1
|
Wang AL, Mishkit O, Mao H, Arivazhagan L, Dong T, Lee F, Bhattacharya A, Renfrew PD, Schmidt AM, Wadghiri YZ, Fisher EA, Montclare JK. Collagen-targeted protein nanomicelles for the imaging of non-alcoholic steatohepatitis. Acta Biomater 2024; 187:291-303. [PMID: 39236796 DOI: 10.1016/j.actbio.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In vivo molecular imaging tools hold immense potential to drive transformative breakthroughs by enabling researchers to visualize cellular and molecular interactions in real-time and/or at high resolution. These advancements will facilitate a deeper understanding of fundamental biological processes and their dysregulation in disease states. Here, we develop and characterize a self-assembling protein nanomicelle called collagen type I binding - thermoresponsive assembled protein (Col1-TRAP) that binds tightly to type I collagen in vitro with nanomolar affinity. For ex vivo visualization, Col1-TRAP is labeled with a near-infrared fluorescent dye (NIR-Col1-TRAP). Both Col1-TRAP and NIR-Col1-TRAP display approximately a 3.8-fold greater binding to type I collagen compared to TRAP when measured by surface plasmon resonance (SPR). We present a proof-of-concept study using NIR-Col1-TRAP to detect fibrotic type I collagen deposition ex vivo in the livers of mice with non-alcoholic steatohepatitis (NASH). We show that NIR-Col1-TRAP demonstrates significantly decreased plasma recirculation time as well as increased liver accumulation in the NASH mice compared to mice without disease over 4 hours. As a result, NIR-Col1-TRAP shows potential as an imaging probe for NASH with in vivo targeting performance after injection in mice. STATEMENT OF SIGNIFICANCE: Direct molecular imaging of fibrosis in NASH patients enables the diagnosis and monitoring of disease progression with greater specificity and resolution than do elastography-based methods or blood tests. In addition, protein-based imaging probes are more advantageous than alternatives due to their biodegradability and scalable biosynthesis. With the aid of computational modeling, we have designed a self-assembled protein micelle that binds to fibrillar and monomeric collagen in vitro. After the protein was labeled with near-infrared fluorescent dye, we injected the compound into mice fed on a NASH diet. NIR-Col1-TRAP clears from the serum faster in these mice compared to control mice, and accumulates significantly more in fibrotic livers.This work advances the development of targeted protein probes for in vivo fibrosis imaging.
Collapse
Affiliation(s)
- Andrew L Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Orin Mishkit
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Heather Mao
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Tony Dong
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Frances Lee
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Ann Marie Schmidt
- Diabetes Research Group, Department of Medicine, New York University Grossman School of Medicine, USA
| | - Youssef Z Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY 10016, USA; Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology and Cardiovascular Research Center, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Chemistry, New York University, New York, NY 10012, USA; Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
2
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
3
|
Kronenberg J, Jung Y, Chen J, Kulapurathazhe MJ, Britton D, Kim S, Chen X, Tu RS, Montclare JK. Structure-Dependent Water Responsiveness of Protein Block Copolymers. ACS APPLIED BIO MATERIALS 2024; 7:3714-3720. [PMID: 38748757 PMCID: PMC11190970 DOI: 10.1021/acsabm.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
Biological water-responsive (WR) materials are abundant in nature, and they are used as mechanical actuators for seed dispersal by many plants such as wheat awns and pinecones. WR biomaterials are of interest for applications as high-energy actuators, which can be useful in soft robotics or for capturing energy from natural water evaporation. Recent work on WR silk proteins has shown that β-sheet nanocrystalline domains with high stiffness correlate with the high WR actuation energy density, but the fundamental mechanisms to drive water responsiveness in proteins remain poorly understood. Here, we design, synthesize, and study protein block copolymers consisting of two α-helical domains derived from cartilage oligomeric matrix protein coiled-coil (C) flanking an elastin-like peptide domain (E), namely, CEC. We use these protein materials to create WR actuators with energy densities that outperform mammalian muscle. To elucidate the effect of structure on WR actuation, CEC was compared to a variant, CECL44A, in which a point mutation disrupts the α-helical structure of the C domain. Surprisingly, CECL44A outperformed CEC, showing higher energy density and less susceptibility to degradation after repeated cycling. We show that CECL44A exhibits a higher degree of intermolecular interactions and is stiffer than CEC at high relative humidity (RH), allowing for less energy dissipation during water responsiveness. These results suggest that strong intermolecular interactions and the resulting, relatively steady protein structure are important for water responsiveness.
