1
|
Kyser AJ, Mahmoud MY, Fotouh B, Patel R, Armstrong C, Aagard M, Rush I, Lewis W, Lewis A, Frieboes HB. Sustained dual delivery of metronidazole and viable Lactobacillus crispatus from 3D-printed silicone shells. BIOMATERIALS ADVANCES 2024; 165:214005. [PMID: 39208497 PMCID: PMC11443601 DOI: 10.1016/j.bioadv.2024.214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Christy Armstrong
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marnie Aagard
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Isaiah Rush
- Department of Chemical Engineering, University of Dayton, Dayton, OH, USA
| | - Warren Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
2
|
Ding T, Wang G, Tang L, Xia Y, Song X, Yang Y, Ai L. Enhanced resistance of Lactiplantibacillus plantarum by expression of albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8852-8857. [PMID: 38984980 DOI: 10.1002/jsfa.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tongren Ding
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liuqian Tang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2024; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
4
|
Łętocha A, Michalczyk A, Miastkowska M, Sikora E. Effect of Encapsulation of Lactobacillus casei in Alginate-Tapioca Flour Microspheres Coated with Different Biopolymers on the Viability of Probiotic Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52878-52893. [PMID: 39301782 PMCID: PMC11450766 DOI: 10.1021/acsami.4c10187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
To realize the health benefits of probiotic bacteria, they must withstand processing and storage conditions and remain viable after use. The encapsulation of these probiotics in the form of microspheres containing tapioca flour as a prebiotic and vehicle component in their structure or shell affords symbiotic effects that improve the survival of probiotics under unfavorable conditions. Microencapsulation is one such method that has proven to be effective in protecting probiotics from adverse conditions while maintaining their viability and functionality. The aim of the work was to obtain high-quality microspheres that can act as carriers of Lactobacillus casei bacteria and to assess the impact of encapsulation on the viability of probiotic microorganisms in alginate microspheres enriched with a prebiotic (tapioca flour) and additionally coated with hyaluronic acid, chitosan, or gelatin. The influence of the composition of microparticles on the physicochemical properties and the viability of probiotic bacteria during storage was examined. The optimal composition of microspheres was selected using the design of experiments using statistical methods. Subsequently, the size, morphology, and cross-section of the obtained microspheres, as well as the effectiveness of the microsphere coating with biopolymers, were analyzed. The chemical structure of the microspheres was identified by using Fourier-transform infrared spectrophotometry. Raman spectroscopy was used to confirm the success of coating the microspheres with the selected biopolymers. The obtained results showed that the addition of tapioca flour had a positive effect on the surface modification of the microspheres, causing the porous structure of the alginate microparticles to become smaller and more sealed. Moreover, the addition of prebiotic and biopolymer coatings of the microspheres, particularly using hyaluronic acid and chitosan, significantly improved the survival and viability of the probiotic strain during long-term storage. The highest survival rate of the probiotic strain was recorded for alginate-tapioca flour microspheres coated with hyaluronic acid, at 5.48 log CFU g-1. The survival rate of L. casei in that vehicle system was 89% after storage for 30 days of storage.
Collapse
Affiliation(s)
- Anna Łętocha
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Alicja Michalczyk
- Lukasiewicz
Research Network—Institute of Industrial Organic Chemistry, 03-236 Warsaw, Poland
| | - Małgorzata Miastkowska
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| | - Elżbieta Sikora
- Faculty
of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Cracow, Poland
| |
Collapse
|
5
|
Lau M, Monis PT, King BJ. The efficacy of current treatment processes to remove, inactivate, or reduce environmental bloom-forming Escherichia coli. Microbiol Spectr 2024; 12:e0085624. [PMID: 38980016 PMCID: PMC11302305 DOI: 10.1128/spectrum.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Escherichia coli is excreted in high numbers from the intestinal tract of humans, other mammals, and birds. Traditionally, it had been thought that E. coli could grow only within human or animal hosts and would perish in the environment. Therefore, the presence of E. coli in water has become universally accepted as a key water quality indicator of fecal pollution. However, recent research challenges the assumption that the presence of E. coli in water is always an indicator of fecal contamination, with some types of E. coli having evolved to survive and grow in aquatic environments. These strains can form blooms in water storages, resulting in high E. coli counts even without fecal contamination. Although these bloom-forming strains lack virulence genes and pose little threat to public health, their presence in treated water triggers the same response as fecal-derived E. coli. Yet, little is known about the effectiveness of treatment processes in removing or inactivating them. This study evaluated the effectiveness of current treatment processes to remove bloom-forming strains, in comparison to fecal-derived strains, with conventional coagulation-flocculation-sedimentation and filtration investigated. Second, the effectiveness of current disinfection processes-chlorination, chloramination, and ultraviolet (UV) light to disinfect bloom-forming strains in comparison to fecal-derived strains-was assessed. These experiments showed that the responses of bloom isolates were not significantly different from those of fecal E. coli strains. Therefore, commonly used water treatment and disinfection processes are effective to remove bloom-forming E. coli strains from water.IMPORTANCEThe presence of Escherichia coli in water has long been used globally as a key indicator of fecal pollution and for quantifying water safety. Traditionally, it was believed that E. coli could only thrive within hosts and would perish outside, making its presence in water indicative of fecal contamination. However, recent research has unveiled strains of E. coli capable of surviving and proliferating in aquatic environments, forming blooms even in the absence of fecal contamination. While these bloom-forming strains lack the genes to be pathogenic, their detection in source or drinking water triggers the same response as fecal-derived E. coli. Yet, little is known about the efficacy of treatment processes in removing them. This study evaluated the effectiveness of conventional treatment and disinfection processes in removing bloom-forming strains compared to fecal-derived strains. Results indicate that these commonly used processes are equally effective against both types of E. coli, reassuring that bloom-forming E. coli strains can be eliminated from water.
