1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Liang H, Webb MA, Chawathe M, Bendejacq D, de Pablo JJ. Understanding the Structure and Rheology of Galactomannan Solutions with Coarse-Grained Modeling. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Michael A. Webb
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Manasi Chawathe
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Denis Bendejacq
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
3
|
Kang W, Zeng L, Liu X, He H, Li X, Zhang W, Lee PS, Wang Q, Zhang C. Insight into Cellulose Nanosizing for Advanced Electrochemical Energy Storage and Conversion: A Review. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
5
|
Abstract
Cellulose is the most common biopolymer and widely used in our daily life. Due to its unique properties and biodegradability, it has been attracting increased attention in the recent years and various new applications of cellulose and its derivatives are constantly being found. The development of new materials with improved properties, however, is not always an easy task, and theoretical models and computer simulations can often help in this process. In this review, we give an overview of different coarse-grained models of cellulose and their applications to various systems. Various coarse-grained models with different mapping schemes are presented, which can efficiently simulate systems from the single cellulose fibril/crystal to the assembly of many fibrils/crystals. We also discuss relevant applications of these models with a focus on the mechanical properties, self-assembly, chiral nematic phases, conversion between cellulose allomorphs, composite materials and interactions with other molecules.
Collapse
|
6
|
Shivgan AT, Marzinek JK, Huber RG, Krah A, Henchman RH, Matsudaira P, Verma CS, Bond PJ. Extending the Martini Coarse-Grained Force Field to N-Glycans. J Chem Inf Model 2020; 60:3864-3883. [PMID: 32702979 DOI: 10.1021/acs.jcim.0c00495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the force field parameters used can reproduce key experimentally observed properties. Here, we present optimized coarse-grained (CG) Martini force field parameters for N-glycans, calibrated against experimentally derived binding affinities for lectins. The CG bonded parameters were obtained from atomistic (ATM) simulations for different glycan topologies including high mannose and complex glycans with various branching patterns. In the CG model, additional elastic networks are shown to improve maintenance of the overall conformational distribution. Solvation free energies and octanol-water partition coefficients were also calculated for various N-glycan disaccharide combinations. When using standard Martini nonbonded parameters, we observed that glycans spontaneously aggregated in the solution and required down-scaling of their interactions for reproduction of ATM model radial distribution functions. We also optimized the nonbonded interactions for glycans interacting with seven lectin candidates and show that a relatively modest scaling down of the glycan-protein interactions can reproduce free energies obtained from experimental studies. These parameters should be of use in studying the role of glycans in various glycoproteins and carbohydrate binding proteins as well as their complexes, while benefiting from the efficiency of CG sampling.
Collapse
Affiliation(s)
- Aishwary T Shivgan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Alexander Krah
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Paul Matsudaira
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Centre for BioImaging Sciences, National University of Singapore, Singapore 117543
| | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
7
|
Wu Z, Beltran-Villegas DJ, Jayaraman A. Development of a New Coarse-Grained Model to Simulate Assembly of Cellulose Chains Due to Hydrogen Bonding. J Chem Theory Comput 2020; 16:4599-4614. [DOI: 10.1021/acs.jctc.0c00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy
St., Newark, Delaware 19716, United States
| | - Daniel J. Beltran-Villegas
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy
St., Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy
St., Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
9
|
DFT approach to the pathway of conformational changes of cellulose C6-hydroxymethyl group with simple cellotetraose model involving the mechanism of mercerization process. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
11
|
Beltran-Villegas DJ, Intriago D, Kim KHC, Behabtu N, Londono JD, Jayaraman A. Coarse-grained molecular dynamics simulations of α-1,3-glucan. SOFT MATTER 2019; 15:4669-4681. [PMID: 31112203 DOI: 10.1039/c9sm00580c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper we present a computational study of aggregation in aqueous solutions of α-1,3-glucan captured using a coarse-grained (CG) model that can be extended to other polysaccharides. This CG model captures atomistic geometry (i.e., relative placement of the hydrogen bonding donors and acceptors within the monomer) of the α-1,3-glucan monomer, the directional interactions due to the donor-acceptor hydrogen bonds, and their effect on aggregation of multiple α-1,3-glucan chains without the extensive computational resources needed for simulations with atomistic models. Using this CG model, we conduct molecular dynamics simulations to assess the effect of varying α-1,3-glucan chain length and hydrogen bond interaction strengths on the aggregation of multiple chains at finite concentrations in implicit solvent. We quantify the hydrogen bonding strength needed for multiple chains to aggregate, the distribution of inter- and intra-chain hydrogen bonds within the aggregate and in some cases, the shapes of the aggregate. We also explore the effect of substitution/silencing of some randomly selected or specific hydrogen bonding sites in the chain on the aggregation and aggregate structure. In the unmodified α-1,3-glucan solution, the inter-chain hydrogen bonds cause the chains to aggregate into sheets. Random silencing of hydrogen bonding donor sites only increases the hydrogen bond strength needed for aggregation but retains the same aggregate structure as the unmodified chains. Specific silencing of the hydrogen-bonding site on the C6 carbon leads to the chains aggregating into planar sheets that then fold over to form hollow cylinders at intermediate hydrogen bond strength - 4.7 to 5.3 kcal mol-1. These cylindrical aggregates assemble end-to-end to form larger aggregates at higher hydrogen bond strengths.