Collapse
Affiliation(s)
- Jacob Kronenberg
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Yeojin Jung
- Advanced
Science Research Center (ASRC) at the Graduate Center, City University of New York, New York, New York 10031, United States
- Department
of Chemical Engineering, City College of
New York, New York, New York 10031, United States
| | - Jason Chen
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Maria Jinu Kulapurathazhe
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Seungri Kim
- Advanced
Science Research Center (ASRC) at the Graduate Center, City University of New York, New York, New York 10031, United States
- Department
of Chemical Engineering, City College of
New York, New York, New York 10031, United States
| | - Xi Chen
- Advanced
Science Research Center (ASRC) at the Graduate Center, City University of New York, New York, New York 10031, United States
- Department
of Chemical Engineering, City College of
New York, New York, New York 10031, United States
- PhD
Programs in Chemistry and Physics at the Graduate Center, City University of New York, New York, New York 10016, United States
| | - Raymond S. Tu
- Department
of Chemical Engineering, City College of
New York, New York, New York 10031, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department
of Chemistry, New York University, New York, New York 10031, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
- Department
of Radiology, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Biomedical Engineering, New York University
Tandon School of Engineering, Brooklyn, New York 11203, United States
| |
Collapse
|
4
|
Patkar SS, Wang B, Mosquera AM, Kiick KL. Genetically Fusing Order-Promoting and Thermoresponsive Building Blocks to Design Hybrid Biomaterials. Chemistry 2024; 30:e202400582. [PMID: 38501912 DOI: 10.1002/chem.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.
Collapse
Affiliation(s)
- Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA, 02142, United States
| | - Bin Wang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Ana Maria Mosquera
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
5
|
Haq-Siddiqi NA, Britton D, Kim Montclare J. Protein-engineered biomaterials for cartilage therapeutics and repair. Adv Drug Deliv Rev 2023; 192:114647. [PMID: 36509172 DOI: 10.1016/j.addr.2022.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cartilage degeneration and injury are major causes of pain and disability that effect millions, and yet treatment options for conditions like osteoarthritis (OA) continue to be mainly palliative or involve complete replacement of injured joints. Several biomaterial strategies have been explored to address cartilage repair either by the delivery of therapeutics or as support for tissue repair, however the complex structure of cartilage tissue, its mechanical needs, and lack of regenerative capacity have hindered this goal. Recent advances in synthetic biology have opened new possibilities for engineered proteins to address these unique needs. Engineered protein and peptide-based materials benefit from inherent biocompatibility and nearly unlimited tunability as they utilize the body's natural building blocks to fabricate a variety of supramolecular structures. The pathophysiology and needs of OA cartilage are presented here, along with an overview of the current state of the art and next steps for protein-engineered repair strategies for cartilage.
Collapse
Affiliation(s)
- Nada A Haq-Siddiqi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States.
| |
Collapse
|
6
|
Britton D, Punia K, Mahmoudinobar F, Tada T, Jiang X, Renfrew PD, Bonneau R, Landau NR, Kong XP, Montclare JK. Engineered multivalent self-assembled binder protein against SARS-CoV-2 RBD. Biochem Eng J 2022; 187:108596. [PMID: 36034180 PMCID: PMC9396458 DOI: 10.1016/j.bej.2022.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction. Where it is typical to design a binding domain to fit a target, we have engineered a protein that relies on multivalency rather than the sensitivity of a monomeric ligand to provide avidity to its target by fusing the N-terminal helix of ACE2 to the coiled-coil domain of the cartilage oligomeric matrix protein. The resulting ACE-MAP is able to bind to the SARS-CoV-2 RBD with improved binding affinity, is expressible in E. coli, and is thermally stable and relatively small (62 kDa). These properties suggest ACE-MAP and the MAP scaffold to be a promising route towards developing future diagnostics and therapeutics to SARS-CoV-2.
