1
|
Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral Gene Delivery with Cationic Glycopolymers. Acc Chem Res 2019; 52:1347-1358. [PMID: 30993967 DOI: 10.1021/acs.accounts.8b00665] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of gene therapy, which aims to treat patients by modulating gene expression, has come to fruition and has landed several landmark FDA approvals. Most gene therapies currently rely on viral vectors to deliver nucleic acid cargo into cells, but there is significant interest in moving toward chemical-based methods, such as polymer-based vectors, due to their low cost, immunocompatibility, and tunability. The full potential of polymer-based delivery systems has yet to be realized, however, because most polymeric transfection reagents are either too inefficient or too toxic for use in the clinic. In this Account, we describe developments in carbohydrate-based cationic polymers, termed glycopolymers, for enhanced nonviral gene delivery. As ubiquitous components of biological systems, carbohydrates are a rich class of compounds that can be harnessed to improve the biocompatibility of non-native polymers, such as linear polyamines used for promoting transfection. Reineke et al. developed a new class of carbohydrate-based polymers called poly(glycoamidoamine)s (PGAAs) by step-growth polymerization of linear monosaccharides with linear ethyleneamines. These glycopolymers were shown to be both efficient and biocompatible transfection reagents. Systematic modifications of the structural components of the PGAA system revealed structure-activity relationships important to its function, including its ability to degrade in situ. Expanding upon the development of step-growth glycopolymers, monosaccharides, such as glucose, were functionalized as vinyl-based monomers for the formation of diblock copolymers via radical addition-fragmentation chain-transfer (RAFT) polymerization. Upon complexation with plasmid DNA, the glucose-containing block creates a hydrophilic shell that promotes colloidal stability as effectively as PEG functionalization. An N-acetyl-d-galactosamine variant of this diblock polymer yields colloidally stable particles that show increased receptor-mediated uptake by liver hepatocytes in vitro and promotes liver targeting in mice. Finally, the disaccharide trehalose was incorporated into polycationic structures using both step-growth and RAFT techniques. It was shown that these trehalose-based copolymers imparted increased colloidal stability and yielded plasmid and siRNA polyplexes that resist aggregation upon lyophilization and reconstitution in water. The aforementioned series of glycopolymers use carbohydrates to promote effective and safe delivery of nucleic acid cargo into a variety of human cells types by promoting vehicle degradation, tissue-targeting, colloidal stabilization, and stability toward lyophilization to extend shelf life. Work is currently underway to translate the use of glycopolymers for safe and efficient delivery of nucleic acid cargo for gene therapy and gene editing applications.
Collapse
Affiliation(s)
- Craig Van Bruggen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zhe Tan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Peng Q, Yuan Y, Zhang H, Bo S, Li Y, Chen S, Yang Z, Zhou X, Jiang ZX. 19F CEST imaging probes for metal ion detection. Org Biomol Chem 2018; 15:6441-6446. [PMID: 28741638 DOI: 10.1039/c7ob01068k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For detecting metal ions with 19F chemical exchange saturation transfer magnetic resonance imaging (19F CEST MRI), a class of novel fluorinated chelators with diverse fluorine contents and chelation properties were conveniently synthesized on gram scales. Among them, a DTPA-derived chelator with high sensitivity and selectivity was identified as a novel 19F CEST imaging probe for simultaneously detecting multiple metal ions.
