1
|
Bu J, Jeong WJ, Jafari R, Kubiatowicz LJ, Nair A, Poellmann MJ, Hong RS, Liu EW, Owen RH, Rawding PA, Hopkins CM, Kim D, George DJ, Armstrong AJ, Král P, Wang AZ, Bruce J, Zhang T, Kimple RJ, Hong S. Bimodal liquid biopsy for cancer immunotherapy based on peptide engineering and nanoscale analysis. Biosens Bioelectron 2022; 213:114445. [PMID: 35679646 DOI: 10.1016/j.bios.2022.114445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a β-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiyoon Bu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Woo-Jin Jeong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Roya Jafari
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA
| | - Luke J Kubiatowicz
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Ashita Nair
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Michael J Poellmann
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Rachel S Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Elizabeth W Liu
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Randall H Owen
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Piper A Rawding
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Caroline M Hopkins
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - DaWon Kim
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA; Department of Physics, Department of Pharmaceutical Sciences, University of Illinois at Chicago, 845 W Taylar St, Chicage, IL, 60607, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Radiation Oncology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justine Bruce
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Tian Zhang
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, 10 Bryan Searle Drive, Durham, NC, 27710, USA; Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC, 27710, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin - Madison, 777 Highland Ave, Madison, WI, 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, 600 Highland Ave, WI, 53792, USA; Department of Biomedical Engineering, The University of Wisconsin-Madison, 1550 Engineering Dr., Madison, WI, 53705, USA; Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Kim HW, Yang K, Jeong WJ, Choi SJ, Lee JS, Cho AN, Chang GE, Cheong E, Cho SW, Lim YB. Photoactivation of Noncovalently Assembled Peptide Ligands on Carbon Nanotubes Enables the Dynamic Regulation of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26470-26481. [PMID: 27643920 DOI: 10.1021/acsami.6b06796] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stimuli-responsive hybrid materials that combine the dynamic nature self-assembled organic nanostructures, unique photophysical properties of inorganic materials, and molecular recognition capability of biopolymers can provide sophisticated nanoarchitectures with unprecedented functions. In this report, infrared (IR)-responsive self-assembled peptide-carbon nanotube (CNT) hybrids that enable the spatiotemporal control of bioactive ligand multivalency and subsequent human neural stem cell (hNSC) differentiation are reported. The switching between the ligand presented and hidden states was controlled via IR-induced photothermal heating of CNTs, followed by the shrinkage of the thermoresponsive dendrimers that exhibited lower critical solution temperature (LCST) behavior. The control of the ligand spacing via molecular coassembly and IR-triggered ligand presentation promoted the sequential events of integrin receptor clustering and the differentiation of hNSCs into electrophysiologically functional neurons. Therefore, the combination of our nanohybrid with biomaterial scaffolds may be able to further improve effectiveness, durability, and functionality of the nanohybrid systems for spatiotemporal control of stem cell differentiation. Moreover, these responsive hybrids with remote-controllable functions can be developed as therapeutics for the treatment of neuronal disorders and as materials for the smart control of cell function.
Collapse
Affiliation(s)
- Hee-Won Kim
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Kisuk Yang
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Woo-Jin Jeong
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Sung-Ju Choi
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Jong Seung Lee
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Ann-Na Cho
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Gyeong-Eon Chang
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Eunji Cheong
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Seung-Woo Cho
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| | - Yong-Beom Lim
- Department of Materials Science & Engineering and ‡Department of Biotechnology, Yonsei University , Seoul 03722, Korea
| |
Collapse
|