Collapse
Affiliation(s)
- Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Kamia Punia
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - Farbod Mahmoudinobar
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Takuya Tada
- Department of Microbiology, NYU, Grossman School of Medicine, New York, New York 10016, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, USA
- Center for Data Science, New York University, New York, New York 10011, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU, Grossman School of Medicine, New York, New York 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
- Department of Chemistry, New York University, New York, New York 10012, USA
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, USA
| |
Collapse
|
7
|
Katyal P, Hettinghouse A, Meleties M, Hasan S, Chen C, Cui M, Sun G, Menon R, Lin B, Regatte R, Montclare JK, Liu CJ. Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. Biomaterials 2022; 281:121370. [PMID: 35032910 PMCID: PMC9055922 DOI: 10.1016/j.biomaterials.2022.121370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that E5C, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of E5C with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. E5C gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded E5C gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Sadaf Hasan
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Changhong Chen
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Min Cui
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Guodong Sun
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Rajiv Menon
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016, United States
| | - Bonnie Lin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Ravinder Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY, 10010, United States.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
8
|
Chu S, Wang AL, Bhattacharya A, Montclare JK. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012003. [PMID: 34950852 PMCID: PMC8691744 DOI: 10.1088/2516-1091/ac2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins are some of the most versatile and studied macromolecules with extensive biomedical applications. The natural and biological origin of proteins offer such materials several advantages over their synthetic counterparts, such as innate bioactivity, recognition by cells and reduced immunogenic potential. Furthermore, proteins can be easily functionalized by altering their primary amino acid sequence and can often be further self-assembled into higher order structures either spontaneously or under specific environmental conditions. This review will feature the recent advances in protein-based biomaterials in the delivery of therapeutic cargo such as small molecules, genetic material, proteins, and cells. First, we will discuss the ways in which secondary structural motifs, the building blocks of more complex proteins, have unique properties that enable them to be useful for therapeutic delivery. Next, supramolecular assemblies, such as fibers, nanoparticles, and hydrogels, made from these building blocks that are engineered to behave in a cohesive manner, are discussed. Finally, we will cover additional modifications to protein materials that impart environmental responsiveness to materials. This includes the emerging field of protein molecular robots, and relatedly, protein-based theranostic materials that combine therapeutic potential with modern imaging modalities, including near-infrared fluorescence spectroscopy (NIRF), single-photo emission computed tomography/computed tomography (SPECT/CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound/photoacoustic imaging (US/PAI).
