1
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
2
|
Zhao D, Rong Y, Li D, He C, Chen X. Thermo-induced physically crosslinked polypeptide-based block copolymer hydrogels for biomedical applications. Regen Biomater 2023; 10:rbad039. [PMID: 37265604 PMCID: PMC10229375 DOI: 10.1093/rb/rbad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
Stimuli-responsive synthetic polypeptide-containing block copolymers have received considerable attention in recent years. Especially, unique thermo-induced sol-gel phase transitions were observed for elaborately-designed amphiphilic diblock copolypeptides and a range of poly(ethylene glycol) (PEG)-polypeptide block copolymers. The thermo-induced gelation mechanisms involve the evolution of secondary conformation, enhanced intramolecular interactions, as well as reduced hydration and increased chain entanglement of PEG blocks. The physical parameters, including polymer concentrations, sol-gel transition temperatures and storage moduli, were investigated. The polypeptide hydrogels exhibited good biocompatibility in vitro and in vivo, and displayed biodegradation periods ranging from 1 to 5 weeks. The unique thermo-induced sol-gel phase transitions offer the feasibility of minimal-invasive injection of the precursor aqueous solutions into body, followed by in situ hydrogel formation driven by physiological temperature. These advantages make polypeptide hydrogels interesting candidates for diverse biomedical applications, especially as injectable scaffolds for 3D cell culture and tissue regeneration as well as depots for local drug delivery. This review focuses on recent advances in the design and preparation of injectable, thermo-induced physically crosslinked polypeptide hydrogels. The influence of composition, secondary structure and chirality of polypeptide segments on the physical properties and biodegradation of the hydrogels are emphasized. Moreover, the studies on biomedical applications of the hydrogels are intensively discussed. Finally, the major challenges in the further development of polypeptide hydrogels for practical applications are proposed.
Collapse
Affiliation(s)
- Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | | | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- College of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020; 12:E2702. [PMID: 33207715 PMCID: PMC7697203 DOI: 10.3390/polym12112702] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
In the present review, we focused on the fundamental concepts of hydrogels-classification, the polymers involved, synthesis methods, types of hydrogels, properties, and applications of the hydrogel. Hydrogels can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and a combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical, and hybrid bonding. The bonding is formed via different routes, such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties, such as mechanical strength, biocompatibility, biodegradability, swellability, and stimuli sensitivity. These properties are substantial for electrochemical and biomedical applications. Furthermore, this review emphasizes flexible and self-healable hydrogels as electrolytes for energy storage and energy conversion applications. Insufficient adhesiveness (less interfacial interaction) between electrodes and electrolytes and mechanical strength pose serious challenges, such as delamination of the supercapacitors, batteries, and solar cells. Owing to smart and aqueous hydrogels, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability are the critical factors that can identify the reliability and robustness of the energy storage and conversion devices. These devices are highly efficient and convenient for smart, light-weight, foldable electronics and modern pollution-free transportation in the current decade.
Collapse
Affiliation(s)
- Shahid Bashir
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Maryam Hina
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - A. H. Rajpar
- Mechanical Engineering Department, Jouf University, Sakaka 42421, Saudi Arabia;
| | - M. A. Mujtaba
- Department of Mechanical Engineering, Center for Energy Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - N. A. Alghamdi
- Department of Physics, Faculty of Science, Albaha University, Alaqiq 65779-77388, Saudi Arabia;
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - K. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| | - S. Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.); (K.R.)
| |
Collapse
|
6
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Microrheological study of physical gelation on poly (acrylic acid) polymer hydrophobically modified with C14 alkyl chains, comparison with C18 chain length. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Khang MK, Zhou J, Huang Y, Hakamivala A, Tang L. Preparation of a novel injectable in situ-gelling nanoparticle with applications in controlled protein release and cancer cell entrapment. RSC Adv 2018; 8:34625-34633. [PMID: 35548629 PMCID: PMC9087364 DOI: 10.1039/c8ra06589f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/11/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
Temperature sensitive injectable hydrogels have been used as drug/protein carriers for a variety of pharmaceutical applications. Oligo(ethylene glycol) methacrylate (OEGMA) monomers with varying ethylene oxide chain lengths have been used for the synthesis of in situ forming hydrogel. In this study, a new series of thermally induced gelling hydrogel nanoparticles (PMOA hydrogel nanoparticles) was developed by copolymerization with di(ethylene glycol) methyl ether methacrylate (MEO2MA), poly(ethylene glycol) methyl ether methacrylate (300 g mol-1, OEGMA300), and acrylic acid (AAc). The effects of acrylic acid content on the physical, chemical, and biological properties of the nanoparticle-based hydrogels were investigated. Due to its high electrostatic properties, addition of AAc increases LCST as well as gelation temperature. Further, using Cy5-labelled bovine serum albumin and erythropoietin (Epo) as model drugs, studies have shown that the thermogelling hydrogels have the ability to tune the release rate of these proteins in vitro. Finally, the ability of Epo releasing hydrogels to recruit prostate cancer cells was assessed in vivo. Overall, our results support that this new series of thermally induced gelling systems can be used as protein control releasing vehicles and cancer cell traps.
