SIGNIFICANCE We have synthesized a biodegradable polypeptide block copolymer to construct a facile pH and redox-responsive polymeric micelle asan advanced therapeutic system for cancer therapy. We have designed a corona-crosslinked triblock copolymer (poly (ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr)) micelles co-loaded with docetaxel and lonidamine (cl-M/DL). The corona of triblock polymer was crosslinked to maintain its structural integrity in the physiological environment. The mitochondrial targeting LND is expected to generate ROS, oxidative stress and thereby synergize the chemotherapeutic efficacy of DTX in killing cancer cells. Consistently, cl-M/DL exhibited excellent antitumor efficacy in xenograft tumor model with remarkable tumor regression. Overall, we demonstrated the construction of bioreducible nanosystem for the effective synergistic delivery of DTX/LND in tumor tissues towards cancer treatment.
Collapse
|
34
|
Kim S, Traore YL, Lee JS, Kim JH, Ho EA, Liu S. Self-assembled nanoparticles made from a new PEGylated poly(aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2082-2099. [DOI: 10.1080/09205063.2017.1374032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Seungil Kim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Yannick Leandre Traore
- Laboratory for Drug Delivery and Biomaterials, Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Jae Sang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Heung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Emmanuel A. Ho
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Laboratory for Drug Delivery and Biomaterials, Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Canada
| | - Song Liu
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Faculty of Agricultural and Food Sciences, Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
- Faculty of Science, Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
35
|
Wang TW, Yeh CW, Kuan CH, Wang LW, Chen LH, Wu HC, Sun JS. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Acta Biomater 2017; 58:54-66. [PMID: 28606810 DOI: 10.1016/j.actbio.2017.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Breast cancer has become the second leading cause of cancer-related mortality in female wherein more than 90% of breast cancer-related death results from cancer metastasis to distant organs at advanced stage. The purpose of this study is to develop biodegradable nanoparticles composed of natural polypeptides and calcium phosphate (CaP) with sequential pH-responsivity to tumor microenvironments for active targeted drug delivery. Two different amphiphilic copolymers, poly(ethylene glycol)3400-aconityl linkage-poly(l-glutamic acid)15-poly(l-histidine)10-poly(l-leucine)10 and LyP1-poly(ethylene glycol)1100-poly(l-glutamic acid)15-poly(l-histidine)10-poly(l-leucine)10, were exploited to self-assemble into micelles in aqueous phase. The bio-stable nanoparticles provide three distinct functional domains: the anionic PGlu shell for CaP mineralization, the protonation of PHis segment for facilitating anticancer drug release at target site, and the hydrophobic core of PLeu for encapsulation of anticancer drugs. Furthermore, the hydrated PEG outer corona is used for prolonging circulation time, while the active targeting ligand, LyP-1, is served to bind to breast cancer cells and lymphatic endothelial cells in tumor for inhibiting metastasis. Mineralized DOX-loaded nanoparticles (M-DOX NPs) efficiently prevent the drug leakage at physiological pH value and facilitate the encapsulated drug release at acidic condition when compared to DOX-loaded nanoparticles (DOX NPs). M-DOX NPs with LyP-1 targeting ligand effectively accumulated in MDA-MB-231 breast cancer cells. The inhibition effect on cell proliferation also enhances with time, illustrating the prominent anti-tumor efficacy. Moreover, the in vitro metastatic inhibition model shows the profound inhibition effect of inhibitory nanoparticles. In brief, this self-assembling peptide-based drug delivery nanocarrier with multifunctionality and programmable pH-sensitivity is of great promise and potential for anti-cancer therapy. STATEMENT OF SIGNIFICANCE This tailored-design polypeptide-based nanoparticles with self-assembling and programmable stimulus-responsive properties enable to 1) have stable pH in physiological value with a low level of drug loss and effectively release the encapsulated drug with pH variations according to the tumor microenvironment, 2) enhance targeting ability to hard-to-treat breast cancer cells and activate endothelial cells (tumor region), 3) significantly inhibit the growth and prevent from malignant metastasis of cancer cells in consonance with promising anti-tumor efficacy, and 4) make tumors stick to localized position so that these confined solid tumors can be more accessible by different treatment modalities. This work contributes to designing a programmable pH-responsive drug delivery system based on the tailor-designed polypeptides.