Collapse
Affiliation(s)
- Stanley Chu
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrew L Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Molecular and Cellular Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Chemistry, NYU, New York, NY, USA
- Department of Biomaterials, NYU College of Dentistry, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
9
|
López Barreiro D, Minten IJ, Thies JC, Sagt CMJ. Structure-Property Relationships of Elastin-like Polypeptides: A Review of Experimental and Computational Studies. ACS Biomater Sci Eng 2021. [PMID: 34251181 DOI: 10.1021/acsbiomaterials.1c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behavior, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Collapse
Affiliation(s)
- Diego López Barreiro
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Inge J Minten
- DSM Materials Science Center - Applied Science Center, DSM, Urmonderbaan 22, 6160 BB, Geleen, The Netherlands
| | - Jens C Thies
- DSM Biomedical, DSM, Koestraat 1, 6167 RA, Geleen, The Netherlands
| | - Cees M J Sagt
- DSM Biotechnology Center, DSM, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
10
|
Wang Y, Wang X, Montclare JK. Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:3587-3597. [PMID: 35014444 DOI: 10.1021/acsabm.1c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate the effect of Zn2+, Cu2+, and Ni2+ coordination on the conformation, mechanical properties, contraction, and small-molecule drug encapsulation and release of a photocrosslinked protein-engineered hydrogel, CEC-D. The treatment of the CEC-D hydrogel with divalent metal (M2+) results in significant conformational changes where a loss in structure is observed with Zn2+, while both Cu2+ and Ni2+ induce a blueshift. The relationship of M2+ to mechanical properties illustrates a trend, while the CEC-D hydrogel in the presence of 2 mM Cu2+ reveals the highest increase in G' to 14.4 ± 0.7 kPa followed by 9.7 ± 0.9 kPa by addition of 2 mM Zn2+, and a decrease to 1.1 ± 0.2 kPa is demonstrated in the presence of 2 mM Ni2+. A similar observation in M2+ responsiveness emerges where CEC-D hydrogels contract into a condensed state of 2.6-fold for Cu2+, 2.4-fold for Zn2+, and 1.6-fold for Ni2+. Furthermore, CEC-D hydrogels coordinated with M2+ demonstrate control over the encapsulation and release of the small molecule curcumin. The trend of release is opposite of the mechanical and contraction properties with a 70.0 ± 5.3% release with Ni2+, 64.2 ± 1.2% release with Zn2+, and 42.3 ± 11.3 release with Cu2+. Taken together, these results indicate that the CEC-D hydrogel tuned by M2+ is a promising drug delivery platform with tunable physicochemical properties.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
11
|
Wang Y, Wang X, Montclare JK. Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release. Biomacromolecules 2021; 22:1509-1522. [PMID: 33685120 DOI: 10.1021/acs.biomac.0c01721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fabrication of protein hydrogels consisting of different properties and functional motifs is critical in the development of protein-based materials for biomedical applications. Here, we report the design and characterization of a triblock protein polymer, CEC, composed of two different self-assembling domains derived from elastin protein (E) and coiled-coil protein (C), photopolymerized with a NHS-diazirine (D) crosslinker into a CEC-D hydrogel. The optimal photocrosslinker concentration and exposure time is determined to fabricate a free-standing hydrogel. Upon increasing the concentration of the CEC-D monomer and environmental temperature, the CEC-D hydrogel's conformation decreases in helical content from 58.0% to 44.8% and increases in β-content from 25.9% to 38.1%. These gels experience 55 ± 6% protein erosion from the free-standing gel in 13 days as the gel films gradually decrease in size. The swelling ratio of 12 ± 1% denotes that the gel has a swelling ability comparable to other protein hydrogels. These photocrosslinked CEC-D hydrogels can be employed for drug delivery with high encapsulation and 14 ± 2% release of curcumin into the supernatant in a week long study. Overall, the photocrosslinked CEC-D hydrogels exhibit stability, swelling ability, and sustained release of drug.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
12
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
13
|
Wang Y, Delgado-Fukushima E, Fu RX, Doerk GS, Monclare JK. Controlling Drug Absorption, Release, and Erosion of Photopatterned Protein Engineered Hydrogels. Biomacromolecules 2020; 21:3608-3619. [DOI: 10.1021/acs.biomac.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Richard X. Fu
- Sensors and Electron Devices Directorate, Advanced Concepts and Modeling Branch, US Army Research Lab, Adelphi, Maryland 20783, United States
| | - Gregory S. Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jin Kim Monclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10003, United States
- Department of Biomaterials, NYU College of Dentistry, New York, New York 10010, United States
- Department of Radiology, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
14
|
Yamano T, Higashi N, Koga T. Precisely Synthesized Sequence-Controlled Amino Acid-Derived Vinyl Polymers: New Insights into Thermo-Responsive Polymer Design. Macromol Rapid Commun 2020; 41:e1900550. [PMID: 31894629 DOI: 10.1002/marc.201900550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Thermo-responsive block copolymers are of great interest in biomedical and nanotechnological fields. These polymers achieve a versatile and complex responsiveness through a sophisticated and intricate combination of different thermo-responsive blocks. While their utility is clear, the fundamental design principles of such vinyl polymers are not yet thoroughly understood. Herein, a precise synthesis of sequence-controlled amino-acid-derived vinyl polymers and their unique thermal response in water are reported. Seven distinct block (random) copolymers that contain two kinds of amino acid blocks (poly(N-acryloyl alanine(A)- or glycine(G)-methyl ester)) with the same total chain length (degree of polymerization [DP] ≈30) and chemical composition (A/G ≈1), but with systematic variations in the block sequence and length, with an accuracy target of DP ± 1, are prepared. By specifying the primary structure, the thermal responses including transition temperature, thermo-sensitivity, and microenvironment in the dehydrated state can be finely tuned. These findings offer new directions in the design of structurally and functionally diverse thermo-responsive vinyl polymers.
