1
|
Li P, Wang D, Lu W, He X, Hu J, Yun H, Zhao C, Yang L, Jie Q, Luo Z. Targeting FGFR3 signaling and drug repurposing for the treatment of SLC26A2-related chondrodysplasia in mouse model. J Orthop Translat 2024; 44:88-101. [PMID: 38282752 PMCID: PMC10818158 DOI: 10.1016/j.jot.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.
Collapse
Affiliation(s)
- Pan Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jingyan Hu
- Department of Biology, Northwestern University, Xi'an, China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengxiang Zhao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, HongHui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
2
|
Sun W, Gregory DA, Zhao X. Designed peptide amphiphiles as scaffolds for tissue engineering. Adv Colloid Interface Sci 2023; 314:102866. [PMID: 36898186 DOI: 10.1016/j.cis.2023.102866] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Peptide amphiphiles (PAs) are peptide-based molecules that contain a peptide sequence as a head group covalently conjugated to a hydrophobic segment, such as lipid tails. They can self-assemble into well-ordered supramolecular nanostructures such as micelles, vesicles, twisted ribbons and nanofibers. In addition, the diversity of natural amino acids gives the possibility to produce PAs with different sequences. These properties along with their biocompatibility, biodegradability and a high resemblance to native extracellular matrix (ECM) have resulted in PAs being considered as ideal scaffold materials for tissue engineering (TE) applications. This review introduces the 20 natural canonical amino acids as building blocks followed by highlighting the three categories of PAs: amphiphilic peptides, lipidated peptide amphiphiles and supramolecular peptide amphiphile conjugates, as well as their design rules that dictate the peptide self-assembly process. Furthermore, 3D bio-fabrication strategies of PAs hydrogels are discussed and the recent advances of PA-based scaffolds in TE with the emphasis on bone, cartilage and neural tissue regeneration both in vitro and in vivo are considered. Finally, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David Alexander Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Department of Material Science and Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
3
|
Yaylaci S, Guler MO, Tekinay AB. Sulfated GAG mimetic peptide nanofibers enhance chondrogenic differentiation of mesenchymal stem cells in 3D in vitro models. Regen Biomater 2022; 10:rbac084. [PMID: 36683737 PMCID: PMC9847523 DOI: 10.1093/rb/rbac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Articular cartilage, which is exposed to continuous repetitive compressive stress, has limited self-healing capacity in the case of trauma. Thus, it is crucial to develop new treatment options for the effective regeneration of the cartilage tissue. Current cellular therapy treatment options are microfracture and autologous chondrocyte implantation; however, these treatments induce the formation of fibrous cartilage, which degenerates over time, rather than functional hyaline cartilage tissue. Tissue engineering studies using biodegradable scaffolds and autologous cells are vital for developing an effective long-term treatment option. 3D scaffolds composed of glycosaminoglycan-like peptide nanofibers are synthetic, bioactive, biocompatible, and biodegradable and trigger cell-cell interactions that enhance chondrogenic differentiation of cells without using any growth factors. We showed differentiation of mesenchymal stem cells into chondrocytes in both 2D and 3D culture, which produce a functional cartilage extracellular matrix, employing bioactive cues integrated into the peptide nanofiber scaffold without adding exogenous growth factors.
Collapse
Affiliation(s)
| | - Mustafa O Guler
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
4
|
Riveiro A, Amorim S, Solanki A, Costa DS, Pires RA, Quintero F, Del Val J, Comesaña R, Badaoui A, Lusquiños F, Maçon ALB, Tallia F, Jones JR, Reis RL, Pou J. Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112124. [PMID: 34082941 DOI: 10.1016/j.msec.2021.112124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.
Collapse
Affiliation(s)
- Antonio Riveiro
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain.