Collapse
Affiliation(s)
- Qiaoli Peng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Jaiprasart P, Yeung BZ, Lu Z, Wientjes MG, Cui M, Hsieh CM, Woo S, Au JLS. Quantitative contributions of processes by which polyanion drugs reduce intracellular bioavailability and transfection efficiency of cationic siRNA lipoplex. J Control Release 2018; 270:101-113. [PMID: 29203416 DOI: 10.1016/j.jconrel.2017.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022]
Abstract
RNA Interference (RNAi) is a potentially useful tool to correct the detrimental effects of faulty genes; several RNAi are undergoing clinical evaluation in various diseases. The present study identified the relative contributions of three mechanisms by which polyanion drugs reduced the gene silencing activity of Lipoplex, a complex of small interfering RNA (siRNA) and cationic liposomes. The study used a siRNA against the chemoresistance gene survivin and two model polyanion drugs (suramin, heparin). Products of Lipoplex destabilization were separated, identified, and/or quantified using ultrafiltration, gel electrophoresis, and RT-qPCR (quantitative reverse transcription polymerase chain reaction). Cell binding and endocytosis of fluorescence-labeled Lipoplex and the amount of siRNA at its site of action RISC (RNA-induced silencing complex) were evaluated using endocytosis markers, confocal microscopy, quantitative image analysis, immunoprecipitation, and RT-qPCR. The results show suramin and heparin exerted multiple concentration-dependent effects. First, these agents altered several Lipoplex properties (i.e., reduced particle size, changed surface charge, modified composition of protein biocorona). Second, both caused Lipoplex destabilization to release double- and single-strand siRNA and/or smaller siRNA-lipid complexes with reduced siRNA cargo. Third, both prevented the cell surface binding and internalization of Lipoplex, diminished the siRNA concentration in RISC, and retarded the mRNA knockdown. Suramin and heparin yielded qualitatively and quantitatively different results. Analysis of the experimental results of suramin using quantitative pharmacology (QP) modeling indicated the major cause of gene silencing activity loss depended on drug concentration, changing from inhibition of endocytosis at lower concentration (accounting for 60% loss at ~9μM) to inhibition of cell surface binding and loss of siRNA cargo at higher concentrations (accounting for 64% and 27%, respectively, at 70μM). In summary, the present study demonstrates the complex and dynamic interactions between polyanions and Lipoplex, and the use of QP modeling to delineate the contributions of three mechanisms to the eventual loss of gene silencing activity.
Collapse
Affiliation(s)
- Pharavee Jaiprasart
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States
| | - Ze Lu
- Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - M Guillaume Wientjes
- Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - Minjian Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States
| | - Chien-Ming Hsieh
- College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States
| | - Jessie L-S Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, United States; Optimum Therapeutics LLC, Carlsbad, CA 92008, United States; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, United States; College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
|
5
|
Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep 2017; 7:14010. [PMID: 29070882 PMCID: PMC5656664 DOI: 10.1038/s41598-017-14409-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/09/2017] [Indexed: 12/28/2022] Open
Abstract
Today, nanostructure-based contrast agents (CA) are emerging in the field of magnetic resonance imaging (MRI). Their sensitivity is reported as greatly improved in comparison to commercially used chelate-based ones. The present work is aimed at revealing the factors governing the efficiency of longitudinal magnetic relaxivity (r1) in aqueous colloids of core-shell Gd(III)-based nanoparticles. We report for the first time on hydration number (q) of gadolinium(III) as a substantial factor in controlling r1 values of polyelectrolyte-stabilized nanoparticles built from water insoluble complexes of Gd(III). The use of specific complex structure enables to reveal the impact of the inner-sphere hydration number on both r1 values for the Gd(III)-based nanoparticles and the photophysical properties of their luminescent Tb(III) and Eu(III) counterparts. The low hydration of TTA-based Gd(III) complexes (q ≈ 1) agrees well with the poor relaxivity values (r1 = 2.82 mM-1s-1 and r2 = 3.95 mM-1s-1), while these values tend to increase substantially (r1 = 12.41 mM-1s-1, r2 = 14.36 mM-1s-1) for aqueous Gd(III)-based colloids, when macrocyclic 1,3-diketonate is applied as the ligand (q ≈ 3). The regularities obtained in this work are fundamental in understanding the efficiency of MRI probes in the fast growing field of nanoparticulate contrast agents.