Collapse
Affiliation(s)
- Melody Lau
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Paul T. Monis
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Brendon J. King
- South Australian Water Corporation, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Liu Y, Wang J, Zheng H, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Qiu X, Peng G. Multi-functional properties of lactic acid bacteria strains derived from canine feces. Front Vet Sci 2024; 11:1404580. [PMID: 39161461 PMCID: PMC11330878 DOI: 10.3389/fvets.2024.1404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group Co., Ltd., Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Premjit Y, Pandey S, Mitra J. Encapsulation of probiotics in freeze-dried calcium alginate and κ-carrageenan beads using definitive screening design: A comprehensive characterisation and in vitro digestion study. Int J Biol Macromol 2024; 258:129279. [PMID: 38262834 DOI: 10.1016/j.ijbiomac.2024.129279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
This research aimed to evaluate the encapsulation of the probiotic strain, Streptococcus thermophilus, in hydrogels employing sodium alginate (SA) with κ-carrageenan (κC) in gelation baths with varying salt concentrations (CaCl2 and KCl) followed by freeze-drying. The experimentation was conducted at varying levels of κC (0-0.5 % w/v) and SA (2-4 %). Freeze-dried hydrogels were evaluated based on encapsulation efficiency and loss of viability and further characterised. The study could successfully establish an encapsulation efficiency of 87.814 % and a viability loss of 1.201 log CFU·g-1 for the optimised samples. The SEM micrographs of the optimised Ca-alginate/κC hydrogels exhibited a much denser network with fewer pores. The influence of SA/κC in the beads was confirmed by FTIR and DSC, where distinct peak shifts were observed, which indicated the presence of κC and SA polymers. The probiotic survival under simulated gastrointestinal tract (GIT) conditions, performed in accordance with the INFOGEST protocol, indicated that the optimised Ca-alginate/κC beads had a lower rate of release in the gastric phase and a much higher rate of survival and release in the intestinal phase than the control sample. The swelling behaviour of beads varied due to varying pH in both gastric and intestinal phases, and the κC in the optimised beads affected the swelling ratio significantly.
Collapse
Affiliation(s)
- Yashaswini Premjit
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sachchidanand Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
8
|
Potaś J, Wach RA, Rokita B, Wróblewska M, Winnicka K. Evaluation of the impact of tragacanth/xanthan gum interpolymer complexation with chitosan on pharmaceutical performance of gels with secnidazole as potential periodontal treatment. Eur J Pharm Sci 2024; 192:106657. [PMID: 38040098 DOI: 10.1016/j.ejps.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Periodontitis consists a group of dental disorders that affect about 70 % of the world population. The therapy mainly relies on mechanical removing bacterial biofilm, nevertheless, local or systemic antibacterial agents play a key role in treating the acute conditions. Secnidazole is a newer derivative of commonly used metronidazole with high safety profile and broad spectrum of antimicrobial activity. The aim of the study was to evaluate the applicability of polyelectrolyte complex-based hydrogels composed of anionic tragacanth with addition of xanthan gum and cationic chitosan as carriers for buccal/intra pocket delivery of secnidazole. Prepared hydrogels with 5 % and 10 % (w/w) drug content were evaluated pharmaceutically towards inter alia physicomechanical, rheological and thermal properties, drug release kinetics, swelling behavior or antimicrobial activity. Cytotoxicity against human primary umbilical vein endothelial cells was also assessed with two independent method. Stable compositions with secnidazole were obtained, however, various miscibility of the drug with the polymers was noted. By adding chitosan, antibacterial activity and swelling performance of the gels were improved, nevertheless, drop of the mucoadhesiveness was also recorded. Hydrogels with 5 % secnidazole were selected as effective antimicrobial compositions with the highest cytocompatibility. They might be considered as promising for oromucosal application with special attention given to SEC as an alternative locally administered antimicrobial agent.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland.
| | - Radosław A Wach
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Bożena Rokita
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| |
Collapse
|
9
|
Chauhan J, Sharma RK. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int J Biol Macromol 2023; 248:125873. [PMID: 37473897 DOI: 10.1016/j.ijbiomac.2023.125873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The need for a broader range of probiotics, prebiotics, and synbiotics to improve the activity and functioning of gut microbiota has led to the development of new nutraceuticals formulations. These techniques majorly depend on the type of the concerned food, inclusive factors i.e. application of biotic components, probiotics, and synbiotics along with the type of encapsulation involved. For improvisation of the oral transfer mode of synbiotics delivery within the intestine along with viability, efficacy, and stability co-encapsulation is required. The present study explores encapsulation materials, probiotics and prebiotics in the form of synbiotics. The emphasis was given to the selection and usage of probiotic delivery matrix or prebiotic polymers, which primarily include animal derived (gelatine, casein, collagen, chitosan) and plant derived (starch, cellulose, pectin, alginate) materials. Beside this, the role of microbial polymers and biofilms (exopolysaccharides, extracellular polymeric substances) has also been discussed in the formation of probiotic functional foods. In this instance, the microbial biofilm is also used as suitable polymeric compound for encapsulation providing stability, viability, and efficacy. Thus, the review highlights the utilization of diverse prebiotic polymers in synbiotic formulations, along with microbial biofilms, which hold great potential for enhancing gut microbiota activity and improving overall health.
Collapse
Affiliation(s)
- Juhi Chauhan
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur 303007, Rajasthan, India.
| |
Collapse
|
10
|
Rezaei Z, Salari A, Khanzadi S, Rhim J, Shamloo E. Preparation of milk-based probiotic lactic acid bacteria biofilms: A new generation of probiotics. Food Sci Nutr 2023; 11:2915-2924. [PMID: 37324845 PMCID: PMC10261778 DOI: 10.1002/fsn3.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Biofilm is considered as a community of microorganisms in which cells adhere to each other on surfaces in a self-produced matrix of extracellular polymer compounds. In recent years, efforts to use the beneficial aspects of biofilm in probiotic research have intensified. In this study, probiotic biofilms of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus were manufactured using milk and transferred to yogurt in whole and pulverized forms to test in real food conditions. Survival was assessed during 21 days of storage time as well as gastrointestinal conditions. The results indicated that Lp. plantarum and Lc. rhamnosus can form a very desirable and strong biofilm that can have a good protective effect on the survival of these bacteria in probiotic yogurt during processing, storage, and gastrointestinal conditions, in a way that, after 120 min of treatment in high acidic gastrointestinal conditions (pH 2.0), the survival rate decreased by only 0.5 and 1.1 log CFU/ml. Probiotic biofilm can be used as a natural way of utilizing bacteria in biotechnology and fermentation, which is an excellent way to increase the utility of probiotics.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Amir Salari
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Jong‐Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research CenterKyung Hee UniversitySeoulRepublic of Korea
| | - Ehsan Shamloo
- Department of Food Science and TechnologyNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
11
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
12
|
Li C, Gao M, Zheng G, Ma X, Liu X, Yu W. Enhanced quorum sensing capacity via regulating microenvironment to facilitate stress resistance of probiotic in alginate-based microcapsules. Int J Biol Macromol 2023; 225:605-614. [PMID: 36410534 DOI: 10.1016/j.ijbiomac.2022.11.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Alginate-based microcapsule has becoming a promising carrier for probiotic encapsulation due to the improved stress resistant ability. Besides the physical protection of microcapsules, bacterial quorum sensing (QS) is another prominent factor affecting microbial stress resistance in microcapsules. In the present study, Vibrio harveyi cells were entrapped and proliferated into cell aggregates in alginate-based microcapsules. The microenvironment composed of cells and biomacromolecules was regulated by the diameter, alginate concentration and core state of microcapsule. Then the effect of microenvironment on bacterial QS capacity was investigated, including bioluminescence, autoinducers (AIs) production and QS related genes expression. The highest diameter of 1200 μm and highest alginate concentration of 2.0 % w/v under the investigation range presented strongest QS capacity, and the maintenance of hydrogel core could enhance bacterial QS. Moreover, the mechanism analysis revealed that the formed biofilm on the surface of cell aggregates hampered the outward transfer of AIs, and the local AIs inside the cell aggregates induced stronger bacteria QS by close-range interaction. As a whole, these findings are helpful to guide the technological development and optimization of microencapsulated probiotics with stronger stress resistance, and the potential application in food, dairy, wastewater treatment and biosensor.