Collapse
Affiliation(s)
- Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chia-Wei Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chen-Hsiang Kuan
- Department of Plastic Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Li-Wen Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Hsin Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsi-Chin Wu
- Department of Materials Engineering, Tatung University, Taipei 10452, Taiwan
| | - Jui-Shen Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
36
|
Jiang Z, Chen J, Ding J, Zhuang X, Chen X. Controlled Syntheses of Functional Polypeptides. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1252.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
37
|
Li H, Chen G, Das S. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloids Surf B Biointerfaces 2016; 147:180-190. [DOI: 10.1016/j.colsurfb.2016.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
|
38
|
Shenoi RA, Abbina S, Kizhakkedathu JN. In Vivo Biological Evaluation of High Molecular Weight Multifunctional Acid-Degradable Polymeric Drug Carriers with Structurally Different Ketals. Biomacromolecules 2016; 17:3683-3693. [DOI: 10.1021/acs.biomac.6b01198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rajesh A. Shenoi
- Centre for Blood Research, Department of Pathology & Laboratory Medicine, and ‡Department of Chemistry, University of British Columbia, Vancouver British Columbia, Canada V6T 1Z3
| | - Srinivas Abbina
- Centre for Blood Research, Department of Pathology & Laboratory Medicine, and ‡Department of Chemistry, University of British Columbia, Vancouver British Columbia, Canada V6T 1Z3
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Department of Pathology & Laboratory Medicine, and ‡Department of Chemistry, University of British Columbia, Vancouver British Columbia, Canada V6T 1Z3
| |
Collapse
|
39
|
Lee HJ, Kim DE, Park DJ, Choi GH, Yang DN, Heo JS, Lee SC. pH-Responsive mineralized nanoparticles as stable nanocarriers for intracellular nitric oxide delivery. Colloids Surf B Biointerfaces 2016; 146:1-8. [DOI: 10.1016/j.colsurfb.2016.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/05/2023]
|
40
|
Cheng X, Jin Y, Qi R, Fan W, Li H, Sun X, Lai S. Dual pH and oxidation-responsive nanogels crosslinked by diselenide bonds for controlled drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Liu X, Hu D, Jiang Z, Zhuang J, Xu Y, Guo X, Thayumanavan S. Multi-Stimuli-Responsive Amphiphilic Assemblies through Simple Postpolymerization Modifications. Macromolecules 2016; 49:6186-6192. [PMID: 29353939 DOI: 10.1021/acs.macromol.6b01397] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A strategy to construct different stimuli responsive polymers from post polymerization modifications of a single polymer scaffold via thiol-disulfide exchange has been developed. Here, we report on a random copolymer that enables the design and syntheses of a series of dual or multi-stimuli responsive nanoassemblies using a simple post-polymerization modification step. The reactive functional group involves a side chain monopyridyl disulfide unit, which rapidly and quantitatively reacts with various thiols under mild conditions. Independent and concurrent incorporation of physical, chemical or biologically responsive properties have been demonstrated. We envision that this strategy may open up opportunities to simplify the synthesis of multi-functional polymers with broad implications in a variety of biological applications.
Collapse
Affiliation(s)
- Xiaochi Liu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Chemistry, University of Massachusetts, Ameherst, Massachusetts 01003, United States
| | - Ding Hu
- Department of Chemistry, University of Massachusetts, Ameherst, Massachusetts 01003, United States
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts, Ameherst, Massachusetts 01003, United States
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Ameherst, Massachusetts 01003, United States
| | - Yisheng Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Ameherst, Massachusetts 01003, United States
| |
Collapse
|
42
|
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3463-70. [PMID: 27197594 DOI: 10.1002/smll.201600798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 05/10/2023]
Abstract
Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor-selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH-sensitive, multicompartmental particles are promising drug carriers enabling tumor-selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Dae Gun Choi
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| |
Collapse
|
43
|
Preparation and characterization of the pH and thermosensitive magnetic molecular imprinted nanoparticle polymer for the cancer drug delivery. Bioorg Med Chem Lett 2016; 26:2349-54. [DOI: 10.1016/j.bmcl.2016.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
|
44
|
Aydin O, Youssef I, Yuksel Durmaz Y, Tiruchinapally G, ElSayed MEH. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells. Mol Pharm 2016; 13:1413-29. [DOI: 10.1021/acs.molpharmaceut.6b00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Omer Aydin
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ibrahim Youssef
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, Faculty of Science, Mansoura University, Mansoura ET-35516, Egypt
| | - Yasemin Yuksel Durmaz
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Gopinath Tiruchinapally
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohamed E. H. ElSayed
- Cellular Engineering & Nano-Therapeutics Laboratory, Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Zhang Y, Zhou J, Yang C, Wang W, Chu L, Huang F, Liu Q, Deng L, Kong D, Liu J, Liu J. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. Int J Nanomedicine 2016; 11:1119-30. [PMID: 27051287 PMCID: PMC4807950 DOI: 10.2147/ijn.s101649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
46
|
Suo A, Qian J, Zhang Y, Liu R, Xu W, Wang H. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:564-73. [PMID: 26952460 DOI: 10.1016/j.msec.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by (1)H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π-π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material.