Collapse
Affiliation(s)
- Tsukasa Yamano
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| |
Collapse
|
15
|
Katyal P, Meleties M, Montclare JK. Self-Assembled Protein- and Peptide-Based Nanomaterials. ACS Biomater Sci Eng 2019; 5:4132-4147. [PMID: 33417774 DOI: 10.1021/acsbiomaterials.9b00408] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable effort has been devoted to generating novel protein- and peptide-based nanomaterials with their applications in a wide range of fields. Specifically, the unique property of proteins to self-assemble has been utilized to create a variety of nanoassemblies, which offer significant possibilities for next-generation biomaterials. In this minireview, we describe self-assembled protein- and peptide-based nanomaterials with focus on nanofibers and nanoparticles. Their applications in delivering therapeutic drugs and genes are discussed.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States.,Department of Biomaterials, College of Dentistry, New York University, New York, New York 10010, United States.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
16
|
Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O’Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Thermoresponsive Protein-Engineered Coiled-Coil Hydrogel for Sustained Small Molecule Release. Biomacromolecules 2019; 20:3340-3351. [DOI: 10.1021/acs.biomac.9b00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Teeba Jihad
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Che-Fu Liu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sean O’Neill
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Raymond S. Tu
- Chemical Engineering Department, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - P. Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York 10010, United States
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10009, United States
| | | | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
17
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
18
|
Wang Y, Katyal P, Montclare JK. Protein-Engineered Functional Materials. Adv Healthc Mater 2019; 8:e1801374. [PMID: 30938924 PMCID: PMC6703858 DOI: 10.1002/adhm.201801374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/25/2019] [Indexed: 12/13/2022]
Abstract
Proteins are versatile macromolecules that can perform a variety of functions. In the past three decades, they have been commonly used as building blocks to generate a range of biomaterials. Owing to their flexibility, proteins can either be used alone or in combination with other functional molecules. Advances in synthetic and chemical biology have enabled new protein fusions as well as the integration of new functional groups leading to biomaterials with emergent properties. This review discusses protein-engineered materials from the perspectives of domain-based designs as well as physical and chemical approaches for crosslinked materials, with special emphasis on the creation of hydrogels. Engineered proteins that organize or template metal ions, bear noncanonical amino acids (NCAAs), and their potential applications, are also reviewed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New
York University, Tandon School of Engineering, Brooklyn, NY 11201, United
States
- Department of Chemistry, New York University, New York, NY
10003, United States
- Department of Biomaterials, New York University College of
Dentistry, New York, NY 10010, United States
- Department of Radiology, New York University School of
Medicine, New York, New York, 10016, United States
| |
Collapse
|
19
|
Hill LK, Frezzo JA, Katyal P, Hoang DM, Gironda ZBY, Xu C, Xie X, Delgado-Fukushima E, Wadghiri YZ, Montclare JK. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS NANO 2019; 13:2969-2985. [PMID: 30758189 PMCID: PMC6945506 DOI: 10.1021/acsnano.8b07481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Joseph A. Frezzo
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dung Minh Hoang
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Zakia Ben Youss Gironda
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Cynthia Xu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
20
|
Qin J, Luo T, Kiick KL. Self-Assembly of Stable Nanoscale Platelets from Designed Elastin-like Peptide–Collagen-like Peptide Bioconjugates. Biomacromolecules 2019; 20:1514-1521. [DOI: 10.1021/acs.biomac.8b01681] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingya Qin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology
Institute, Newark, Delaware 19711, United States
| |
Collapse
|
21
|