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anu Solanki
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Diana S Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Félix Quintero
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Jesús Del Val
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Rafael Comesaña
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Aida Badaoui
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Fernando Lusquiños
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Anthony L B Maçon
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Juan Pou
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| |
Collapse
|
5
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
6
|
Szustak M, Gendaszewska-Darmach E. Extracellular Nucleotides Selectively Induce Migration of Chondrocytes and Expression of Type II Collagen. Int J Mol Sci 2020; 21:ijms21155227. [PMID: 32718031 PMCID: PMC7432683 DOI: 10.3390/ijms21155227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
The migration of chondrocytes from healthy to injured tissues is one of the most important challenges during cartilage repair. Additionally, maintenance of the chondrogenic phenotype remains another limitation, especially during monolayer culture in vitro. Using both the differentiated and undifferentiated chondrogenic ATDC5 cell line, we showed that extracellular nucleotides are able to increase the migration rate of chondrocytes without affecting their chondrogenic phenotype. We checked the potency of natural nucleotides (ATP, ADP, UTP, and UDP) as well as their stable phosphorothioate analogs, containing a sulfur atom in the place of one nonbridging oxygen atom in a phosphate group. We also detected P2y1, P2y2, P2y4, P2y6, P2y12, P2y13, and P2y14 mRNA transcripts for nucleotide receptors, demonstrating that P2y1 and P2y13 are highly upregulated in differentiated ATDC5 cells. We showed that ADPβS, UDPβS, and ADP are the best stimulators of migration of differentiated chondrocytes. Additionally, ADP and ADPβS positively affected the expression of type II collagen, a structural component of the cartilage matrix.
Collapse
|
7
|
Sivadas VP, Dhawan S, Babu J, Haridas V, Nair PD. Glutamic acid-based dendritic peptides for scaffold-free cartilage tissue engineering. Acta Biomater 2019; 99:196-210. [PMID: 31521812 DOI: 10.1016/j.actbio.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022]
Abstract
Current treatment modalities for cartilage regeneration often result in the production of fibrous-type cartilage tissue at the defect site, which has inferior mechanical properties as compared to native hyaline cartilage. Further, effective treatments are not available at present, for preventing age-related as well as disease-related hypertrophic development of chondrocytes. In the present study, we designed and synthesized three sets of glutamic acid-based dendritic peptides, differing in degree of lipidation as well as branching. Each set constitutes of N-terminal protected as well as corresponding N-deprotected peptides. Altogether, six peptides [BE12, E12, BE3(12)4, E3(12)4, BE3OMe, E3OMe] were tested for their chondrogenesis enhancing potential in vitro, using rabbit adipose derived mesenchymal stem cells (ADMSCs). Immunohistochemical and gene expression studies as well as biochemical analyses revealed that the lipopeptides [E12 and BE3(12)4] are able to enhance chondrogenic differentiation of ADMSCs significantly (p < 0.001) as compared to control group (chondrogenic medium alone). Glycosaminoglycan content, and the chondrogenic marker genes like Aggrecan (Acan), Type II collagen (Col2a1), Hyaluronan synthase 2 (Has2), and SRY-box 9 (Sox9) expressions were found to be significantly increased in E12 and BE3(12)4 treated groups. Most importantly, the BE3(12)4 treated group showed significantly lower Type I collagen (Col1a2) and Type X collagen (Col10a1) transcript levels (p < 0.001), indicating its potential for hyaline cartilage formation and also to prevent hypertrophic development. Thus, the lipopeptides E12 and BE3(12)4 may be useful for preventing chondrocyte hypertrophy and realizing the hyaline nature of regenerated cartilage tissue in tissue engineering. STATEMENT OF SIGNIFICANCE: The current treatment modalities for degenerative cartilage diseases are unsatisfactory as the resultant regenerated cartilage is often fibrous in nature with inferior mechanical properties. Further, there is no proper treatment available for age-related development of chondrocyte hypertrophy at present. In this study we synthesized glutamic acid-based lipopeptides, which differ in the degree of lipidation as well as branching. We used a combinatorial approach of scaffold-free tissue engineering and dendritic lipopeptides to achieve hyaline-like cartilage tissue from adipose derived mesenchymal stem cells in vitro. Gene expression analysis revealed the down regulation of fibrous cartilage marker Col1a2 and hypertrophic marker Col10a1, suggesting that these lipopeptides may be useful for achieving mechanically superior hyaline cartilage regeneration in future.