Collapse
|
12
|
Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellulose nanocrystals (CNCs) is a promising biodegradable nanomaterial with outstanding physical, chemical, and mechanical properties for many applications. Although aligned CNCs can self-assemble into bundles, their mechanical performance is reduced by interfacial strength between CNCs and a twisted structure. In this paper, we employ developed coarse-grained (CG) molecular dynamic (MD) simulations to investigate the influence of twist and interface energy on the tensile performance of CNC bundles. CNC bundles of different sizes (number of particles) are tested to also include the effect of size on mechanical performance. The effect of interfacial energy and twist on the mechanical performance shows that elastic modulus, strength, and toughness are more sensitive to twisted angle than interfacial energy. In addition, the effect of size on the bundle and twist on their mechanical performance revealed that both size and twist have a significant effect on the results and can reduce the strength and elastic modulus by 75% as a results of covalent bond dissociation. In addition, a comparison of the broken regions for different values of twist shows that by increasing the twist angle the crack propagates in multiple locations with a twisted shape.
Collapse
|
13
|
Poma AB, Li MS, Theodorakis PE. Generalization of the elastic network model for the study of large conformational changes in biomolecules. Phys Chem Chem Phys 2019; 20:17020-17028. [PMID: 29904772 DOI: 10.1039/c8cp03086c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The elastic network (EN) is a prime model that describes the long-time dynamics of biomolecules. However, the use of harmonic potentials renders this model insufficient for studying large conformational changes of proteins (e.g. stretching of proteins, folding and thermal unfolding). Here, we extend the capabilities of the EN model by using a harmonic approximation described by Lennard-Jones (LJ) interactions for far contacts and native contacts obtained from the standard overlap criterion as in the case of Gō-like models. While our model is validated against the EN model by reproducing the equilibrium properties for a number of proteins, we also show that the model is suitable for the study of large conformation changes by providing various examples. In particular, this is illustrated on the basis of pulling simulations that predict with high accuracy the experimental data on the rupture force of the studied proteins. Furthermore, in the case of DDFLN4 protein, our pulling simulations highlight the advantages of our model with respect to Gō-like approaches, where the latter fail to reproduce previous results obtained by all-atom simulations that predict an additional characteristic peak for this protein. In addition, folding simulations of small peptides yield different folding times for α-helix and β-hairpin, in agreement with experiment, in this way providing further opportunities for the application of our model in studying large conformational changes of proteins. In contrast to the EN model, our model is suitable for both normal mode analysis and molecular dynamics simulation. We anticipate that the proposed model will find applications in a broad range of problems in biology, including, among others, protein folding and thermal unfolding.
Collapse
Affiliation(s)
- Adolfo B Poma
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | | | |
Collapse
|
14
|
Ho IL, Nourian Z, Hill MA, Meininger GA, Li WY. Quantification of elastin-fiber reticulation in rat mesenteric arterioles using molecular dynamics optimization. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Poma AB, Chwastyk M, Cieplak M. Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and β-amyloids. Phys Chem Chem Phys 2018; 19:28195-28206. [PMID: 29022971 DOI: 10.1039/c7cp05269c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We study the mechanical response of cellulose and β-amyloid microfibrils to three types of deformation: tensile, indentational, and shear. The cellulose microfibrils correspond to the allomorphs Iα or Iβ whereas the β-amyloid microfibrils correspond to the polymorphs of either two- or three-fold symmetry. This response can be characterized by three elastic moduli, namely, YL, YT, and S. We use a structure-based coarse-grained model to analyze the deformations in a unified manner. We find that each of the moduli is almost the same for the two allomorphs of cellulose but YL is about 20 times larger than YT (140 GPa vs. 7 GPa), indicating the existence of significant anisotropy. For cellulose we note that the anisotropy results from the involvement of covalent bonds in stretching. For β-amyloid, the sense of anisotropy is opposite to that of cellulose. In the three-fold symmetry case, YL is about half of YT (3 vs. 7) whereas for two-fold symmetry the anisotropy is much larger (1.6 vs. 21 GPa). The S modulus is derived to be 1.2 GPa for three-fold symmetry and one half of it for the other symmetry and 3.0 GPa for cellulose. The values of the moduli reflect deformations in the hydrogen-bond network. Unlike in our theoretical approach, no experiment can measure all three elastic moduli with the same apparatus. However, our theoretical results are consistent with various measured values: typical YL for cellulose Iβ ranges from 133 to 155 GPa, YT from 2 to 25 GPa, and S from 1.8 to 3.8 GPa. For β-amyloid, the experimental values of S and YT are about 0.3 GPa and 3.3 GPa respectively, while the value of YL has not been reported.