Yin L, Agustinus AS, Yuvienco C, Minashima T, Schnabel NL, Kirsch T, Montclare JK. Engineered Coiled-Coil Protein for Delivery of Inverse Agonist for Osteoarthritis. Biomacromolecules 2018; 19:1614-1624. [PMID: 29601728 DOI: 10.1021/acs.biomac.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) results from degenerative and abnormal function of joints, with localized biochemistry playing a critical role in its onset and progression. As high levels of all- trans retinoic acid (ATRA) in synovial fluid have been identified as a contributive factor to OA, the synthesis of de novo antagonists for retinoic acid receptors (RARs) has been exploited to interrupt the mechanism of ATRA action. BMS493, a pan-RAR inverse agonist, has been reported as an effective inhibitor of ATRA signaling pathway; however, it is unstable and rapidly degrades under physiological conditions. We employed an engineered cartilage oligomeric matrix protein coiled-coil (CccS) protein for the encapsulation, protection, and delivery of BMS493. In this study, we determine the binding affinity of CccS to BMS493 and the stimulator, ATRA, via competitive binding assay, in which ATRA exhibits approximately 5-fold superior association with CccS than BMS493. Interrogation of the structure of CccS indicates that ATRA causes about 10% loss in helicity, while BMS493 did not impact the structure. Furthermore, CccS self-assembles into nanofibers when bound to BMS493 or ATRA as expected, displaying 11-15 nm in diameter. Treatment of human articular chondrocytes in vitro reveals that CccS·BMS493 demonstrates a marked improvement in efficacy in reducing the mRNA levels of matrix metalloproteinase-13 (MMP-13), one of the main proteases responsible for the degradation of the extracellular cartilage matrix compared to BMS493 alone in the presence of ATRA, interleukin-1 beta (IL-1β), or IL-1 β together with ATRA. These results support the feasibility of utilizing coiled-coil proteins as drug delivery vehicles for compounds of relatively limited bioavailability for the potential treatment of OA.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Albert S Agustinus
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Nicole L Schnabel
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States
| | | | - Jin K Montclare
- Department of Chemical and Biomolecular Engineering , NYU Tandon School of Engineering , Brooklyn , New York 11201 , United States.,Department of Chemistry , New York University , New York , New York 10003 , United States.,Department of Biomaterials , NYU College of Dentistry , New York , New York 10010 , United States.,Department of Biochemistry , SUNY Downstate Medical Center , Brooklyn , New York 11203 , United States
| |
Collapse
|
22
|
Olsen AJ, Katyal P, Haghpanah JS, Kubilius MB, Li R, Schnabel NL, O’Neill SC, Wang Y, Dai M, Singh N, Tu RS, Montclare JK. Protein Engineered Triblock Polymers Composed of Two SADs: Enhanced Mechanical Properties and Binding Abilities. Biomacromolecules 2018; 19:1552-1561. [DOI: 10.1021/acs.biomac.7b01259] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Andrew J. Olsen
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Jennifer S. Haghpanah
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Matthew B. Kubilius
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nicole L. Schnabel
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Sean C. O’Neill
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Yao Wang
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Min Dai
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Navjot Singh
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
| | - Raymond S. Tu
- Chemical Engineering Department, City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Jin Kim Montclare
- Chemical and Biomolecular Engineering Department, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York 11201, United States
- Biochemistry Department, SUNY Downstate Medical, 450 Clarkson Avenue, Brooklyn, New York 11203, United States
- Chemistry Department, New York University, 100 Washington Square East, New York, New York 10003, United States
- Biomaterials Department, New York University College of Dentistry, 433 First Avenue, New York, New York 10010, United States
| |
Collapse
|
23
|