Collapse
Affiliation(s)
- V P Sivadas
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojapura, Thiruvananthapuram, Kerala 695012, India
| | - Sameer Dhawan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jisha Babu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Poojapura, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
8
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
9
|
Ke Y, Liu C, Wang Y, Xiao M, Fan J, Fu P, Wang S, Wu G. Cell-loaded carboxymethylcellulose microspheres sustain viability and proliferation of ATDC5 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:140-151. [DOI: 10.1080/21691401.2018.1452751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Caikun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanting Wang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Meng Xiao
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou, China
| | - Jiachen Fan
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shuhao Wang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gang Wu
- Department of Biomedical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Yao H, Xue J, Xie R, Liu S, Wang Y, Song W, Wang DA, Ren L. A novel glucosamine derivative with low cytotoxicity enhances chondrogenic differentiation of ATDC5. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:170. [PMID: 28956208 DOI: 10.1007/s10856-017-5971-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Glucosamine (GlcN) is a component of native cartilage extracellular matrix and useful in cartilage repair, but it was limited by toxicity in high concentrations. With the aim of altering bioactive properties of GlcN to reduce the toxicity and to facilitate chondrogenesis for hyaline cartilage formation, we introduced an amino-group modification with double bond into GlcN to produce N-acryloyl-glucosamine (AGA). The cell ATDC5 was chosen to evaluate its cytotoxicity and chondrogenesis capability. Cell proliferation and cytotoxicity assay showed that AGA had significantly reduced the cytotoxicity compared to GlcN, and promoted ATDC5 proliferation. Alcian blue staining and biochemical analysis indicated that AGA enhanced extracellular matrix deposition. Both the mRNA and protein levels of articular cartilage markers, like Collagen II and Aggrecan were up-regulated, as shown by quantitative real-time PCR and immunofluorescence staining. Moreover, the level of fibrocartilage marker Collagen I and hypertrophic marker Collagen Χ weren't significantly changed. Overall, these results demonstrated that the AGA achieved the functional double-bond, reduction in toxicity and enhancement in chondrogenesis could be more potential in cartilage repair.
Collapse
Affiliation(s)
- Hang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore
| | - Jingchen Xue
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Renjian Xie
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| | - Dong-An Wang
- Division of Bioengineering, School of Chemical & Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore, 637457, Singapore.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510041, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Camarero-Espinosa S, Cooper-White J. Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 2017; 523:476-489. [DOI: 10.1016/j.ijpharm.2016.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022]
|
12
|
Glycosaminoglycans (GAGs) and GAG mimetics regulate the behavior of stem cell differentiation. Colloids Surf B Biointerfaces 2017; 150:175-182. [DOI: 10.1016/j.colsurfb.2016.11.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
|
13
|
Yasa O, Uysal O, Ekiz MS, Guler MO, Tekinay AB. Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation. J Mater Chem B 2017; 5:4890-4900. [DOI: 10.1039/c7tb00708f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors.
Collapse
Affiliation(s)
- Oncay Yasa
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Ozge Uysal
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| | - Mustafa O. Guler
- Institute for Molecular Engineering
- University of Chicago
- Chicago
- USA
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology
- National Nanotechnology Research Center (UNAM)
- Bilkent University
- Ankara 06800
- Turkey
| |
Collapse
|
14
|
Yaylaci SU, Sen M, Bulut O, Arslan E, Guler MO, Tekinay AB. Chondrogenic Differentiation of Mesenchymal Stem Cells on Glycosaminoglycan-Mimetic Peptide Nanofibers. ACS Biomater Sci Eng 2016; 2:871-878. [DOI: 10.1021/acsbiomaterials.6b00099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seher Ustun Yaylaci
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Merve Sen
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ozlem Bulut
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Elif Arslan
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Mustafa O. Guler
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
15
|
Ustun Yaylaci S, Sardan Ekiz M, Arslan E, Can N, Kilic E, Ozkan H, Orujalipoor I, Ide S, Tekinay AB, Guler MO. Supramolecular GAG-like Self-Assembled Glycopeptide Nanofibers Induce Chondrogenesis and Cartilage Regeneration. Biomacromolecules 2016; 17:679-89. [DOI: 10.1021/acs.biomac.5b01669] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seher Ustun Yaylaci
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Melis Sardan Ekiz
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Elif Arslan
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Nuray Can
- Department
of Orthopaedics and Traumatology, Gulhane Military Medical Academy, Ankara 06010, Turkey
| | | | - Huseyin Ozkan
- Department
of Orthopaedics and Traumatology, Gulhane Military Medical Academy, Ankara 06010, Turkey
| | - Ilghar Orujalipoor
- Department
of Nanotechnology and Nanomedicine and Department of Physics Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Semra Ide
- Department
of Nanotechnology and Nanomedicine and Department of Physics Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
16
|
Xue J, Song W, Yao H, Hou S, Liu S, Wang Y, Pei D, Zhu X, Qin D, Ren L. Effects of cholic acid modified glucosamine on chondrogenic differentiation. RSC Adv 2016. [DOI: 10.1039/c6ra09547j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucosamine hydrochloride is a widely used drug for the treatment of osteoarthritis and can be easily modified by other molecules because of its alterable functional groups.