Collapse
Affiliation(s)
- Cheng Li
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China
| | - Meng Gao
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Guoshuang Zheng
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiudong Liu
- College of Environment and Chemical Engineering, Dalian University, Dalian Economic Technological Development Zone, Dalian 116622, PR China.
| | - Weiting Yu
- The Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, PR China; Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| |
Collapse
|
13
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 2023; 300:120265. [DOI: 10.1016/j.carbpol.2022.120265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
14
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes 2022; 14:2126274. [PMID: 36175161 PMCID: PMC9542427 DOI: 10.1080/19490976.2022.2126274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The use of probiotics has been one of the effective strategies to restructure perturbed human gut microbiota following a disease or metabolic disorder. One of the biggest challenges associated with the use of probiotic-based gut modulation strategies is to keep the probiotic cells viable and stable during the gastrointestinal transit. Biofilm-based probiotics delivery approaches have emerged as fascinating modes of probiotic delivery in which probiotics show significantly greater tolerance and biotherapeutic potential, and interestingly probiotic biofilms can be developed on food-grade surfaces too, which is ideal for the growth and proliferation of bacterial cells for incorporation into food matrices. In addition, biofilms can be further encapsulated with food-grade materials or with bacterial self-produced biofilms. This review presents a newly emerging and unprecedently discussed techniques for the safe delivery of probiotics based on biofilms and further discusses newly emerging prebiotic materials which target specific gut microbiota groups for growth and proliferation.
Collapse
Affiliation(s)
- Jie Gao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Faizan Ahmed Sadiq
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Yixin Zheng
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jinrong Zhao
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China,CONTACT Guoqing He College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yaxin Sang
- Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China,Yaxin Sang Collge of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Baek J, Ramasamy M, Cho DG, Chung Soo CC, Kapar S, Lee JY, Tam KC. A new approach for the encapsulation of Saccharomyces cerevisiae using shellac and cellulose nanocrystals. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Tan LL, Mahotra M, Chan SY, Loo SCJ. In situ alginate crosslinking during spray-drying of lactobacilli probiotics promotes gastrointestinal-targeted delivery. Carbohydr Polym 2022; 286:119279. [DOI: 10.1016/j.carbpol.2022.119279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
|
18
|
Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, Zhou Y. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel) 2022; 15:644. [PMID: 35631470 PMCID: PMC9144165 DOI: 10.3390/ph15050644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics exhibit many health benefits and a great potential for broad applications in pharmaceutical fields, such as prevention and treatment of gastrointestinal tract diseases (irritable bowel syndrome), prevention and therapy of allergies, certain anticancer effects, and immunomodulation. However, their applications are limited by the low viability and metabolic activity of the probiotics during processing, storage, and delivery in the digestive tract. To overcome the mentioned limitations, probiotic delivery systems have attracted much attention. This review focuses on alginate as a preferred polymer and presents recent advances in alginate-based polymers for probiotic delivery systems. We highlight several alginate-based delivery systems containing various types of probiotics and the physical and chemical modifications with chitosan, cellulose, starch, protein, fish gel, and many other materials to enhance their performance, of which the viability and protective mechanisms are discussed. Withal, various challenges in alginate-based polymers for probiotics delivery systems are traced out, and future directions, specifically on the use of nanomaterials as well as prebiotics, are delineated to further facilitate subsequent researchers in selecting more favorable materials and technology for probiotic delivery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanxia Zhou
- Marine College, Shandong University, Weihai 264209, China; (X.W.); (S.G.); (S.Y.); (M.Z.); (L.P.); (Y.L.)
| |
Collapse
|
19
|
Improving the Viability of Probiotics under Harsh Conditions by the Formation of Biofilm on Electrospun Nanofiber Mat. Foods 2022; 11:foods11091203. [PMID: 35563925 PMCID: PMC9102203 DOI: 10.3390/foods11091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
For improving probiotics’ survivability under harsh conditions, this study used Lactiplantibacillus plantarum GIM1.648 as a model microorganism to investigate its ability to produce biofilms on electrospun ethyl cellulose nanofiber mats. SEM observations confirmed that biofilm was successfully formed on the nanofibers, with the latter being an excellent scaffold material. The optimal cultivation conditions for biofilm formation were MRS medium without Tween 80, a culture time of 36 h, a temperature of 30 °C, a pH of 6.5, and an inoculum concentration of 1% (v/v). The sessile cells in the biofilm exhibited improved gastrointestinal and thermal tolerance compared to the planktonic cells. Additionally, the RT-qPCR assay indicated that the luxS gene played a crucial role in biofilm formation, with its relative expression level being 8.7-fold higher compared to the planktonic cells. In conclusion, biofilm formation on electrospun nanofiber mat has great potential for improving the viability of probiotic cells under harsh conditions.
