1
|
Cao S, Lin C, Liang S, Tan CH, Er Saw P, Xu X. Enhancing Chemotherapy by RNA Interference. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Small interfering RNA (siRNA) has shown tremendous potential for treating human diseases in the past decades. siRNA can selectively silence a pathological pathway through the targeting and degradation of a specific mRNA, significantly reducing the off-target side
effects of anticancer drugs. However, the poor pharmacokinetics of RNA significantly restricted the clinical use of RNAi technology. In this review, we examine in-depth the siRNA therapeutics currently in preclinical and clinical trials, multiple challenges faced in siRNA therapy, feasibility
of siRNA treatment with anticancer drugs in combined with siRNA in nanoparticles or modified to be parental drugs, sequential therapy of siRNA treatment prior to drug treatment with siRNA and drugs loaded in nanoparticles. We focused on the combinatorial activation of apoptosis by different
pathways, namely Bcl-2, survivin, and Pgp protein. Taken together, this review would serve to establish the pathway of effective and efficient combination therapy of siRNA and drugs as a new strategy.
Collapse
Affiliation(s)
- Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunung Liang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Chee Hwee Tan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wang C, Wu J, Wang Z, Yang Z, Li Z, Deng H, Li L, Peng X, Feng M. Glutamine addiction activates polyglutamine-based nanocarriers delivering therapeutic siRNAs to orthotopic lung tumor mediated by glutamine transporter SLC1A5. Biomaterials 2018; 183:77-92. [PMID: 30149232 DOI: 10.1016/j.biomaterials.2018.08.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
Abstract
Many human cancer cells exhibit an oncogenetic-driven addiction to glutamine (Gln) as rapidly proliferating cancer cells consume Gln at a dramatically increased rate compared to normal cells. Tumor cells, therefore, compete with host cells for Gln, which causes Gln to flux from normal tissues to the tumor. We have developed and characterized a Gln macromolecular analog polyglutamine (PGS) for the delivery of gene regulators, such as siRNAs, in our previous works. Here, we hypothesize that PGS can utilize the Gln transporter SLC1A5 to specifically deliver therapeutic compounds to Gln-addicted cancer cells. Compared to human lung fibroblast HLF cells, cisplatin-resistant human lung adenocarcinoma A549/DDP cells significantly overexpress SLC1A5, which has a high binding affinity to PGS, as confirmed through molecular docking analysis. Due to the differences in Gln metabolism between malignant and normal cells, PGS/siRNA complexes were remarkably increased in cancer cells, especially when cells were deprived of Gln, which mirrors the conditions that are commonly found in a tumor microenvironment. Furthermore, we identified that chemical and genetic inhibition of Gln transporter SLC1A5 reduced the cellular internalization of PGS/siRNA complexes, suggesting a critical role for SLC1A5 in PGS uptake in cells. In turn, PGS upregulated SLC1A5 expression. Increased uptake of PGS complexes profoundly decreased intracellular Gln levels. Decreased Gln caused a moderate reduction in cell growth. To restore drug sensitivity and further enhance anti-tumor effects, the hybrid siRNAs anti-Survivin and anti-MDR1 (siSM), as model therapeutics, were administered through the PGS delivery system, which resulted in knockdown of Survivin and MDR1 and further sensitized cancer cells to the drug cisplatin (DDP). Since PGS complexes administered i.v. mostly accumulated in the lung parenchyma, a lung orthotopic tumor model was established to evaluate their inhibitory effects on tumors in the lungs. PGS/siSM comparably decreased the rate of tumor growth, while concurrent administration of PGS/siSM and DDP enhanced this effect and insignificantly improved life span. Consistent with our hypothesis, this study demonstrated that PGS mimicked Gln in the SLC1A5 pathway and selectively ferried therapeutics to Gln-addicted cancer cells. Our findings identified a new lung cancer targeting strategy based on Gln metabolism and can be used as a drug/gene delivery system.