Collapse
|
17
|
Yasa IC, Gunduz N, Kilinc M, Guler MO, Tekinay AB. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis. Sci Rep 2015; 5:16460. [PMID: 26555958 PMCID: PMC4639731 DOI: 10.1038/srep16460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells' growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, "IKVAV", and fibronectin-derived well known adhesive sequence, "RGD", into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.
Collapse
Affiliation(s)
- I. Ceren Yasa
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Nuray Gunduz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Murat Kilinc
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| |
Collapse
|
18
|
Hamley IW, Dehsorkhi A, Castelletto V, Walter MNM, Connon CJ, Reza M, Ruokolainen J. Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4490-4495. [PMID: 25835126 DOI: 10.1021/acs.langmuir.5b00057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The self-assembly and bioactivity of a peptide amphiphile (PA) incorporating a 13-residue sequence derived from the last 13 amino acids of the C-terminus of lumican, C16-YEALRVANEVTLN, attached to a hexadecyl (C16) lipid chain have been examined. Lumican is a proteoglycan found in many types of tissue and is involved in collagen fibril organization. A critical aggregation concentration (cac) for the PA was determined through pyrene fluorescence measurements. The structure of the aggregates was imaged using electron microscopy, and twisted and curved nanotapes were observed. In situ small-angle X-ray scattering and fiber X-ray diffraction reveal that these tapes contain interdigitated bilayers of the PA molecules. FTIR and circular dichroism spectroscopy and fiber X-ray diffraction indicate that the lumican sequence in the PA adopts a β-sheet secondary structure. Cell assays using human dermal fibroblasts show that below the cac the PA displays good biocompatibility and also stimulates collagen production over a period of 3 weeks, exceeding a 2-fold enhancement for several concentrations. Thus, this PA has promise in future biological applications, in particular, in tissue engineering.
Collapse
Affiliation(s)
- Ian W Hamley
- †School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ashkan Dehsorkhi
- †School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Valeria Castelletto
- †School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Merlin N M Walter
- ‡Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Che J Connon
- ‡Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Mehedi Reza
- §Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- §Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
19
|
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int J Pharm 2015; 484:57-74. [DOI: 10.1016/j.ijpharm.2015.02.043] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
20
|
Arslan E, Garip IC, Gulseren G, Tekinay AB, Guler MO. Bioactive supramolecular peptide nanofibers for regenerative medicine. Adv Healthc Mater 2014; 3:1357-76. [PMID: 24574311 DOI: 10.1002/adhm.201300491] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Indexed: 11/09/2022]
Abstract
Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation.