Collapse
|
20
|
Erdélyi L, Fenyvesi F, Gál B, Haimhoffer Á, Vasvári G, Budai I, Remenyik J, Bereczki I, Fehér P, Ujhelyi Z, Bácskay I, Vecsernyés M, Kovács R, Váradi J. Investigation of the Role and Effectiveness of Chitosan Coating on Probiotic Microcapsules. Polymers (Basel) 2022; 14:polym14091664. [PMID: 35566837 PMCID: PMC9101405 DOI: 10.3390/polym14091664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Microencapsulation and coating are preferred methods to increase the viability of the probiotic strains. The effect of microencapsulation technologies and materials used as microcapsule cores on viability is being investigated during development. In the present study, chitosan-coated and Eudragit L100-55-coated alginate microspheres were produced to encapsulate Lactobacillus plantarum probiotic bacteria. After the heat loading and simulated gastrointestinal juice dissolution study, the differences in viability were compared based on the CFU/mL values of the samples. The kinetics of the bacterial release and the ratio of the released live/dead cells of Lactobacillus plantarum were examined by flow cytometry. In all cases, we found that the CFU value for the chitosan-coated samples was virtually zero. The ratio of live/dead cells in the 120 min samples was significantly reduced to less than 20% for chitosan, while it was nearly 90% in the uncoated and Eudragit L100-55-coated samples. In the case of chitosan, based on some published MIC values and the amount of chitosan coating determined in the present study, we concluded the reason for our results. It was the first time to determine the amount of the released chitosan coat of the dried microcapsule, which reached the MIC value during the dissolution studies.
Collapse
Affiliation(s)
- Lóránd Erdélyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Bernadett Gál
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Str. 2-4, H-4028 Debrecen, Hungary;
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (L.E.); (F.F.); (B.G.); (Á.H.); (G.V.); (P.F.); (Z.U.); (I.B.); (M.V.)
- Correspondence:
| |
Collapse
|
21
|
Zhang Z, Liu J, Li M, Yang B, Liu W, Chu Z, Cui B, Chen X. Lactobacillus rhamnosus Encapsulated in Alginate/Chitosan Microgels Manipulates the Gut Microbiome to Ameliorate Salt-Induced Hepatorenal Injury. Front Nutr 2022; 9:872808. [PMID: 35495927 PMCID: PMC9047548 DOI: 10.3389/fnut.2022.872808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
As the essential regulator of intestinal bacterial diversity, probiotics are a potential treatment for chronic high-salt diet (HSD)–induced metabolic dysfunction. Probiotic cells entrapped in microgels have been confirmed as being more effective than free cells in protecting bacteria against unfavorable conditions, that is, enhancing their stress resistance. This study explored the physiological mechanism by which probiotic microgels relieve HSD–induced hepatorenal injury. Herein, Lactobacillus rhamnosus was encapsulated in alginate-chitosan microgels which the percentage of alginate/chitosan was applied 1.5:0.5 (w/w) in this system, and the encapsulation significantly improved the probiotic viability in simulated gastrointestinal conditions. Mice were fed an HSD with L. rhamnosus (SDL) or L. rhamnosus microgels (SDEL). After 8 weeks of administration, dietary sodium was confirmed as inducing the hepatic and renal damages in mice, based on indicators, including serum biomarker levels, histopathological features of tissues, and pro-inflammatory cytokine contents in blood levels. However, the serum levels of urea nitrogen, creatinine, uric acid, glutamic-pyruvic transaminase, glutamic-oxalacetic transaminase, and alkaline phosphatase in the SDL and SDEL-fed mice were significantly lowered compared to the HSD-fed mice, especially in the SDEL group. HSD increased the abundances of Anaeroplasma, Enterorhabdus, Parvibacter, and Bacteroides, while the microgels increased the abundances of Lactobacillus, Bifidobacterium, Mucispirillum, and Faecalibaculum. Significant variations of fecal metabolome were validated for SDEL-treated mice, containing those linked to entero-hepatic circulation (e.g., cholic acid), carbohydrate metabolism (i.e., L-lactic acid), and increased antioxidants including citric acid. Furthermore, the probiotic microgels ameliorated intestinal damage by improving barrier and absorption functions. These results augmented existing knowledge on probiotic application for salt toxicity.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- *Correspondence: Zheng Zhang
| | - Jiajian Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Binbin Yang
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, China
| | - Zhuangzhuang Chu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Bo Cui
| | - Xiao Chen
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
- Xiao Chen
| |
Collapse
|
22
|
Flourensia fiebrigii S.F. Blake in combination with Lactobacillus paracasei subsp. paracasei CE75. A novel anti-pathogenic and detoxifying strategy. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Oberoi K, Tolun A, Altintas Z, Sharma S. Effect of Alginate-Microencapsulated Hydrogels on the Survival of Lactobacillus rhamnosus under Simulated Gastrointestinal Conditions. Foods 2021; 10:1999. [PMID: 34574109 PMCID: PMC8465150 DOI: 10.3390/foods10091999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
Thanks to the beneficial properties of probiotic bacteria, there exists an immense demand for their consumption in probiotic foods worldwide. Nevertheless, it is difficult to retain a high number of viable cells in probiotic food products during their storage and gastrointestinal transit. Microencapsulation of probiotic bacteria is an effective way of enhancing probiotic viability by limiting cell exposure to extreme conditions via the gastrointestinal tract before releasing them into the colon. This research aims to develop a new coating material system of microencapsulation to protect probiotic cells from adverse environmental conditions and improve their recovery rates. Hence, Lactobacillus rhamnosus was encapsulated with emulsion/internal gelation techniques in a calcium chloride solution. Alginate-probiotic microbeads were coated with xanthan gum, gum acacia, sodium caseinate, chitosan, starch, and carrageenan to produce various types of microcapsules. The alginate+xanthan microcapsules exhibited the highest encapsulation efficiency (95.13 ± 0.44%); they were simulated in gastric and intestinal juices at pH 3 during 1, 2, and 3 h incubations at 37 °C. The research findings showed a remarkable improvement in the survival rate of microencapsulated probiotics under simulated gastric conditions of up to 83.6 ± 0.89%. The morphology, size, and shape of the microcapsules were analyzed using a scanning electron microscope. For the protection of probiotic bacteria under simulated intestinal conditions; alginate microbeads coated with xanthan gum played an important role, and exhibited a survival rate of 87.3 ± 0.79%, which was around 38% higher than that of the free cells (49.4 ± 06%). Our research findings indicated that alginate+xanthan gum microcapsules have a significant potential to deliver large numbers of probiotic cells to the intestines, where cells can be released and colonized for the consumer's benefit.