Collapse
Affiliation(s)
- Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rongrong Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hejing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
47
|
Park DJ, Min KH, Lee HJ, Kim K, Kwon IC, Jeong SY, Lee SC. Photosensitizer-loaded bubble-generating mineralized nanoparticles for ultrasound imaging and photodynamic therapy. J Mater Chem B 2016; 4:1219-1227. [PMID: 32262977 DOI: 10.1039/c5tb02338f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have developed photosensitizer-loaded bubble-generating calcium carbonate (CaCO3)-mineralized nanoparticles that have potential for ultrasound imaging (US)-guided photodynamic therapy (PDT) of tumors. A photosensitizer, chlorin e6 (Ce6)-loaded CaCO3-mineralized nanoparticles (Ce6-BMNs), was prepared using an anionic block copolymer-templated in situ mineralization method. Ce6-BMNs were composed of the Ce6-loaded CaCO3 core and the hydrated poly(ethylene glycol) (PEG) shell. Ce6-BMNs exhibited excellent stability under serum conditions. Ce6-BMNs showed enhanced echogenic US signals at tumoral acid pH by generating carbon dioxide (CO2) bubbles. Ce6-BMNs effectively inhibited Ce6 release at physiological pH (7.4). At a tumoral acidic pH (6.4), Ce6 release was accelerated with CO2 bubble generation due to the dissolution of the CaCO3 mineral core. Upon irradiation of Ce6-BMN-treated MCF-7 breast cancer cells, the cell viability dramatically decreased with increasing Ce6 concentration. The phototoxicity of the Ce6-BMNs was much higher than that of free Ce6. On the basis of tumoral pH-responsive CO2 bubble-generation and simultaneous Ce6 release at the target tumor site, these CaCO3 mineralized nanoparticles can be considered as promising theranostic nanoparticles for US imaging-guided PDT in the field of tumor therapy.
Collapse
Affiliation(s)
- Dong Jin Park
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Thambi T, Son S, Lee DS, Park JH. Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater 2016; 29:261-270. [PMID: 26472611 DOI: 10.1016/j.actbio.2015.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022]
Abstract
Hypoxia occurs in a variety of pathological conditions including stroke, rheumatoid arthritis, atherosclerosis, and tumors. In this study, an amphiphilic block copolymer, composed of poly(ethylene glycol) as the hydrophilic block and poly(ε-(4-nitro)benzyloxycarbonyl-L-lysine) as the hydrophobic block, was prepared for hypoxia-sensitive drug delivery. Owing to its amphiphilic nature, the block copolymer formed micelles and encapsulated doxorubicin (DOX) in an aqueous condition. The DOX-loaded micelles exhibited rapid intracellular release of DOX under the hypoxic condition, implying high potential as a drug carrier for cancer therapy. STATEMENT OF SIGNIFICANCE Hypoxia occurs in a variety of pathological conditions including stroke, rheumatoid arthritis, atherosclerosis, and tumors. In this study, we developed a novel type of hypoxia-sensitive polymeric micelles (HS-PMs) that can specifically release the drug under the hypoxic conditions. HS-PMs were prepared using poly(ethylene glycol) as the hydrophilic block and poly(ε-(4-nitro)benzyloxycarbonyl-L-lysine) as the hydrophobic block. Owing to its amphiphilic nature, the block copolymer formed micelles and encapsulated doxorubicin (DOX) in an aqueous condition. The DOX-loaded micelles exhibited rapid intracellular release of DOX under the hypoxic condition. Overall, it is evident that the HS-PMs prepared in this study have the potential to effectively deliver hydrophobic drugs into the hypoxic cells involved in various intractable diseases.
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
49
|
Long YB, Gu WX, Pang C, Ma J, Gao H. Construction of coumarin-based cross-linked micelles with pH responsive hydrazone bond and tumor targeting moiety. J Mater Chem B 2016; 4:1480-1488. [DOI: 10.1039/c5tb02729b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Responsive cross-linked micelles (x-micelles) based on polyurethane with photo-responsive coumarin derivatives and pH-responsive hydrazone groups were synthesized.
Collapse
Affiliation(s)
- Yu-Bo Long
- School of Chemistry and Chemical Engineering
- School of Material Science and Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin
| | - Wen-Xing Gu
- School of Chemistry and Chemical Engineering
- School of Material Science and Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin
| | - Chengcai Pang
- School of Chemistry and Chemical Engineering
- School of Material Science and Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering
- School of Material Science and Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin
| | - Hui Gao
- School of Chemistry and Chemical Engineering
- School of Material Science and Engineering
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- Tianjin University of Technology
- Tianjin
| |
Collapse
|
50
|
Abstract
This review focuses on stimuli-responsive polymersomes for cancer therapy, which can be disintegrated by recognizing the specific environments of cancer (e.g., low pH, bioreductive environment, over-expressed enzymes,etc.).
Collapse
Affiliation(s)
- Thavasyappan Thambi
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|