Collapse
Affiliation(s)
- Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| | - Jiamin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China; School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Zhongjuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China; Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, PR China
| | - Zeping Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Zhi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Huihui Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Long Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Zou H, Wang Z, Feng M. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. J Control Release 2015. [PMID: 26208425 DOI: 10.1016/j.jconrel.2015.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanocarrier-mediated drug and gene delivery systems hold great promise for providing more refined delivery (especially in cancer treatments) to maximize therapeutic efficacy while minimizing unfavorable side effects. Despite their promise, the highly effective transport of therapeutics in vivo remains a challenge. Over the last 20years, there has been a large amount of research directed toward the development of a multitude of nanocarriers for drug and gene delivery, but only a very small part has progressed into clinical trials. This suggests that the properties of current nanocarriers are not yet ideal for effective drug and gene delivery in vivo. Nanocarrier-mediated drug and gene delivery is a multi-step process, and inefficient delivery at any stage would ultimately result in an unsuccessful delivery. Unfortunately, existing nanocarriers with fixed surface properties, such as a PEGylated, cationized and bioconjugated surface, are not versatile enough to overcome the extracellular and intracellular barriers which require different surface properties. Consequently, their delivery efficacy is not optimal, leading to doubts and debates on the value of nanocarrier-based product development. To resolve the "fixed surface dilemma", the switchable surfaces of nanocarriers, which can surmount both extracellular and intracellular barriers, open up the possibility of highly efficient delivery in vivo. Here, we review and highlight the recent developments in the design of nanocarrier delivery systems with tunable surface properties in response to microenvironment triggers. Strategies including zwitterionic nanocarriers, polymer brushes, layer-by-layer nanocarriers and cleavable conjugated nanocarriers are presented. These representative examples and their respective outcomes elaborate the benefits and efficiencies of these nanocarriers at the individual stages of drug and gene delivery.
Collapse
Affiliation(s)
- Haijuan Zou
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Zhongjuan Wang
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Min Feng
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Foster AA, Greco CT, Green MD, Epps TH, Sullivan MO. Light-mediated activation of siRNA Release in diblock copolymer assemblies for controlled gene silencing. Adv Healthc Mater 2015; 4:760-70. [PMID: 25530259 PMCID: PMC4429132 DOI: 10.1002/adhm.201400671] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Indexed: 11/08/2022]
Abstract
Controllable release is particularly important for the delivery of small interfering RNA (siRNA), as siRNAs have a high susceptibility to enzymatic degradation if release is premature, yet lack silencing activity if they remain inaccessible within the cytoplasm. To overcome these hurdles, novel and tailorable mPEG-b-poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) (mPEG-b-P(APNBMA)) diblock copolymers containing light-sensitive o-nitrobenzyl moieties and pendant amines are employed to provide both efficient siRNA binding, via electrostatic and hydrophobic interactions, as well as triggered charge reversal and nucleic acid release. In particular, siRNA/mPEG-b-P(APNBMA)23.6 polyplexes show minimal aggregation in physiological salt and serum, and enhanced resistance to polyanion-induced unpackaging compared to polyethylenimine preparations. Cellular delivery of siRNA/mPEG-b-P(APNBMA)23.6 polyplexes reveals greater than 80% cellular transfection, as well as rapid and widespread cytoplasmic distribution. Additionally, UV irradiation indicates ≈70% reduction in targeted gene expression following siRNA/mPEG-b-P(APNBMA)23.6 polyplex treatment, as compared to 0% reduction in polyplex-treated cells without UV irradiation, and only ≈30% reduction for Lipofectamine-treated cells. The results here highlight the potential of these light-sensitive copolymers with a well-defined on/off switch for applications including cellular patterning for guided cell growth and extension, and cellular microarrays for exploring protein and drug interactions that require enhanced spatiotemporal control of gene activation.