Collapse
Affiliation(s)
- Khyati Oberoi
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| | - Aysu Tolun
- Food Engineering, Ankara University, Ankara 06110, Turkey;
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India;
| |
Collapse
|
25
|
Pupa P, Apiwatsiri P, Sirichokchatchawan W, Pirarat N, Muangsin N, Shah AA, Prapasarakul N. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci Rep 2021; 11:13753. [PMID: 34215824 PMCID: PMC8253736 DOI: 10.1038/s41598-021-93263-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Lactic acid bacteria (LAB) are used as a probiotic alternative to antibiotics in livestock production. Microencapsulation technology is widely used for probiotic preservation. A variety of microencapsulation protocols have been proposed and compared based on chemicals and mechanical procedures. This study aimed to develop a double-encapsulated coating from alginate (1.5%) and chitosan (0.5%) by extrusion, emulsion, and spray drying methods using the LAB strains Lactobacillus plantarum strains 31F, 25F, 22F, Pediococcus pentosaceus 77F, and P. acidilactici 72N, and to monitor the basic probiotic properties of the encapsulated prototypes. The final products from each microencapsulation protocol were analysed for their appearance, probiotic properties and viable cell count. Using the spray drying method, particles smaller than 15 μm in diameter with a regular spherical shape were obtained, whereas the other methods produced larger (1.4–52 mm) and irregularly shaped microcapsules. After storage for 6 months at room temperature, the LAB viability of the spray-dried particles was the highest among the three methods. In all the LAB strains examined, the encapsulated LAB retained their probiotic properties in relation to acid-bile tolerance and antibacterial activity. This study highlights the efficacy of double-coating microencapsulation for preserving LAB properties and survival rate, and demonstrates its potential for probiotic application in livestock farms.
Collapse
Affiliation(s)
- Pawiya Pupa
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasert Apiwatsiri
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asad Ali Shah
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuvee Prapasarakul
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Diagnosis and Monitoring Animal Pathogens Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Abstract
In recent years, the intestinal microbiota has been found to greatly influence a number of biological processes important for human health and longevity. Microbial composition changes easily in response to external factors, such as an unbalanced diet, lack of physical activity, and smoking. Probiotics are a key factor in maintaining the optimal composition of the intestinal microbiota. However, a number of important questions related to probiotics, such as indication for prescription, comparative efficacy of monostrain and multistrain probiotics, methods of delivery, and shelf life, remain unresolved. The aim of this review is to highlight existing issues regarding probiotic production and their prescription. The review presents the most recent findings regarding advantages and efficacy of monostrain and multistrain probiotics, preservation of probiotic strains in capsules and microcapsules, production of probiotics in the form of biofilms for improved efficacy and survival, and results of clinical studies evaluating the benefits of probiotics against different pathologies. We believe that this work will be of interest to physicians and researchers alike and will promote the development of new probiotics and ensuing regimens aimed at the treatment of various diseases.
Collapse
|
27
|
He C, Sampers I, Van de Walle D, Dewettinck K, Raes K. Encapsulation of Lactobacillus in Low-Methoxyl Pectin-Based Microcapsules Stimulates Biofilm Formation: Enhanced Resistances to Heat Shock and Simulated Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6281-6290. [PMID: 34047549 DOI: 10.1021/acs.jafc.1c00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulation is a common approach to improve the bacterial survival of probiotics. In this study, two new low-methoxyl pectins (CMP-6 and CMP-8) were used as coating materials to produce microcapsules (MCs) for the encapsulation of Lactobacillus acidophilus LMG9433T, Lactobacillus casei LMG6904T, and Lactobacillus rhamnosus LMG25859. A fermentation test showed that encapsulation did not influence the fermentation ability of lactobacilli. The biofilm formation of encapsulated lactobacilli was stimulated when an in situ cultivation was conducted on MCs, which was verified by cryo-SEM observation. The resultant biofilm-forming MCs (BMCs) contained high-density bacterial cells (∼1010 CFU/mL). Compared to planktonic lactobacilli, pectin-based MCs showed significant protection for encapsulated lactobacilli from heat shock and simulated gastric digestion. Especially, benefiting from the biofilm formation, BMCs provided higher protection with enhanced resistance to heat shock, freeze-drying, and gastrointestinal digestion than MCs. Our result highlighted the superior bacterial resistances of biofilm-forming probiotics encapsulated in pectinate microcapsules.
Collapse
Affiliation(s)
- Caian He
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, Kortrijk 8500, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, Kortrijk 8500, Belgium
| | - Davy Van de Walle
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, Kortrijk 8500, Belgium
| |
Collapse
|
28
|
Tan KX, Ng LLE, Loo SCJ. Formulation Development of a Food-Graded Curcumin-Loaded Medium Chain Triglycerides-Encapsulated Kappa Carrageenan (CUR-MCT-KC) Gel Bead Based Oral Delivery Formulation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2783. [PMID: 34073859 PMCID: PMC8197192 DOI: 10.3390/ma14112783] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.
Collapse
Affiliation(s)
- Kei-Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Esco Aster, Block 71, Ayer Rajah Crescent, Singapore 139951, Singapore
| | - Ling-Ling Evelyn Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
29
|
Quality parameters and oxidative stability of functional beef burgers fortified with microencapsulated cod liver oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
He C, Sampers I, Raes K. Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106175] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Liu L, Guo S, Chen X, Yang S, Deng X, Tu M, Tao Y, Xiang W, Rao Y. Metabolic profiles of Lactobacillus paraplantarum in biofilm and planktonic states and investigation of its intestinal modulation and immunoregulation in dogs. Food Funct 2021; 12:5317-5332. [PMID: 34015803 DOI: 10.1039/d1fo00905b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of probiotics has recently become a considerably promising research area. The most advanced fourth-generation probiotics involve beneficial bacteria enclosed in biofilms. However, differences in the effects of probiotics in biofilm and those in planktonic states are, as yet, unclear. In this study, it was ascertained that the biofilm mode of Lactobacillus paraplantarum L-ZS9 had a comparatively higher density and stronger resistance. Untargeted metabolomics analysis suggested a significant distinction between planktonic and biofilm cells, with amino acids and carbohydrate metabolism both more active in the biofilm mode. Furthermore, the in vivo experiment showed that the biofilm strain displayed better immunomodulation activity, which could increase the relative abundance of Lactobacillus in the intestinal microbiota of dogs. The relative abundance of intestinal microbiota participating in carbohydrate metabolism was higher in the biofilm probiotic-treated dogs. Correlation analysis between L-ZS9-producing metabolites, dog intestinal microbiome diversity and dog blood immune indexes (sIgA or IgG) revealed the interaction between these three components, which might explain the mechanisms by which biofilm L-ZS9 regulated the intestinal microbiome and immunity activity of the host, through the production of various metabolites. Findings of this study will, thus, enhance understanding of the beneficial effects of biofilm probiotics, as well as provide references for further investigation.