Collapse
Affiliation(s)
- Adolfo B Poma
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| | | | | |
Collapse
|
16
|
Hadden JA, French AD, Woods RJ. Unraveling cellulose microfibrils: a twisted tale. Biopolymers 2016; 99:746-56. [PMID: 23681971 DOI: 10.1002/bip.22279] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/26/2022]
Abstract
Molecular dynamics (MD) simulations of cellulose microfibrils are pertinent to the paper, textile, and biofuels industries for their unique capacity to characterize dynamic behavior and atomic-level interactions with solvent molecules and cellulase enzymes. While high-resolution crystallographic data have established a solid basis for computational analysis of cellulose, previous work has demonstrated a tendency for modeled microfibrils to diverge from the linear experimental structure and adopt a twisted conformation. Here, we investigate the dependence of this twisting behavior on computational approximations and establish the theoretical basis for its occurrence. We examine the role of solvent, the effect of nonbonded force field parameters [partial charges and van der Waals (vdW) contributions], and the use of explicitly modeled oxygen lone pairs in both the solute and solvent. Findings suggest that microfibril twisting is favored by vdW interactions, and counteracted by both intrachain hydrogen bonds and solvent effects at the microfibril surface.
Collapse
Affiliation(s)
- Jodi A Hadden
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602
| | | | | |
Collapse
|
17
|
Li L, Pérré P, Frank X, Mazeau K. A coarse-grain force-field for xylan and its interaction with cellulose. Carbohydr Polym 2015; 127:438-50. [PMID: 25965503 DOI: 10.1016/j.carbpol.2015.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
We have built a coarse-grain (CG) model describing xylan and its interaction with crystalline cellulose surfaces. Each xylosyl or glucosyl unit was represented by a single grain. Our calculations rely on force-field parameters adapted from the atomistic description of short xylan fragments and their adsorption on cellulose. This CG model was first validated for xylan chains both isolated and in the bulk where a good match was found with its atomistic counterpart as well as with experimental measurements. A similar agreement was also found when short xylan fragments were adsorbed on the (110) surface of crystalline cellulose. The CG model, which was extended to the (100) and (1-10) surfaces, revealed that the adsorbed xylan, which was essentially extended in the atomistic situation, could also adopt coiled structures, especially when laying on the hydrophobic cellulose surfaces.
Collapse
Affiliation(s)
- Liang Li
- LERFoB, AgroParisTech ENGREF, 14 Rue Girardet, 54000 Nancy, France
| | - Patrick Pérré
- LGPM, Ecole Centrale Paris, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
| | - Xavier Frank
- IATE INRA, CIRAD, Université Montpellier 2, Montpellier SupAgro, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Karim Mazeau
- Univ. Grenoble Alpes, CERMAV, F-38000 Grenoble, France; CNRS, CERMAV, F-38000 Grenoble, France.