Collapse
Affiliation(s)
- Min Kyung Khang
- Chemistry and Biochemistry Department, University of Texas at Arlington Arlington Texas USA
- Bioengineering Department, University of Texas at Arlington P. O. Box 19138 Arlington Texas 76019-0138 USA
| | - Jun Zhou
- Bioengineering Department, University of Texas at Arlington P. O. Box 19138 Arlington Texas 76019-0138 USA
| | - Yihui Huang
- Bioengineering Department, University of Texas at Arlington P. O. Box 19138 Arlington Texas 76019-0138 USA
| | - Amirhossein Hakamivala
- Bioengineering Department, University of Texas at Arlington P. O. Box 19138 Arlington Texas 76019-0138 USA
| | - Liping Tang
- Bioengineering Department, University of Texas at Arlington P. O. Box 19138 Arlington Texas 76019-0138 USA
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
9
|
Shangguan Y, Liu M, Jin L, Wang M, Wang Z, Wu Q, Zheng Q. Thermo-thickening behavior and its mechanism in a chitosan-graft-polyacrylamide aqueous solution. SOFT MATTER 2018; 14:6667-6677. [PMID: 30062334 DOI: 10.1039/c8sm00746b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel thermo-thickening behavior of a chitosan-g-polyacrylamide (CS-g-PAM, GPAM) aqueous solution is reported for the first time in this work. The viscosity of GPAM aqueous solutions significantly increases above a critical temperature upon heating, as observed in dynamic and steady rheological experiments. Differing from the widely reported hydrophobic modified CS, GPAM was prepared by grafting hydrophilic polyacrylamide side chains onto the CS backbone, therefore the thermo-thickening behavior of the GPAM aqueous solution could not be explained by the usual thermo-thickening mechanism induced by the additional hydrophobic moiety or LCST segment. The origin of the thermo-thickening in GPAM solutions was explored using transmission electron microscopy (TEM), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) tests of the GPAM solution. A transformation from a hydrogen bonding (H-bonding) aggregate to a hydrophobic aggregate upon heating was confirmed to be responsible for the thermo-thickening. The heating initiates a transformation of large loose H-bonding aggregates into abundant small compact ones formed by self-assembled hydrophobic chitosan backbones, resulting in aggregate associations and thus flocculated aggregate networks. Some factors of the thermo-thickening were investigated and discussed in detail, including the heating history, concentration, grafting ratio, and length of the PAM side chain. Besides the influence caused by the heating history, this thermo-thickening process is influenced by kinetic factors, including the mobility of the macromolecule chains and the formation of new aggregate networks that are dependent on the number of hydrophobic clusters.
Collapse
Affiliation(s)
- Yonggang Shangguan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 2018; 124:95-103. [DOI: 10.1016/j.ejpb.2017.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
11
|
Polypeptide with electroactive endgroups as sensing platform for the abused drug ‘methamphetamine’ by bioelectrochemical method. Talanta 2016; 161:789-796. [DOI: 10.1016/j.talanta.2016.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
|
12
|
In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Cheng X, Liu J, Wang L, Wang R, Liu Z, Zhuo R. An enzyme-mediated in situ hydrogel based on polyaspartamide derivatives for localized drug delivery and 3D scaffolds. RSC Adv 2016. [DOI: 10.1039/c6ra18479k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An enzyme-mediated in situ hydrogel based on polyaspartamide derivatives is prepared for localized drug delivery and 3D scaffolds.