Collapse
Affiliation(s)
- Lei Liu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuyu Guo
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xing Chen
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Shuhui Yang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Xi Deng
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Mingxia Tu
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yufei Tao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Wenliang Xiang
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| | - Yu Rao
- School of food science and bioengineering, Xihua University, Hongguang Street, Pidu District, Chengdu, 610039, China.
| |
Collapse
|
32
|
Tan LL, Sampathkumar K, Wong JH, Loo SCJ. Divalent cations are antagonistic to survivability of freeze-dried probiotics encapsulated in cross-linked alginate. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Heumann A, Assifaoui A, Da Silva Barreira D, Thomas C, Briandet R, Laurent J, Beney L, Lapaquette P, Guzzo J, Rieu A. Intestinal release of biofilm-like microcolonies encased in calcium-pectinate beads increases probiotic properties of Lacticaseibacillus paracasei. NPJ Biofilms Microbiomes 2020; 6:44. [PMID: 33116127 PMCID: PMC7595111 DOI: 10.1038/s41522-020-00159-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, we show that calcium pectinate beads (CPB) allow the formation of 20 µm spherical microcolonies of the probiotic bacteria Lacticaseibacillus paracasei (formerly designated as Lactobacillus paracasei) ATCC334 with a high cell density, reaching more than 10 log (CFU/g). The bacteria within these microcolonies are well structured and adhere to a three-dimensional network made of calcium-pectinate through the synthesis of extracellular polymeric substances (EPS) and thus display a biofilm-like phenotype, an attractive property for their use as probiotics. During bacterial development in the CPB, a coalescence phenomenon arises between neighboring microcolonies accompanied by their peripheral spatialization within the bead. Moreover, the cells of L. paracasei ATCC334 encased in these pectinate beads exhibit increased resistance to acidic stress (pH 1.5), osmotic stress (4.5 M NaCl), the freeze-drying process and combined stresses, simulating the harsh conditions encountered in the gastrointestinal (GI) tract. In vivo, the oral administration of CPB-formulated L. paracasei ATCC334 in mice demonstrated that biofilm-like microcolonies are successfully released from the CPB matrix in the colonic environment. In addition, these CPB-formulated probiotic bacteria display the ability to reduce the severity of a DSS-induced colitis mouse model, with a decrease in colonic mucosal injuries, less inflammation, and reduced weight loss compared to DSS control mice. To conclude, this work paves the way for a new form of probiotic administration in the form of biofilm-like microcolonies with enhanced functionalities.
Collapse
Affiliation(s)
- Arnaud Heumann
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Ali Assifaoui
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France.
| | - David Da Silva Barreira
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Charles Thomas
- Université de Bourgogne Franche-Comté (UBFC), LNC UMR 1231, F-21000 Dijon, France; INSERM, LNC UMR 1231, F-21000, Dijon, France
- Université de Bourgogne Franche-Comté (UBFC), LipSTIC LabEx, F-21000, Dijon, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Julie Laurent
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Laurent Beney
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Pierre Lapaquette
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Jean Guzzo
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France
| | - Aurélie Rieu
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, F-21000, Dijon, France.
| |
Collapse
|
34
|
Feng K, Wei YS, Hu TG, Linhardt RJ, Zong MH, Wu H. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. Int J Pharm 2020; 584:119414. [DOI: 10.1016/j.ijpharm.2020.119414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
|
36
|
Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2019; 411:5563-5576. [PMID: 31209547 DOI: 10.1007/s00216-019-01938-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
The Surface-enhanced Raman spectroscopy (SERS) method based on gold nanoparticles as SERS substrate was investigated for the label-free detection and quantification of probiotic bacteria that are widely used in various pharmaceutical formulations. Indeed, the development of a simple and fast SERS method dedicated to the quantification of bacteria should be very useful for the characterization of such formulations in a more convenient way than the usually performed tedious and time-consuming conventional counting method. For this purpose, uncoated near-spherical gold nanoparticles were developed at room temperature by acidic treatment of star-like gold nanoparticle precursors. In this study, we first investigated the influence of acidic treatment conditions on both the nanoparticle physicochemical properties and SERS efficiency using Rhodamine 6G (R6G) as "model" analyte. Results highlighted that an effective R6G Raman signal enhancement was obtained by promoting chemical effect through R6G-anion interactions and by obtaining a suitable aggregation state of the nanoparticles. Depending on the nanoparticle synthesis conditions, R6G SERS signals were up to 102-103-fold greater than those obtained with star-like gold nanoparticles. The synthesized spherical gold nanoparticles were then successfully applied for the detection and quantification of Lactobacillus rhamnosus GG (LGG). In that case, the signal enhancement was especially due to the combination of anion-induced chemical enhancement and nanoparticle aggregation on LGG cell wall consecutive to non-specific interactions. Both the simplicity and speed of the procedure, achieved under 30 min, including nanoparticle synthesis, sample preparation, and acquisition of SERS spectra, appeared as very relevant for the characterization of pharmaceutical formulations incorporating probiotics. Graphical abstract.