| |
Collapse
|
18
|
Rusu VH, Baron R, Lins RD. PITOMBA: Parameter Interface for Oligosaccharide Molecules Based on Atoms. J Chem Theory Comput 2014; 10:5068-80. [DOI: 10.1021/ct500455u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victor H. Rusu
- Department
of Medicinal Chemistry, College of Pharmacy, and The Henry Eyring
Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820, United States
- Departamento
de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE 50740-560, Brazil
| | - Riccardo Baron
- Department
of Medicinal Chemistry, College of Pharmacy, and The Henry Eyring
Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112-5820, United States
| | - Roberto D. Lins
- Departamento
de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE 50740-560, Brazil
| |
Collapse
|
19
|
Uto T, Mawatari S, Yui T. Theoretical Study of the Structural Stability of Molecular Chain Sheet Models of Cellulose Crystal Allomorphs. J Phys Chem B 2014; 118:9313-21. [DOI: 10.1021/jp503535d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takuya Uto
- Department
of Applied Chemistry,
Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-kibanadai, Miyazaki 889-2191, Japan
| | - Sho Mawatari
- Department
of Applied Chemistry,
Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-kibanadai, Miyazaki 889-2191, Japan
| | - Toshifumi Yui
- Department
of Applied Chemistry,
Faculty of Engineering, University of Miyazaki, Nishi 1-1 Gakuen-kibanadai, Miyazaki 889-2191, Japan
| |
Collapse
|
20
|
Hadden JA, French AD, Woods RJ. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ. CELLULOSE (LONDON, ENGLAND) 2014; 21:879-884. [PMID: 24729665 PMCID: PMC3979627 DOI: 10.1007/s10570-013-0051-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Previous studies of calculated diffraction patterns for cellulose crystallites suggest that distortions that arise once models have been subjected to MD simulation are the result of both microfibril twisting and changes in unit cell dimensions induced by the empirical force field; to date, it has not been possible to separate the individual contributions of these effects. To provide a better understanding of how twisting manifests in diffraction data, the present study demonstrates a method for generating twisted and linear cellulose structures that can be compared without the bias of dimensional changes, allowing assessment of the impact of twisting alone. Analysis of unit cell dimensions, microfibril volume, hydrogen bond patterns, glycosidic torsion angles, and hydroxymethyl group orientations confirmed that the twisted and linear structures collected with this method were internally consistent, and theoretical powder diffraction patterns for the two were shown to be effectively indistinguishable. These results indicate that differences between calculated patterns for the crystal coordinates and twisted structures from MD simulation can result entirely from changes in unit cell dimensions, and not from microfibril twisting alone. Although powder diffraction patterns for models in the 81-chain size regime were shown to be unaffected by twisting, suggesting that a modest degree of twist is not inconsistent with experimental data, it may be that other diffraction techniques are capable of detecting this structural difference. Until such time as definitive experimental evidence comes to light, the results of this study suggest that both twisted and linear microfibrils may represent an appropriate model for cellulose Iβ.
Collapse
Affiliation(s)
- Jodi A. Hadden
- Complex Carbohydrate Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Alfred D. French
- Southern Regional Research Center, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124
| | - Robert J. Woods
- Complex Carbohydrate Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| |
Collapse
|
21
|
Srinivas G, Cheng X, Smith JC. Coarse-Grain Model for Natural Cellulose Fibrils in Explicit Water. J Phys Chem B 2014; 118:3026-34. [DOI: 10.1021/jp407953p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Goundla Srinivas
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Lee Street, Greensboro, North Carolina 27401, United States
| | - Xiaolin Cheng
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Science, Knoxville, Tennessee 37996-0840, United States
| | - Jeremy C. Smith
- University of Tennessee/Oak Ridge National Laboratory, Center for Molecular Biophysics, P.O.
Box 2008, Oak Ridge, Tennessee 37831-6164, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Science, Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
22
|
Qin Z, Dimas L, Adler D, Bratzel G, Buehler MJ. Biological materials by design. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:073101. [PMID: 24451343 DOI: 10.1088/0953-8984/26/7/073101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
23
|
Ciesielski PN, Matthews JF, Tucker MP, Beckham GT, Crowley MF, Himmel ME, Donohoe BS. 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS NANO 2013; 7:8011-9. [PMID: 23988022 DOI: 10.1021/nn4031542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fundamental insights into the macromolecular architecture of plant cell walls will elucidate new structure-property relationships and facilitate optimization of catalytic processes that produce fuels and chemicals from biomass. Here we introduce computational methodology to extract nanoscale geometry of cellulose microfibrils within thermochemically treated biomass directly from electron tomographic data sets. We quantitatively compare the cell wall nanostructure in corn stover following two leading pretreatment strategies: dilute acid with iron sulfate co-catalyst and ammonia fiber expansion (AFEX). Computational analysis of the tomographic data is used to extract mathematical descriptions for longitudinal axes of cellulose microfibrils from which we calculate their nanoscale curvature. These nanostructural measurements are used to inform the construction of atomistic models that exhibit features of cellulose within real, process-relevant biomass. By computational evaluation of these atomic models, we propose relationships between the crystal structure of cellulose Iβ and the nanoscale geometry of cellulose microfibrils.
Collapse
Affiliation(s)
- Peter N Ciesielski
- Biosciences Center, National Renewable Energy Laboratory , 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Markutsya S, Devarajan A, Baluyut JY, Windus TL, Gordon MS, Lamm MH. Evaluation of coarse-grained mapping schemes for polysaccharide chains in cellulose. J Chem Phys 2013; 138:214108. [DOI: 10.1063/1.4808025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|