Luo T, David MA, Dunshee LC, Scott RA, Urello MA, Price C, Kiick KL. Thermoresponsive Elastin-b-Collagen-Like Peptide Bioconjugate Nanovesicles for Targeted Drug Delivery to Collagen-Containing Matrices. Biomacromolecules 2017; 18:2539-2551. [PMID: 28719196 PMCID: PMC5815509 DOI: 10.1021/acs.biomac.7b00686] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past few decades, (poly)peptide block copolymers have been widely employed in generating well-defined nanostructures as vehicles for targeted drug delivery applications. We previously reported the assembly of thermoresponsive nanoscale vesicles from an elastin-b-collagen-like peptide (ELP-CLP). The vesicles were observed to dissociate at elevated temperatures, despite the LCST-like behavior of the tethered ELP domain, which is suggested to be triggered by the unfolding of the CLP domain. Here, the potential of using the vesicles as drug delivery vehicles for targeting collagen-containing matrices is evaluated. The sustained release of an encapsulated model drug was achieved over a period of 3 weeks, following which complete release could be triggered via heating. The ELP-CLP vesicles show strong retention on a collagen substrate, presumably through collagen triple helix interactions. Cell viability and proliferation studies using fibroblasts and chondrocytes suggest that the vesicles are highly cytocompatible. Additionally, essentially no activation of a macrophage-like cell line is observed, suggesting that the vesicles do not initiate an inflammatory response. Endowed with thermally controlled delivery, the ability to bind collagen, and excellent cytocompatibility, these ELP-CLP nanovesicles are suggested to have significant potential in the controlled delivery of drugs to collagen-containing matrices and tissues.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucas C. Dunshee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Morgan A. Urello
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| |
Collapse
|
24
|
Yin L, Yuvienco C, Montclare JK. Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials 2017; 134:91-116. [PMID: 28458031 DOI: 10.1016/j.biomaterials.2017.04.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
As unique biopolymers, proteins can be employed for therapeutic delivery. They bear important features such as bioavailability, biocompatibility, and biodegradability with low toxicity serving as a platform for delivery of various small molecule therapeutics, gene therapies, protein biologics and cells. Depending on size and characteristic of the therapeutic, a variety of natural and engineered proteins or peptides have been developed. This, coupled to recent advances in synthetic and chemical biology, has led to the creation of tailor-made protein materials for delivery. This review highlights strategies employing proteins to facilitate the delivery of therapeutic matter, addressing the challenges for small molecule, gene, protein and cell transport.
Collapse
Affiliation(s)
- Liming Yin
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Carlo Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York, NY 10003, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY 10010, United States; Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
25
|
Abstract
Collagen-like peptides (CLPs), also known as collagen-mimetic peptides (CMPs), are short synthetic peptides that mimic the triple helical conformation of native collagens. Traditionally, CLPs have been widely used in deciphering the chemical basis for collagen triple helix stabilization, mimicking collagen fibril formation and fabricating other higher-order supramolecular self-assemblies. While CLPs have been used extensively for elucidation of the assembly of native collagens, less work has been reported on the use of CLP-polymer and CLP-peptide conjugates in the production of responsive assemblies. CLP triple helices have been used as physical cross-links in CLP-polymer hydrogels with predesigned thermoresponsiveness. The more recently reported ability of CLP to target native collagens via triple helix hybridization has further inspired the production of CLP-polymer and CLP-peptide bioconjugates and the employment of these conjugates in generating well-defined nanostructures for targeting collagen substrates. This review summarizes the current progress and potential of using CLPs in biomedical arenas and is intended to serve as a general guide for designing CLP-containing biomaterials.
Collapse
Affiliation(s)
| | - Kristi L Kiick
- Delaware Biotechnology Institute , Newark, Delaware 19711, United States
| |
Collapse
|
26
|
Dai M, Frezzo JA, Sharma E, Chen R, Singh N, Yuvienco C, Caglar E, Xiao S, Saxena A, Montclare JK. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2016; 7:356. [PMID: 27081576 PMCID: PMC4828936 DOI: 10.4172/2157-7439.1000356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles.