Collapse
|
6
|
Shatsberg Z, Zhang X, Ofek P, Malhotra S, Krivitsky A, Scomparin A, Tiram G, Calderón M, Haag R, Satchi-Fainaro R. Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J Control Release 2016; 239:159-68. [PMID: 27569663 DOI: 10.1016/j.jconrel.2016.08.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive forms of all cancers. The median survival with current standard-of-care radiation and chemotherapy is about 14months. GBM is difficult to treat due to heterogeneity in cancer cell population. MicroRNA-based drugs have rapidly become a vast and burgeoning field due to the ability of a microRNA (miRNA) to target many genes involved in key cellular pathways. However, in vivo delivery of miRNA remains a crucial challenge for its therapeutic success. To bypass this shortcoming, we designed polymeric nanogels (NGs), which are based on a polyglycerol-scaffold, as a new strategy of miRNA delivery for GBM therapy. We focused on miR-34a, which is known for its key role in important oncogenic pathways and its tumor suppression ability in GBM and other cancers. We evaluated the capability of six NG derivatives to complex with miR-34a, neutralize its negative charge and deliver active miRNA to the cell cytoplasm. Human U-87 MG GBM cells treated with our NG-miR-34a nano-polyplexes showed remarkable downregulation of miR-34a target genes, which play key roles in the regulation of apoptosis and cell cycle arrest, and induce inhibition of cells proliferation and migration. Administration of NG-miR-34a nano-polyplexes to human U-87 MG GBM-bearing SCID mice significantly inhibited tumor growth as opposed to treatment with NG-negative control miR polyplex or saline. The comparison between different polyplexes highlighted the key features for the rational design of polymeric delivery systems for oligonucleotides. Taken together, we expect that this new therapeutic approach will pave the way for safe and efficient therapies for GBM.
Collapse
Affiliation(s)
- Zohar Shatsberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xuejiao Zhang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Liu X, Yang G, Zhang L, Liu Z, Cheng Z, Zhu X. Photosensitizer cross-linked nano-micelle platform for multimodal imaging guided synergistic photothermal/photodynamic therapy. NANOSCALE 2016; 8:15323-39. [PMID: 27503666 DOI: 10.1039/c6nr04835h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The multifunctional nano-micelle platform holds great promise to enhance the accuracy and efficiency of cancer diagnosis and therapy. In this work, an amphiphilic poly[(poly(ethylene glycol) methyl ether methacrylate)-co-(3-aminopropyl methacrylate)]-block-poly(methyl methacrylate) (P(PEGMA-co-APMA)-b-PMMA) block copolymer was synthesized by successive RAFT polymerizations and subsequent chemical modification. Then the multifunctional micelles with high solubility in physiological environments were developed by a self-assembly and crosslinking processes. The photosensitizer segment, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP), serves as a tetra-functional cross-linker, photodynamic agent, fluorescence indicator, as well as magnetic resonance (MR) contrast agent after labelling with manganese ions (Mn(2+)), while IR825 simultaneously locating in the interior of the fabricated micelles contributed to the photoacoustic (PA) imaging ability and the photothermal effect. The prepared nanoparticles show great stability in a physiological environment with uniform morphology and diameters of around 80 nm as disclosed by stability investigation, TEM and DLS analysis. IR825@P(PEGMA-co-APMA)-b-PMMA@TCPP/Mn nanoparticles displayed high in vivo tumor uptake with a long blood circulation half-life (∼3.64 h) by the EPR effect after intravenous (i.v.) injection, as revealed by fluorescence, MR and PA imaging models. In vivo anti-tumor effects were achieved via a combined photothermal and photodynamic therapy without noticeable dark toxicity, and this strategy was able to induce a remarkably improved synergistic therapeutic effect to both superficial and deep regions of tumors under mild conditions compared with either single photothermal or photodynamic mechanisms.