Collapse
Affiliation(s)
- Abbygail A. Foster
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Chad T. Greco
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Matthew D. Green
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering, Newark, DE 19716, USA
| | | |
Collapse
|
6
|
The polyion complex nano-prodrug of doxorubicin (DOX) with poly(lactic acid-co-malic acid)-block-polyethylene glycol: preparation and drug controlled release. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1206-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Huang H, Cao D, Qin L, Tian S, Liang Y, Pan S, Feng M. Dilution-stable PAMAM G1-grafted polyrotaxane supermolecules deliver gene into cells through a caveolae-dependent pathway. Mol Pharm 2014; 11:2323-33. [PMID: 24957192 DOI: 10.1021/mp5002608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous preclinical studies have demonstrated that polycation mediated gene delivery systems successfully achieved efficient gene transfer into cells and animal models. However, results of their clinical trials to date have been disappointing. That self-assembled gene and polycation systems should be stable undergoing dilution in the body is one of the prerequisites to ensuring efficiency of gene transfer in clinical trials, but it was neglected in most preclinical studies. In this account, we developed the dilution-stable PAMAM G1-grafted polyrotaxane (PPG1) supermolecules in which PAMAM G1-grafted α-cyclodextrins are threaded onto a PEG chain capped with hydrophobic adamantanamine. The PPG1/pDNA polyplex (approximate 100 nm in diameter) was very stable and kept its initial particle size and a uniform size distribution at ultrahigh dilution, whereas DNA/PEI 25K polyplex was above three times bigger at a 16-fold dilution than the initial size and their particle size distribution indicated multiple peaks mainly due to forming loose and noncompacted aggregates. PPG1 supermolecules showed significantly superior transfection efficiencies compared to either PEI 25K or Lipofectamine 2000 in most cell lines tested including normal cells (HEK293A) and cancer cells (Bel7402, HepG2, and HeLa). Furthermore, we found that the PPG1 supermolecules delivered DNA into HEK293A through a caveolae-dependent pathway but not a clathrin-dependent pathway as PEI 25K did. These findings raised the intriguing possibility that the caveolae-dependent pathway of PPG1 supermolecule/pDNA polyplex avoiding lysosomal degradation was attributed to their high transfection efficiency. The dilution-stable PPG1 supermolecule polyplex facilitating caveolae-dependent internalization has potential applications to surmount the challenges of high dilutions in the body and lysosomal degradation faced by most gene therapy clinical trials.
Collapse
Affiliation(s)
- Huan Huang
- School of Pharmaceutical Sciences and the First Affiliated Hospital, Sun Yat-sen University , Guangzhou 510080, P. R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang B, Dong J, Li Q, Xiong Z, Xiong C, Chen D. Mechanism of inhibition on L929 rat fibroblasts proliferation induced by potential adhesion barrier material poly(p-dioxanone-co-l-phenylalanine) electrospun membranes. J Biomed Mater Res A 2014; 102:4062-70. [DOI: 10.1002/jbm.a.35077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/28/2013] [Accepted: 12/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Bing Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu China
- Department of Polymer Chemistry and Physics, University of Chinese Academy of Sciences; Beijing China
| | - Jun Dong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu China
- Department of Polymer Chemistry and Physics, University of Chinese Academy of Sciences; Beijing China
| | - Qijie Li
- Basic Medical Colleges, Chengdu University of Traditional Chinese Medicine; Chengdu China
| | - Zuochun Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu China
| |
Collapse
|
9
|
Zhang M, Xiong Q, Wang Y, Zhang Z, Shen W, Liu L, Wang Q, Zhang Q. A well-defined coil–comb polycationic brush with “star polymers” as side chains for gene delivery. Polym Chem 2014. [DOI: 10.1039/c4py00311j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The well-defined polycationic brush with super-high grafting density of PDMAEMA showed higher transfection capability than the single star polymer and PEI25K.
Collapse
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
| | - Qingqing Xiong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
| | - Yinsong Wang
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070, P. R. China
| | - Zhibao Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
| | - Wei Shen
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
| | - Quanyao Wang
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070, P. R. China
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192, P. R. China
- Institute of Biomedical and Pharmaceutical Technology
| |
Collapse
|