Collapse
Affiliation(s)
- Xu Cheng
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Jia Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Lei Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Ruoli Wang
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Zhilan Liu
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| |
Collapse
|
14
|
Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Biomacromolecules 2015; 17:225-36. [PMID: 26636618 DOI: 10.1021/acs.biomac.5b01328] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tunable erosion of polymeric materials is an important aspect of tissue engineering for reasons that include cell infiltration, controlled release of therapeutic agents, and ultimately to tissue healing. In general, the biological response to proteinaceous polymeric hydrogels is favorable (e.g., minimal inflammatory response). However, unlike synthetic polymers, achieving tunable erosion with natural materials is a challenge. Keratins are a class of intermediate filament proteins that can be obtained from several sources, including human hair, and have gained increasing levels of use in tissue engineering applications. An important characteristic of keratin proteins is the presence of a large number of cysteine residues. Two classes of keratins with different chemical properties can be obtained by varying the extraction techniques: (1) keratose by oxidative extraction and (2) kerateine by reductive extraction. Cysteine residues of keratose are "capped" by sulfonic acid and are unable to form covalent cross-links upon hydration, whereas cysteine residues of kerateine remain as sulfhydryl groups and spontaneously form covalent disulfide cross-links. Here, we describe a straightforward approach to fabricate keratin hydrogels with tunable rates of erosion by mixing keratose and kerateine. SEM imaging and mechanical testing of freeze-dried materials showed similar pore diameters and compressive moduli, respectively, for each keratose-kerateine mixture formulation (∼1200 kPa for freeze-dried materials and ∼1.5 kPa for hydrogels). However, the elastic modulus (G') determined by rheology varied in proportion with the keratose-kerateine ratios, as did the rate of hydrogel erosion and the release rate of thiol from the hydrogels. The variation in keratose-kerateine ratios also led to tunable control over release rates of recombinant human insulin-like growth factor 1.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States.,Department of Biomedical Engineering, University of Akron , Auburn Science and Engineering Center 275, West Tower, Akron, Ohio 44325, United States
| | - Ryan T Lee
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Junnan Gu
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Luke R Burnett
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Seth Tomblyn
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
15
|
He X, Fan J, Wooley KL. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N
-Carboxyanhydride (NCA) Polymerizations. Chem Asian J 2015; 11:437-47. [DOI: 10.1002/asia.201500957] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Xun He
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| | - Jingwei Fan
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering; and Materials Science and Engineering; Laboratory for Synthetic-Biologic Interactions; Texas A&M University; 3255 TAMU College Station TX 77842 USA
| |
Collapse
|
16
|
Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2015; 97:338-49. [DOI: 10.1016/j.ejpb.2015.05.017] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 11/21/2022]
|
17
|
Introduction to In Situ Forming Hydrogels for Biomedical Applications. IN-SITU GELLING POLYMERS 2015. [DOI: 10.1007/978-981-287-152-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Wen Y, Oh JK. Recent Strategies to Develop Polysaccharide-Based Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2014; 35:1819-32. [DOI: 10.1002/marc.201400406] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Yifen Wen
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec Canada
| |
Collapse
|
19
|
Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 2014; 3:1529-45. [PMID: 24616443 DOI: 10.1002/adhm.201300586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/19/2014] [Indexed: 12/17/2022]
Abstract
Injectable scaffolds (IS) are polymeric solutions that are injected in vivo and undergo gelation in response to physiological or non-physiological stimuli. Interest in using IS in regenerative medicine has been increasing this past decade. IS are administered in vivo using minimally invasive surgery, which reduces hospitalization time and risk of surgical wound infection. Here, chitosan is explored as an excellent candidate for developing IS. A literature search reveals that 27% of IS publications in the past decade investigated injectable chitosan scaffolds (ICS). This increasing interest in chitosan stems from its many desirable physicochemical properties. The first section of this Progress Report is a comprehensive study of all physical, chemical, and biological stimuli that have been explored to induce ICS gelation in vivo. Second, the use of ICS is investigated in four major regenerative medicine applications, namely bone, cartilage, cardiovascular, and neural regeneration. Finally, an overall critique of the ICS literature in light of clinical translatability is presented. Even though ICS have been widely explored in the literature, very few have progressed to clinical trials. The authors discuss the current barriers to moving ICS into the clinic and provide suggestions regarding what is needed to overcome those challenges.
Collapse
Affiliation(s)
- Mina Mekhail
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| | - Maryam Tabrizian
- Biomedical Engineering, Duff Medical Building; Room 313, McGill; Montreal H3A 2B4 Canada
| |
Collapse
|
20
|
Ra JS, Shin HH, Kang S, Do Y. Lumazine synthase protein cage nanoparticles as antigen delivery nanoplatforms for dendritic cell-based vaccine development. Clin Exp Vaccine Res 2014; 3:227-34. [PMID: 25003097 PMCID: PMC4083076 DOI: 10.7774/cevr.2014.3.2.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Protein cages are promising nanoplatform candidates for efficient delivery systems due to their homogenous size and structure with high biocompatibility and biodegradability. In this study, we investigate the potential of lumazine synthase protein cage as an antigen delivery system to dendritic cells (DCs), which induce antigen-specific T cell proliferation. MATERIALS AND METHODS Ovalbumin (OVA) peptides OT-1 (SIINFEKL) and OT-2 (ISQAVHAAHAEINEAGR) were genetically inserted to lumazine synthase and each protein cage was over-expressed in Escherichia coli as a soluble protein. The efficiency of antigen delivery and the resulting antigen-specific T cell proliferation by DCs was examined in vitro as well as in vivo. RESULTS We successfully generated and characterized OVA peptides carrying lumazine synthase protein cages. The OT-1 and OT-2 peptides carried by lumazine synthases were efficiently delivered and processed by DCs in vitro as well as in vivo, and induced proliferation of OT-1-specific CD8(+)T cells and OT-2-specific CD4(+)T cells. CONCLUSION Our data demonstrate the potential of lumazine synthase protein cage being used as a novel antigen delivery system for DC-based vaccine development in future clinical applications.