Collapse
Affiliation(s)
- Xiaodong Liu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Guangbao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Petrakova V, Benson V, Buncek M, Fiserova A, Ledvina M, Stursa J, Cigler P, Nesladek M. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. NANOSCALE 2016; 8:12002-12. [PMID: 27240633 DOI: 10.1039/c6nr00610h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events.
Collapse
Affiliation(s)
- V Petrakova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Physics AS CR, v.v.i, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic
| | - V Benson
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Microbiology AS CR, v.v.i, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - M Buncek
- Generi Biotech Ltd., Machkova 587, 500 11 Hradec Kralove, Czech Republic
| | - A Fiserova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Microbiology AS CR, v.v.i, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - M Ledvina
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - J Stursa
- Nuclear Physics Institute AS CR, v.v.i., 250 68, Rez near Prague, Czech Republic
| | - P Cigler
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - M Nesladek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and IMEC Division IMOMEC, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium and Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
9
|
Dai S, Wu S, Duan N, Wang Z. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1820-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Xue L, Kelkar SS, Wang X, Ma J, Madsen LA, Reineke TM. A theranostic polycation containing trehalose and lanthanide chelate domains for siRNA delivery and monitoring. RSC Adv 2015. [DOI: 10.1039/c5ra14325j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A trehalose-based polycation that contains lanthanide-chelate domains has been examined as a theranostic vehicle for siRNA delivery.
Collapse
Affiliation(s)
- Lian Xue
- University of Minnesota Department of Chemistry
- Minneapolis
- USA
| | - Sneha S. Kelkar
- Virginia Tech Department of Chemistry and Macromolecules and Interfaces Institute
- 900 West Campus Drive
- Blacksburg
- USA
- Wake Forest Institute for Regenerative Medicine and Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences
| | - Xiaoling Wang
- Virginia Tech Department of Chemistry and Macromolecules and Interfaces Institute
- 900 West Campus Drive
- Blacksburg
- USA
| | - Jie Ma
- University of Minnesota Department of Chemistry
- Minneapolis
- USA
| | - Louis A. Madsen
- Virginia Tech Department of Chemistry and Macromolecules and Interfaces Institute
- 900 West Campus Drive
- Blacksburg
- USA
| | | |
Collapse
|
11
|
Chen Q, Liang C, Wang X, He J, Li Y, Liu Z. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 2014; 35:9355-62. [PMID: 25132606 DOI: 10.1016/j.biomaterials.2014.07.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/29/2014] [Indexed: 01/23/2023]
Abstract
A large variety of cancers are associated with a high incidence of lymph node metastasis, which leads to a high risk of cancer death. Herein, we demonstrate that multimodal imaging guided photothermal therapy can inhibit tumor metastasis after surgery by burning the sentinel lymph nodes (SLNs) with metastatic tumor cells. A near-infrared dye, IR825, is absorbed onto human serum albumin (HSA), which is covalently linked with diethylenetriamine pentaacetic acid (DTPA) molecules to chelate gadolinium. The formed HSA-Gd-IR825 nanocomplex exhibits strong fluorescence together with high near-infrared (NIR) absorbance, and in the mean time could serve as a T1 contrast agent in magnetic resonance (MR) imaging. In vivo bi-modal fluorescence and MR imaging uncovers that HSA-Gd-IR825 after being injected into the primary tumor would quickly migrate into tumor-associated SLNs through lymphatic circulation. Utilizing the strong NIR absorbance of HSA-Gd-IR825, SLNs with metastatic cancer cells can be effectively ablated under exposure to a NIR laser. Such treatment when combined with surgery to remove the primary tumor offers remarkable therapeutic outcomes in greatly inhibiting further metastatic spread of cancer cells and prolonging animal survival. Our work presents an albumin-based theranostic nano-probe with functions of multimodal imaging and photothermal therapy, together with a 'photothermal ablation assisted surgery' strategy, promising for future clinical cancer treatment.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xin Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jingkang He
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|