Collapse
Affiliation(s)
- Elif Arslan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - I. Ceren Garip
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Gulcihan Gulseren
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM); Bilkent University; Ankara 06800 Turkey
| |
Collapse
|
21
|
Chaudhury K, Kumar V, Kandasamy J, RoyChoudhury S. Regenerative nanomedicine: current perspectives and future directions. Int J Nanomedicine 2014; 9:4153-67. [PMID: 25214780 PMCID: PMC4159316 DOI: 10.2147/ijn.s45332] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has considerably accelerated the growth of regenerative medicine in recent years. Application of nanotechnology in regenerative medicine has revolutionized the designing of grafts and scaffolds which has resulted in new grafts/scaffold systems having significantly enhanced cellular and tissue regenerative properties. Since the cell–cell and cell-matrix interaction in biological systems takes place at the nanoscale level, the application of nanotechnology gives an edge in modifying the cellular function and/or matrix function in a more desired way to mimic the native tissue/organ. In this review, we focus on the nanotechnology-based recent advances and trends in regenerative medicine and discussed under individual organ systems including bone, cartilage, nerve, skin, teeth, myocardium, liver and eye. Recent studies that are related to the design of various types of nanostructured scaffolds and incorporation of nanomaterials into the matrices are reported. We have also documented reports where these materials and matrices have been compared for their better biocompatibility and efficacy in supporting the damaged tissue. In addition to the recent developments, future directions and possible challenges in translating the findings from bench to bedside are outlined.
Collapse
Affiliation(s)
- Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Vishu Kumar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Jayaprakash Kandasamy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
22
|
Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering. Expert Rev Mol Med 2014; 16:e12. [PMID: 25089851 DOI: 10.1017/erm.2014.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to the limited regenerative capacity of cartilage tissue, cartilage repair remains a challenge in clinical treatment. Tissue engineering has emerged as a promising and important approach to repair cartilage defects. It is well known that material scaffolds are regarded as a fundamental element of tissue engineering. Novel biomaterial scaffolds formed by self-assembling peptides consist of nanofibre networks highly resembling natural extracellular matrices, and their fabrication is based on the principle of molecular self-assembly. Indeed, peptide nanofibre scaffolds have obtained much progress in repairing various damaged tissues (e.g. cartilage, bone, nerve, heart and blood vessel). This review outlines the rational design of peptide nanofibre scaffolds and their potential in cartilage tissue engineering.
Collapse
|
23
|
Ceylan H, Kocabey S, Unal Gulsuner H, Balcik OS, Guler MO, Tekinay AB. Bone-Like Mineral Nucleating Peptide Nanofibers Induce Differentiation of Human Mesenchymal Stem Cells into Mature Osteoblasts. Biomacromolecules 2014; 15:2407-18. [DOI: 10.1021/bm500248r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hakan Ceylan
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Samet Kocabey
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Hilal Unal Gulsuner
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Ozlem S. Balcik
- Department
of Hematology, School of Medicine Hospital, Turgut Ozal University, Ankara, 06510, Turkey
| | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
24
|
Kocabey S, Ceylan H, Tekinay AB, Guler MO. Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells. Acta Biomater 2013; 9:9075-85. [PMID: 23871942 DOI: 10.1016/j.actbio.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Bone tissue regeneration is accomplished by concerted regulation of protein-based extracellular matrix components, glycosaminoglycans (GAGs) and inductive growth factors. GAGs constitute a significant portion of the extracellular matrix and have a significant impact on regulating cellular behavior, either directly or through encapsulation and presentation of growth factors to the cells. In this study we utilized a supramolecular peptide nanofiber system that can emulate both the nanofibrous architecture of collagenous extracellular matrix and the major chemical composition found on GAGs. GAGs and collagen mimetic peptide nanofibers were designed and synthesized with sulfonate and carboxylate groups on the peptide scaffold. The GAG mimetic peptide nanofibers interact with bone morphogenetic protein-2 (BMP-2), which is a critical growth factor for osteogenic activity. The GAG mimicking ability of the peptide nanofibers and their interaction with BMP-2 promoted osteogenic activity and mineralization by osteoblastic cells. Alkaline phosphatase activity, Alizarin red staining and energy dispersive X-ray analysis spectroscopy indicated the efficacy of the peptide nanofibers in inducing mineralization. The multifunctional and bioactive microenvironment presented here provides osteoblastic cells with osteogenic stimuli similar to those observed in native bone tissue.
Collapse
|
25
|
|