Collapse
Affiliation(s)
- Min Dai
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - JA Frezzo
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - E Sharma
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - R Chen
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - N Singh
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - C Yuvienco
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
| | - E Caglar
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - S Xiao
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - A Saxena
- Department of Biology, Brooklyn College and Graduate Center, City University of New York, Brooklyn, New York 11210, USA
| | - JK Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York 11201, USA
- Department of Chemistry, New York University, New York, New York 10003, USA
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
27
|
Natural Composite Systems for Bioinspired Materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:143-166. [PMID: 27677512 DOI: 10.1007/978-3-319-39196-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.
Collapse
|
28
|
Luo T, Kiick KL. Noncovalent Modulation of the Inverse Temperature Transition and Self-Assembly of Elastin-b-Collagen-like Peptide Bioconjugates. J Am Chem Soc 2015; 137:15362-5. [PMID: 26633746 PMCID: PMC4930074 DOI: 10.1021/jacs.5b09941] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive nanostructures produced with peptide domains from the extracellular matrix offer great opportunities for imaging and drug delivery. Although the individual utility of elastin-like (poly)peptides and collagen-like peptides in such applications has been demonstrated, the synergistic advantages of combining these motifs in short peptide conjugates have surprisingly not been reported. Here, we introduce the conjugation of a thermoresponsive elastin-like peptide (ELP) with a triple-helix-forming collagen-like peptide (CLP) to yield ELP-CLP conjugates that show a remarkable reduction in the inverse transition temperature of the ELP domain upon formation of the CLP triple helix. The lower transition temperature of the conjugate enables the facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the demonstrated ability of CLPs to modify collagens, our results not only provide a simple and versatile avenue for controlling the inverse transition behavior of ELPs, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, Newark, Delaware 19711, United States
| |
Collapse
|
29
|
Haghpanah JS, Tu R, Da Silva S, Yan D, Mueller S, Weder C, Foster EJ, Sacui I, Gilman JW, Montclare JK. Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers. Biomacromolecules 2013; 14:4360-7. [DOI: 10.1021/bm401304w] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jennifer S. Haghpanah
- Department
of Chemical and Biomolecular Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201, United States
| | - Raymond Tu
- Department
of Chemical Engineering, City College of New York, New York, New York 10031, United States
| | - Sandra Da Silva
- Biomaterials
and Biosystems Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Deng Yan
- Skirball
Institute of Biomolecular Medicine, Microscopy Core Facilities, NYU Medical Center, New York, New York, 10016, United States
| | - Silvana Mueller
- Adolphe
Merkle Institute, University of Fribourg, CH-1723 Marly, Switzerland
| | - Christoph Weder
- Adolphe
Merkle Institute, University of Fribourg, CH-1723 Marly, Switzerland
| | - E. Johan Foster
- Adolphe
Merkle Institute, University of Fribourg, CH-1723 Marly, Switzerland
| | - Iulia Sacui
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffery W. Gilman
- Materials
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11201, United States
- Department
of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| |
Collapse
|
30
|
Grove TZ, Regan L. New materials from proteins and peptides. Curr Opin Struct Biol 2012; 22:451-6. [DOI: 10.1016/j.sbi.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 12/14/2022]
|
31
|
Yuvienco C, More HT, Haghpanah JS, Tu RS, Montclare JK. Modulating Supramolecular Assemblies and Mechanical Properties of Engineered Protein Materials by Fluorinated Amino Acids. Biomacromolecules 2012; 13:2273-8. [DOI: 10.1021/bm3005116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Carlo Yuvienco
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Haresh T. More
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Jennifer S. Haghpanah
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
| | - Raymond S. Tu
- Department of Chemical
Engineering, City College of New York, New York, New York 10031, United States
| | - Jin Kim Montclare
- Department of Chemical
and Biological Sciences, Polytechnic Institute of NYU, Brooklyn, New York 11201, United States
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn,
New York 11203, United States
| |
Collapse
|