Collapse
|
37
|
Savijoki K, Nyman TA, Kainulainen V, Miettinen I, Siljamäki P, Fallarero A, Sandholm J, Satokari R, Varmanen P. Growth Mode and Carbon Source Impact the Surfaceome Dynamics of Lactobacillus rhamnosus GG. Front Microbiol 2019; 10:1272. [PMID: 31231350 PMCID: PMC6560171 DOI: 10.3389/fmicb.2019.01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022] Open
Abstract
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, Lactobacillus rhamnosus GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth. The most distinctive differences under these conditions were detected with several surface adhesins (e.g., MBF, SpaC pilus protein and penicillin-binding proteins), enzymes (glycoside hydrolases, PrsA, PrtP, PrtR, and HtrA) and moonlighting proteins (glycolytic, transcription/translation and stress-associated proteins, r-proteins, tRNA synthetases, Clp family proteins, PepC, PepN, and PepA). The abundance of several known adhesins and candidate moonlighters, including enzymes acting on casein-derived peptides (ClpP, PepC, and PepN), increased in the biofilm cells grown on fructose, from which the surface-associated aminopeptidase activity mediated by PepC and PepN was further confirmed by an enzymatic assay. The mucus binding factor (MBF) was found most abundant in fructose grown biofilm cells whereas SpaC adhesin was identified specifically from planktonic cells growing on fructose. An additional indirect ELISA indicated both growth mode- and carbohydrate-dependent differences in abundance of SpaC, whereas the overall adherence of GG assessed with porcine mucus indicated that the carbon source and the growth mode affected mucus adhesion. The adherence of GG cells to mucus was almost completely inhibited by anti-SpaC antibodies regardless of growth mode and/or carbohydrate source, indicating the key role of the SpaCBA pilus in adherence under the tested conditions. Altogether, our results suggest that carbon source and growth mode coordinate mechanisms shaping the proteinaceous composition of GG cell surface, which potentially contributes to resistance, nutrient acquisition and cell-cell interactions under different conditions. In conclusion, the present study shows that different growth regimes and conditions can have a profound impact on the adherent and antigenic features of GG, thereby providing new information on how to gain additional benefits from this probiotic.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Pia Siljamäki
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Adyary Fallarero
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Jouko Sandholm
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Liu L, Wu R, Zhang J, Li P. Overexpression of luxS Promotes Stress Resistance and Biofilm Formation of Lactobacillus paraplantarum L-ZS9 by Regulating the Expression of Multiple Genes. Front Microbiol 2018; 9:2628. [PMID: 30483223 PMCID: PMC6240686 DOI: 10.3389/fmicb.2018.02628] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics have evoked great interest in the past years for their beneficial effects. The aim of this study was to investigate whether luxS overexpression promotes the stress resistance of Lactobacillus paraplantarum L-ZS9. Here we show that overexpression of luxS gene increased the production of autoinducer-2 (AI-2, quorum sensing signal molecule) by L. paraplantarum L-ZS9. At the same time, overexpression of luxS promoted heat-, bile salt-resistance and biofilm formation of the strain. RNAseq results indicated that multiple genes encoding transporters, membrane proteins, and transcriptional regulator were regulated by luxS. These results reveal a new role for LuxS in promoting stress resistance and biofilm formation of probiotic starter.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Ruiyun Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Jinlan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob Proteins 2018; 10:1-10. [PMID: 29124564 DOI: 10.1007/s12602-017-9347-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Probiotic encapsulation is an entire system that not only involves but also depends on many factors. Elements such as the encapsulation method itself, materials, environmental conditions, and last, but not least, the strain; all play an important role in the encapsulation process. The current paper focuses on the right selection of probiotics, the various stress factors that impact the survival capacity of probiotics during and after encapsulation, and the rational selection of appropriate protection strategies to overcome these factors and achieve the highest possible encapsulation efficiency under optimal conditions. This review discusses the effects of temperature, moisture content, and water activity as well as pH, oxygen, and pressure on the viabilities of microorganisms. The effect of the surface and structure of the capsules on the encapsulated microorganisms and the impact of the materials used for the encapsulation are discussed as well. Last, but not least, the importance of choosing the right bacteria is reviewed.
Collapse
|
40
|
Kim M, Nam D, Kim S, Im P, Choe J, Choi A. Enhancement of viability, acid, and bile tolerance and accelerated stability in lyophilized Weissella cibaria JW15 with protective agents. Food Sci Nutr 2018; 6:1904-1913. [PMID: 30349680 PMCID: PMC6189608 DOI: 10.1002/fsn3.762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023] Open
Abstract
Dietary supplementation with lactic acid bacteria to maintain or improve intestinal health is advocated. Weissella spp. are present in different fermented vegetable-based foods like kimchi, as well as in the normal gastrointestinal (GI) tract of humans. Weissella cibaria strains have been proposed as potential probiotics. Freeze-drying is a promising treatment method for these strains for industrial applications and to increase the accessibility of their health-promoting benefits. Moreover, probiotic strains need to be able to survive in the host GI tract, and acid and bile are both environmental stressors that can reduce strain survival. Therefore, this study evaluated the effect of the combination of protective agents on the acid and bile resistance of W. cibaria JW15 after freeze-drying. A protective agent combination with a 1:1 ratio of 5 g + 5 g/100 ml w/v soy flour + yeast extract (SFY) retained nearly 100% viability after freeze-drying and was resistant to artificial bile acids. Remarkably, skim milk + soy flour (SSF) was resistant to an acidic solution, and the viability of W. cibaria JW15 in artificial gastric acid was enhanced when treated with this mixture. Furthermore, SFY and SSF were found to maintain high numbers of viable cells with a low specific rate of cell death (k) after storage at 50°C, 60°C, and 70°C. These results support an effective probiotic formulation system with a high number of viable cells, and its protective effects can be leveraged in the development of probiotic products with health benefits.
Collapse
Affiliation(s)
- Mina Kim
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Dong‐Geon Nam
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Sang‐Bum Kim
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Pureum Im
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Jeong‐Sook Choe
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| | - Ae‐Jin Choi
- Division of Functional Food & NutritionDepartment of Agrofood ResourcesNational Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
| |
Collapse
|
41
|
Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Fareez IM, Lim SM, Ramasamy K. Microencapsulated Lactobacillus plantarum LAB12 Showed No Sign of Acute or Sub-chronic Toxicity In Vivo. Probiotics Antimicrob Proteins 2018; 11:447-459. [DOI: 10.1007/s12602-018-9442-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Vega-Sagardía M, Rocha J, Sáez K, Smith CT, Gutierrez-Zamorano C, García-Cancino A. Encapsulation, with and without oil, of biofilm forming Lactobacillus fermentum UCO-979C strain in alginate-xanthan gum and its anti- Helicobacter pylori effect. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198:385-400. [PMID: 30093014 DOI: 10.1016/j.carbpol.2018.06.086] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Carrageenan is a class of naturally occurring sulphated polysaccharides, which is currently a promising candidate in tissue engineering and regenerative medicine as it resemblances native glycosaminoglycans. From pharmaceutical drug formulations to tissue engineered scaffolds, carrageenan has broad range of applications. Here we provide an overview of developing various forms of carrageenan based hydrogels. We focus on how these fabrication processes has an effect on physiochemical properties of the hydrogel. We outline the application of these hydrogels not only pertaining to sustained drug release but also their application in bone and cartilage tissue engineering as well as in wound healing and antimicrobial formulations. Administration of these hydrogels through various routes for drug delivery applications has been critically reviewed. Finally, we conclude by summarizing the current and future outlook that promotes the seaweed-derived polysaccharide as versatile, promising biomaterial for a variety of bioengineering applications.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vignesh Selvaprithiviraj
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
45
|
Kwiecień I, Kwiecień M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018; 4:E47. [PMID: 30674823 PMCID: PMC6209284 DOI: 10.3390/gels4020047] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Polysaccharide hydrogels have been increasingly utilized in various fields. In this review, we focus on polysaccharide-based hydrogels used as probiotic delivery systems. Probiotics are microorganisms with a positive influence on our health that live in the intestines. Unfortunately, probiotic bacteria are sensitive to certain conditions, such as the acidity of the gastric juice. Polysaccharide hydrogels can provide a physical barrier between encapsulated probiotic cells and the harmful environment enhancing the cells survival rate. Additionally, hydrogels improve survivability of probiotic bacteria not only under gastrointestinal track conditions but also during storage at various temperatures or heat treatment. The hydrogels described in this review are based on selected polysaccharides: alginate, κ-carrageenan, xanthan, pectin and chitosan. Some hydrogels are obtained from the mixture of two polysaccharides or polysaccharide and non-polysaccharide compounds. The article discusses the efficiency of probiotic delivery systems made of single polysaccharide, as well as of systems comprising more than one component.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland.