Collapse
Affiliation(s)
- Jae-Sun Ra
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hyun-Hee Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Sebyung Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Yoonkyung Do
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| |
Collapse
|
21
|
Dou QQ, Liow SS, Ye E, Lakshminarayanan R, Loh XJ. Biodegradable thermogelling polymers: working towards clinical applications. Adv Healthc Mater 2014; 3:977-88. [PMID: 24488805 DOI: 10.1002/adhm.201300627] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/04/2013] [Indexed: 11/08/2022]
Abstract
As society ages, aging medical problems such as organ damage or failure among senior citizens increases, raising the demand for organ repair technologies. Synthetic materials have been developed and applied in various parts of human body to meet the biomedical needs. Hydrogels, in particular, have found extensive applications as wound healing, drug delivery and controlled release, and scaffold materials in the human body. The development of the next generation of soft hydrogel biomaterials focuses on facile synthetic methods, efficacy of treatment, and tunable multi-functionalities for applications. Supramolecular 3D entities are highly attractive materials for biomedical application. They are assembled by modules via various non-covalent bonds (hydrogen bonds, p-p stacking and/or van der Waals interactions). Biodegradable thermogels are a class of such supramolecular assembled materials. Their use as soft biomaterials and their related applications are described in this Review.
Collapse
Affiliation(s)
- Qing Qing Dou
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | - Sing Shy Liow
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE); 3 Research Link Singapore 117602 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117576 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
22
|
Wang W, Liu J, Li C, Zhang J, Liu J, Dong A, Kong D. Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel. J Mater Chem B 2014; 2:4185-4192. [PMID: 32261752 DOI: 10.1039/c4tb00275j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The real-time monitoring of materials degradation is crucial to determine the in vivo retention time and the design or screening of degradable biomaterials. However, in vivo performance cannot always be predicted through the traditional determination of in vitro erosion and current standard methods sacrifice samples or animals, preventing the sequential measurement of the same specimen. Herein, a non-invasive fluorescence imaging method was developed to sequentially follow in vivo loss of fluorescence signal to simultaneously characterize the hydrolytic and enzymatic degradation of PEGlyated polyester hydrogel. Rhodamine B was conjugated to thermosensitive amphiphilic triblock copolymer based on cyclic ether modified PCL and PEG (abbreviated as PECT) and no obvious influence on gelation time or gel strength was observed with the conjugation content under 0.121% (w/w). Both in vitro and in vivo degradation profiles followed linear fittings while in vivo and in vitro hydrogel degradation rates correlated in an exponential mathematical model, enabling the general prediction of in vivo erosion trends of new biomaterial formulations from in vitro data. This methodology possibly enabled rational design and rapid in vitro screening of degradable materials, and might be potentially extended to simultaneously determine the material erosion and speculate the drug release from a drug-incorporated scaffold, or the cell growth profile in tissue-engineering formulations.
Collapse
Affiliation(s)
- Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Min J, Moon H, Yang HJ, Shin HH, Hong SY, Kang S. Development of P22 Viral Capsid Nanocomposites as Anti-Cancer Drug, Bortezomib (BTZ), Delivery Nanoplatforms. Macromol Biosci 2014; 14:557-64. [DOI: 10.1002/mabi.201300401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junseon Min
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Hyojin Moon
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Hyun Ji Yang
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Hyun-Hee Shin
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Sung You Hong
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Sebyung Kang
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| |
Collapse
|
24
|
Ren K, He C, Cheng Y, Li G, Chen X. Injectable enzymatically crosslinked hydrogels based on a poly(l-glutamic acid) graft copolymer. Polym Chem 2014. [DOI: 10.1039/c4py00420e] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzyme-mediated injectable hydrogels based on a poly(l-glutamic acid) graft copolymer with tunable physicochemical properties, biodegradability and good biocompatibility were developed.
Collapse
Affiliation(s)
- Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Yilong Cheng
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| |
Collapse
|
25
|
Hybrid Block Copolymers Constituted by Peptides and Synthetic Polymers: An Overview of Synthetic Approaches, Supramolecular Behavior and Potential Applications. Polymers (Basel) 2013. [DOI: 10.3390/polym5010188] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Moon H, Kim WG, Lim S, Kang YJ, Shin HH, Ko H, Hong SY, Kang S. Fabrication of uniform layer-by-layer assemblies with complementary protein cage nanobuilding blocks via simple His-tag/metal recognition. J Mater Chem B 2013; 1:4504-4510. [DOI: 10.1039/c3tb20554a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|