| | - Michał Kwiecień
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
46
|
Yang C, Wang Y, Lu L, Unsworth L, Guan LL, Chen L. Oat protein-shellac beads: Superior protection and delivery carriers for sensitive bioactive compounds. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Astesana DM, Zimmermann JA, Frizzo LS, Zbrun MV, Blajman JE, Berisvil AP, Romero-Scharpen A, Signorini ML, Rosmini MR, Soto LP. Development and storage studies of high density macrocapsules containing Lactobacillus spp. strains as nutritional supplement in young calves. Rev Argent Microbiol 2018; 50:398-407. [PMID: 29559185 DOI: 10.1016/j.ram.2017.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 10/17/2022] Open
Abstract
The aim of this study was to evaluate different production methodologies of probiotic macrocapsules with high bacterial densities destined to lactating calves. Three types of capsules containing Lactobacillus casei DSPV318T and Lactobacillus plantarum DSPV354T were prepared from an overnight culture in whey medium: (1) mixing the culture with calcium alginate and then, reincubating the capsules in whey (RC); (2) concentrating the biomass by centrifugation and mixing the pellet with calcium alginate (CC) at different concentrations with respect to the initial culture (5X and 12.5X); (3) CC with cryoprotectants: whey permeate (Per) and glycerol (Gly). Chitosan coating was evaluated. Capsules were freeze-dried and viability was assessed before freezing, after freeze-drying and every two weeks for 84 days of storage at room temperature, 4°C and -20°C. CC showed higher cell densities than RC. Storage temperature affected viability: greater viability at lower temperature. Moreover, the effect of temperature was influenced by other factors, such as capsule coating, culture neutralization and cryoprotectants. Coating improved viability at room temperature; however no effect was observed at 4°C. Culture neutralization allowed greater survival during storage. Cryoprotectants improved viability during freezing, but they also generated a positive or negative effect depending on storage temperature. The best results were: at refrigeration Gly12.5X exhibited counts above 109CFU/capsule until day 70 and Per12.5X until day 56 of storage and at -20°C Gly12.5X showed counts above 109CFU/capsule until the end of the study (84 days). A 109CFU capsule is the daily dose per calf which would facilitate the administration of this probiotic inoculum to field animals.
Collapse
Affiliation(s)
- Diego M Astesana
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina
| | - Jorge A Zimmermann
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina
| | - Laureano S Frizzo
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina; Departmento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, P. Kreder 2805, Santa Fe, Esperanza 3080, Argentina
| | - María V Zbrun
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina; Departmento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, P. Kreder 2805, Santa Fe, Esperanza 3080, Argentina
| | - Jesica E Blajman
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina
| | - Ayelén P Berisvil
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina
| | - Analía Romero-Scharpen
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina
| | - Marcelo L Signorini
- Departmento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, P. Kreder 2805, Santa Fe, Esperanza 3080, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Tecnología Agropecuaria, EEA Rafaela, Ruta 34, km No. 227, Rafaela, Santa Fe, Argentina.
| | - Marcelo R Rosmini
- Departmento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, P. Kreder 2805, Santa Fe, Esperanza 3080, Argentina
| | - Lorena P Soto
- Laboratorio de Análisis de Alimentos, Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional del Investigaciones Científicas y Técnicas (ICIVET-CONICET), Kreder 2805, Esperanza, Santa Fe S3080HOF, Argentina; Departmento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, P. Kreder 2805, Santa Fe, Esperanza 3080, Argentina
| |
Collapse
|
48
|
Afonyushkin VN, Kechin AA, Tromenshleger IN, Filipenko ML, Smetanina MA. Determination of cell concentrations in stationary growing Lactobacillus salivarius cultures in relation to formation of biofilms and cell aggregates. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717060030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Hann SD, Stebe KJ, Lee D. All-Aqueous Assemblies via Interfacial Complexation: Toward Artificial Cell and Microniche Development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10107-10117. [PMID: 28882042 DOI: 10.1021/acs.langmuir.7b02237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In nature, the environment surrounding biomolecules and living cells can dictate their structure, function, and properties. Confinement is a key means to define and regulate such environments. For example, the confinement of appropriate constituents in compartments facilitates the assembly, dynamics, and function of biochemical machineries as well as subcellular organelles. Membraneless organelles, in particular, are thought to form via thermodynamic cues defined within the interior space of cells. On larger length scales, the confinement of living cells dictates cellular function for both mammalian and bacterial cells. One promising class of artificial structures that can recapitulate these multiscale confinement effects is based on aqueous two-phase systems (ATPSs). This feature article highlights recent developments in the production and stabilization of ATPS-droplet-based systems, with a focus on interfacial complexation. These systems enable structure formation, modulation, and triggered (dis)assembly, thereby allowing structures to be tailored to fit the desired function and designed for particular confinement studies. Open issues for both synthetic cells and niche studies are identified.
Collapse
Affiliation(s)
- Sarah D Hann
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydr Polym 2017; 177:86-96. [PMID: 28962799 DOI: 10.1016/j.carbpol.2017.08.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022]
Abstract
Multifunctional capsules have great applications in biomedical fields. In this study, novel polysaccharide-based nanocapsules were prepared via a layer-by-layer technique using silica as the templates. The shell was constructed based on the electrostatic interactions between pectin and chitosan. The pectin-chitosan nanocapsules ((Pec/Cs)3Pec) could keep good colloidal stability within 96h in PBS solution and 48h in BSA solution. Meanwhile, the nanocapsules exhibited a high drug loading and pH-sensitive release property for doxorubicin hydrochloride. Moreover, (Pec/Cs)3Pec nanocapsules had no cytotoxicity to both human hepatocellular carcinoma cells (HepG2 cells) and mouse fibroblast cells (L929 cells). More importantly, (Pec/Cs)3Pec nanocapsules could be more easily uptaken by HepG2 cells when compared with L929 cells. In vitro anticancer activity tests indicated the carriers could effectively kill HepG2 cells. Overall, (Pec/Cs)3Pec nanocapsules have great potential as a novel anticancer drug carrier as a result of their pH-sensitivity, good colloidal stability and anticancer activity.
Collapse
|